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Abstract

Existing ordinal embedding methods usually follow a two-
stage routine: outlier detection is first employed to pick out
the inconsistent comparisons; then an embedding is learned
from the clean data. However, learning in a multi-stage man-
ner is well-known to suffer from sub-optimal solutions. In this
paper, we propose a unified framework to jointly identify the
contaminated comparisons and derive reliable embeddings.
The merits of our method are three-fold: (1) By virtue of the
proposed unified framework, the sub-optimality of traditional
methods is largely alleviated; (2) The proposed method is
aware of global inconsistency by minimizing a correspond-
ing cost, while traditional methods only involve local incon-
sistency; (3) Instead of considering the nuclear norm heuris-
tics, we adopt an exact solution for rank equality constraint.
Our studies are supported by experiments with both simulated
examples and real-world data. The proposed framework pro-
vides us a promising tool for robust ordinal embedding from
the contaminated comparisons.

Introduction
The solutions to many tasks involve the similarity estima-
tion of data samples, e.g. clustering (von Luxburg 2007),
classification (Chen et al. 2009) and representation learn-
ing (Wei et al. 2018). Traditionally, the objective similarity
measurement extracts the features of data points to calcu-
late their distances in some space, while the Euclidean dis-
tance, cosine similarity, Hamming distance and Kullback-
Leibler divergence are the favorite measurements. In real-
world scenarios, the situation becomes complicated since
the off-the-shelf similarity functions are unreliable. It is too
difficult to customize a similarity function for the specific
data, or simply unavailable of the features or attributes. Con-
sequently, the subjective method is more appropriate when
the objective criteria are ambiguous. Among various sub-
jective approaches for similarity estimation, relative com-
parison is expected to yield more reliable results. Instead
of evaluating the similarity on an absolute scale, the rela-
tive similarity only needs individuals to answer a “yes or
no” question as: “Is the similarity between object i and
j larger than the similarity between l and k?” Then a
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point configuration is constructed to preserve the above con-
straints as much as possible. This task is known as the
ordinal embedding. The problem first arises in the psy-
chometric society (Shepard 1962a; 1962b; Kruskal 1964a;
1964b). In recent years, it has gained increasingly atten-
tion. (Agarwal et al. 2007; Tamuz et al. 2011; Jamieson
and Nowak 2011; van der Maaten and Weinberger 2012;
Kleindessner and Luxburg 2014; Terada and Luxburg 2014;
Amid and Ukkonen 2015; Jain, Jamieson, and Nowak 2016;
Ma et al. 2018)

However, the relative comparison approach leaves a cum-
bersome burden on participants with a large number of an-
notations. Due to its economical and scalable implemen-
tation, crowdsourcing platforms (e.g., MTurk, Innocentive,
CrowdFlower, CrowdRank, and Allourideas) are always re-
stored to annotate these relative comparisons. Neverthe-
less, crowdsourced relative comparisons are not without pit-
falls − the crowd is not all trustworthy (Xu et al. 2012;
Chen et al. 2013). Since participants perform experiments
without supervision on the Internet, when the testing time
for a single participant lasts too long, the annotators may
give untrustworthy feedbacks. Such unreliable labels bring
great challenges to control the quality of crowsourced rela-
tive comparisons, let alone utilizing them in the subsequent
tasks. Therefore, how to derive reliable embeddings from
these contaminated data has become an urgent issue in the
ordinal embedding research.

Traditional robust ordinal embedding methods are usu-
ally two-staged: (1) The outlier detection is employed to
pick out the inconsistent comparisons. (2) Based on the
cleaned data, the embedding is constructed to map items
into a Euclidean space with a low dimension. Various meth-
ods have been developed in literature for outlier detection,
such as majority voting (Welinder et al. 2010), M-estimator
(Huber and Ronchetti 2009), Least Median of Squares
(LMS) (Rousseeuw 1984), S-estimators (Rousseeuw and
Yohai 1984), Least Trimmed Squares (LTS) (Rousseeuw
and Leroy 2005), and Thresholding based Iterative Proce-
dure for Outlier Detection (She and Owen 2011) etc. Among
these studies, perhaps the most well-known one is majority
voting. A large budget is allocated to obtain multiple an-
notations for each comparisons. These annotations are then
aggregated so as to eliminate label noise (McFee and Lanck-
riet 2011). However, the effectiveness of the majority voting
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strategy is often limited by the sparsity problem − it is typ-
ically infeasible to have many annotators for each relative
comparisons. Moreover, it has been found that when pair-
wise local rankings are integrated into a global ranking, it
is possible to detect outliers that can cause global incon-
sistency and yet are locally consistent, i.e., supported by
majority votes (Jiang et al. 2011). Worse, the existing or-
dinal embedding models, such as GNMDS (Agarwal et al.
2007), CKL (Tamuz et al. 2011) and STE (van der Maaten
and Weinberger 2012; Jain, Jamieson, and Nowak 2016),
only adopt the classification scheme via predicting the la-
bels of the relative comparisons to construct the embed-
dings. The generalization of the embeddings would be dam-
aged grievously when the labels of the training samples are
wrong. As a consequence, separating as two unrelated parts,
the outlier detection and the classification-based embedding
would only obtain the local optimal solutions individually.

In this paper we propose a unified approach to detect out-
liers in contaminated data and derive robust ordinal embed-
ding simultaneously. Specifically, instead of detecting out-
liers locally and independently for each comparison, our
method works globally in a sense that the global incon-
sistency is explicitly penalized by the loss function. This
enables us to identify those outliers which would be lo-
cally consistent with the majority results but in fact lead
to significant global ranking inconsistency. The proposed
model considers a partially penalized LASSO problem in the
semi-definite programming. An efficient algorithm is pro-
posed to obtain the embedding with exact desired dimen-
sion. The experiments are carried out on synthetic and real-
world datasets. The results demonstrate that our method out-
performs the state-of-the-art alternatives.

Robust Ordinal Embedding
Preliminaries
Let O = {o1, . . . ,on} be a set of objects which need to
obtain the embedding. There exists an unknown but fixed
similarity function ζ : O2 → R+ which assigns the simi-
larity value ζij to a pair of objects (oi,oj). In this sense, the
ranking of {ζij}, i, j ∈ [n] will produce a total order. How-
ever, without any prior knowledge,O and {ζij} are both un-
known. Therefore, we establish the form of side-information
that will drive our ordinal embedding algorithm, that is, the
relative similarity measurements collected from human la-
belers.

Given a set of objects O and a set of annotators U , a col-
lection of relative similarity measurements can be written as

CU =

{
(i, j, l, k)u

i, j, l, j ∈ [n], u ∈ U
i 6= j, l 6= k, (i, j) 6= (l, k)

}
, (1)

where a tuple (i, j, l, k)u is interpreted as “worker u an-
notates that i and j are more similar than l and k”. (This
measurement subsumes the triple-wise comparison situation
when i = l.) The goal of ordinal embedding is to find an
embeddingX = {x1, . . . ,xn} ∈ Rp×n such that

d(xi,xj) < d(xl,xk), ∀ (i, j, l, k)u ∈ CU , (2)
where d : Rp × Rp → R+ is a distance function of Eu-
clidean space Rp. As both O and ζ lose the explicit form in

ordinal embedding problem, the squared Euclidean distance
d(xi,xj) = ‖xi−xj‖22 := dij is always adopted in (2). We
denoteD = {dij} as the distance matrix ofX .

Despite the distance matrix D is directly related to the
embeddingX , the squared Euclidean distance is a nonlinear
function ofX . Here we introduce the Gram matrix ofX and
conduct the distance as a linear function of Gram matrix. It
is known that there is a map between the distance matrix D
and the Gram matrixG = {gij} = X>X as

dij = gii − 2gij + gjj , (3a)

D = diag(G) · 1> − 2G+ 1 · diag(G)>, (3b)

where diag(G) is the column vector composed of the diag-
onal entries of G and 1 is the n-dimension vector whose all
entries equal to 1.

To dissect the underlying geometrical structure of CU ,
we represent CU as a directed graph G = {V, E} over
O2 and note cu as a ordered tuple (i, j, l, k)u. Each ver-
tex vij ∈ V ⊆ O2 in the graph G corresponds to a pair
(oi,oj) ∈ O2, and an edge euc ∈ E from vij to vlk cor-
responds to a relative similarity measurement labeled by
worker u ∈ U . The measurement between (oi,oj) and
(ol,ok) will be labeled by different annotators and their an-
swers to the same question would be inconsistent. It leads to
the multiple edges with different directions between vij and
vlk. Let eUc = {euc , u ∈ U , c ∈ CU} be the multiple edge
with each single edge euc has the same direction, and we as-
sign an indicator yuc on euc as yuc = 1 if euc existed. It means
that worker u measures (oi,oj) and (ol,ok), then she/he
gives an answer which supposes that ζij > ζlk. Notice that
yuc is skew-symmetric, for each u ∈ U , i.e., yuc = −yuc̄ where
c = (i, j, l, k) and c̄ = (l, k, i, j). Furthermore, all the com-
parisons, from (oi,oj) to (ol,ok), are then aggregated over
all annotators who have cast a vote on the two pairs. The re-
sults are represented as the weight of eUc , the total number
of annotations on c,

wc =
∑
u∈U

[yuc = 1], c ∈ CU , (4)

where [·] indicates the Iverson’s bracket notation. We denote
the whole edge weight w = {wc} ∈ R|E|.

Existing Problems of Traditional Methods
Interpreting CU as the comparison graph G with multiple-
edge {eUc } will help us to infer global structure properties of
CU . In an ideal case, we know the similarity function ζ ex-
plicitly, and the global ranking of {ζij} will leads the com-
parisons on {(oi,oj)} ∈ O2 to be a partial order. Two facts
will become immediately apparent: 1) G is acyclic, and 2)
the votes received on each edge are unanimous, e.g. wc ≥ 1
and wc̄ = 0. However, it is always difficult to design such a
function ζ to measure the similarity of objects in O. That’s
why we need the wisdom of a crowd and measure the rel-
ative similarity by the comparisons CU from human beings.
There always exists disagreement in CU as both wc > 0 and
wc̄ > 0 would appear. Assuming these opposite annotations
cannot be true concurrently, one of them will be the outlier
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Figure 1: Traditional vs. Our methods in outlier detection.
Green arrows/edges indicate correct annotations, while red
arrows represent the outliers. The numbers indicate the num-
ber of votes received by each edge.

which should not be considered in the ordinal embedding
problem. The traditional methods require a pretreatment of
CU . It is known as the majority voting method which treats
one direction with larger weight as the majority and the other
as the minority, then the latter one will be pruned. Obviously,
majority voting is a “local” outlier detection method and it
ignores the potential “global” similarity ranking on O2.

To make the matter worse, this local treatment would
keep the wrong annotations and remove the true labels
(see Figure 1.) Suppose that ζ12 > ζ34 > ζ56, major-
ity voting will remove the edges from node v12 to node
v56 as they are the minority versus the other direction
edges. In particular, the majority voting will introduce a
cyclic comparison v12 > v34 > v56 > v12 which
is the well-known Condorcet’s paradox (Gehrlein 2006;
Jiang et al. 2011), and consequently G will contains cy-
cles. In order to eliminate the cycles in G, the maximum
acyclic subgraph are adopted (McFee and Lanckriet 2011;
van der Maaten and Weinberger 2012) to replace G.

Summarizing the arguments, we have the following com-
ments on the traditional methods. For one thing, these meth-
ods could not utilize the ordinal information CU properly by
adopting majority voting to outlier detection. For the other
thing, an NP-complete problem, see maximum acyclic sub-
graph (Garey and Johnson 1979), makes the whole process
more complicated. These are the main motivations for us to
propose a new framework which can detect the outlier and
obtain the embedding simultaneously.

Framework Formulation
Given the comparison graph G with inconsistent multiple
edge E = {eUc , eUc̄ | c, c̄ ∈ CU}, there are two goals:

• Detecting the outliers in the edge set E . To this end, we
introduce a set of unknown variables γ = {γc} ∈ R|E|
where each variable γc indicates whether the edge eUc is
an outlier or not. The outlier detection task in CU thus
becomes the problem of estimating γ with G.

• Obtaining an embedding X ∈ Rp×n. Without prior
knowledge, the squared Euclidean distance is selected as
the dissimilarity measure, that is, given eUc ∈ E which
represents the correct relative similarity measurement, we

hope the embeddingX satisfies

‖xi − xj‖22 < ‖xl − xk‖22, cu = (i, j, l, k)u ∈ CU .

In contrast to the multi-staged methods, we propose to
jointly learn the embedding X by G and remove outliers
globally via γ to avoid finding the maximum acyclic sub-
graph of G. For this purpose, the outlier indicator γ and the
embedding X are estimated in a unified framework. Given
an edge eUc ∈ E , its corresponding direction indicator yc is
modeled as

yc = ‖xi − xj‖22 − ‖xl − xk‖22 + γc + εc, (5)

where εc ∼ N (0, σ2) is the Gaussian noise with zero mean
and a variance σ. The outlier indicator γc is assumed to have
a larger magnitude than σ. For multiple edge eUc , if they are
not outliers, we expect dij − dlk to be approximately equal
to yc, therefore we have γc = 0. On the contrary, when the
prediction of dij − dlk differs greatly from yc, we can ex-
plain eUc as the outliers and compensate for the discrepancy
between the prediction and the annotation with a nonzero
value of γc. The only prior knowledge we have on γ is that
it is a sparse variable, i.e., in most cases γc = 0.

Thanks to the low computational complexity and con-
venience in optimization, we will consider a linear model.
We replace the embedding matrix X with the Gram matrix
G = X>X = {gij} in (5) as

yq = gii − 2gij + gjj − gll + 2glk − gkk + γq + εq. (6)

Next we define the gradient operator (finite difference oper-
ator) on graph G which maps a dissimilarity function on the
vertices d : V → R to an edge flow grad ∇d : V × V → R
such that ∇d (vij , vlk) = dij − dlk. For the whole graph G,
(6) can be re-written in the matrix form as

y = Z �G+ γ + ε, (7)

and we define

Z �G = Zg = Z · vec(G),

where Z = ∇ ∈ R|E|×n2

is the design matrix, y, γ and ε
are vectors in R|E|. It is easy to see that (7) is a linear model.

In order to estimate the |E|+n2 unknown parameters (|E|
for γ and n2 forG), we aim to minimize the discrepancy be-
tween the annotation y and the predictionZ�G+γ, as well
as holding the outlier indicator γ sparse. In addition, the es-
timated G should be a positive semi-definite matrix and its
rank would be no more than p � n. Note that y only con-
tains information about direction, but not how many votes
received by each multiple edge eUc . The discrepancy thus
needs to be weighted by the number of votes, represented by
the edge weight vector w. To that end, we put a weighted
`2-loss on the discrepancy, a sparsity enhancing penalty on
γ as well as semi-definite positive and rank constraint onG.
It gives us the following optimization problem:

minimize
G, γ

Lw(G,γ) + λ‖γ‖1,w

subject to rank(G) = p, G � 0,
(8)
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where

Lw(G,γ) =
1

2
‖y −Z �G− γ‖22,w

=
1

2

∑
eUc ∈E

w2
c (yc − γc − dij + dlk)2

=
1

2
‖Wy − (WZ)�G−Wγ‖22,

(9)

and
‖γ‖1,w =

∑
eUc ∈E

wc|γc| = ‖Wγ‖1, (10)

where W = Diag(w) is the diagonal matrix of w. Solving
(8), our framework identifies outliers globally by integrating
all relative similarity measurements together, and obtains the
embedding matrix X via eigen-decomposition of G. The
noise term ε has been ignored in (8) because the discrepancy
is mainly caused by outliers due to their larger magnitude.

Optimization
Let yw = Wy and g = vec(G), we do variable substitution
in the weighted `2-loss (9) as

Lw(G,γ)

=
1

2
‖yw −WZ · g −Wγ‖22

=
1

2

∥∥∥∥yw − [WZ
W

](
g
γ

)∥∥∥∥2

2

=
1

2
‖yw −A · β‖22 := f(β),

(11)

and the sparsity enhancing penalty (10) can be re-written as

λ‖γ‖1,w = λ

∥∥∥∥[0 W

](
g
γ

)∥∥∥∥
1

= λ‖B · β‖1 := g(β).

(12)
With (11), (12) and ignoring the constraints on G, (8) is
equivalent to a LASSO formulation

arg min
β

F (β) := f(β) + g(β). (13)

LetF be the solution set of (13) and supposeG∗ is a optimal
solution of (8), it holds that G∗ ∈ F . As a consequence,
we come to a semi-definite programming with rank equality
constraint

find G, γ
subject to G, γ ∈ F , G � 0, rank(G) = p.

(14)

Solving a SDP with rank equality constraints like (14) is no-
toriously difficult. It is proposed in (Dattorro 2010) to solve
this problem via iteratively solving the following two convex
problems:

minimize
G, γ

〈G,K∗〉 (15a)

subject to G, γ ∈ F , G � 0,

minimize
G

〈G∗,K〉 (15b)

subject to trace(K) = n− p, 0 �K � I,

where 〈G,K〉 = trace(K>G), G∗ is an optimal solution
of (15a) and K∗ is an optimal solution of (15b). However,
this iteration of the convex problem sequence generally pro-
duces a solution of G which satisfies rank(G) ≤ p1. Mean-
while, the nuclear-norm heuristic which replaces the rank
equality constraint in (14) with nuclear norm regularization
often recovers a minimum-rank solution of an SDP feasibil-
ity problem (Recht, Fazel, and Parrilo 2010). Tuning the free
parameter in these methods to generate a rank-p solution is
computational intensive. Rounding methods, e.g. low-rank
projection which finds the rank-p matrix that is closest to
the positive semi-definite solution in some norm, can also
be adopted to solve (14). But this method just provides the
low-rank approximated solutions instead the exact solution.
To obtain the rank-p solution ofG explicitly, we leverage the
ran-reduction for semi-definite programming (Lemon, So,
and Ye 2016).

First, we solve the following optimization problem

find G, γ
subject to G, γ ∈ F , G � 0.

(16)

For any L > 0, consider the following quadratic approxima-
tion of F (β) := f(β) + g(β) at a given point β0:

QL(β,β0) = f(β0) + 〈β − β0,∇f(β0)〉

+
L

2
‖β − β0‖2 + g(β),

(17)

which admits a unique minimizer

PL(β)

= arg min
β

{
g(β) +

L

2

∥∥∥∥β − (β0 −
1

L
∇f(β0)

)∥∥∥∥2
}
.

Note that the regularization g(β) is a constant in term of
G, we introduce projected gradient descent to find a semi-
definite positive solution and the iterative scheme is

Gt+1 = ΠSn
+

(
Gt −

1

L
∇G f(βt)

)
, (18)

where ΠSn
+

is the semi-definite positive projection of a ma-
trix in the Frobenius norm. Since the `1 norm is separable,
the computation of γ reduces to solving a one-dimensional
minimization problem for each of its components,

γt+1 = Tµ
(
γt −

1

L
∇γ f(βt)

)
, (19)

where Tµ : R|E| → R|E| is the shrinkage operator

[Tµ(γ)]i = max(|γi| − µi, 0) · sign(γi),

and µ = λ
Lw.

1Because this iterative scheme for constraining rank in semidef-
inite program is not a projection method, it can find a rank-p solu-
tionG∗ only if at least one exists in the feasible set of (14). When a
rank-p feasible solution to (14) exists, it remains an open problem
to state conditions under which 〈G∗,K∗〉 =

∑n
i=p+1 σi(G

∗) =
0 is achieved by iterative solution of (15a) and (15b).
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Suppose β+ is a solution of (16)

β+ = [G+, γ+], G+ ∈ F ∩ Sn+,

where Sn+ is the PSD cone of n-dimensional matrix. The
main step of rank reduction is finding a new solution G∗

which satisfies rank(G∗) < rank(G+). Here we assume
that null(G∗) ⊂ null(G+). Since G+ ∈ Sn+, there exists a
matrix U ∈ Rn×p such thatG+ = UU>. We hopeG∗ has
the following update rule:

G∗ = G+ + α U∆U>

= U(I + α∆)U>,
(20)

where α < 0 is a step size and ∆ ∈ Sp+ is the update direc-
tion. Here we reformulate (16) as a standard SDP

minimize ‖γ‖1,w
subject to 〈G,Ac〉+ γc = yc, e

U
c ∈ E ,

G � 0,

(21)

where Ac ∈ Rn×n is a symmetric matrix which has zero
entry everywhere except on the entries corresponding to c =
(i, j, l, k) which has the form

Ac =

i j l k i 1 −1 0 0
j −1 1 0 0
l 0 0 −1 1
k 0 0 1 −1

. (22)

Due to G+, γ+ is a solution of (21), we need G∗ satisfies
the equality constraints

〈G∗,Ac〉+ γ+
c = yc, e

U
c ∈ E . (23)

Substituting (20) into them and simplifying give the condi-
tions 〈

∆, U>AcU
〉

= 0, eUc ∈ E . (24)

For convenience we define the mapping AU : Sp+ → R|E|
such that

AU (∆) =


〈
∆, U>A1U

〉
...〈

∆, U>A|E|U
〉
 =


〈
A1, U∆U>

〉
...〈

A|E|, U∆U>
〉
 .

Then we can express the condition (24) as

AU (∆) = 0, or ∆ ∈ null(AU ).

Moreover, we choose α < 0 to make rank(G∗) <
rank(G+) and keepG∗ be a solution of (16). It means that

I + α∆ ∈ Sn+,

and I + α∆ is singular. The process of rank reduction is
given as Algorithm 1. The following theorem guarantees the
existence ofG∗, the part of a solution of (16) with

rank(G∗) = p,
p(p+ 1)

2
≤ |C|,

where |C| is the number of linear equality constraints in
(16). As the low-dimensional embedding requires that p �
n and the number of comparisons |C| is suggested to be
O(pn log n) (Jain, Jamieson, and Nowak 2016), such a G∗

could be solved efficiently via Algorithm 1.

Theorem 1. (Lemon, So, and Ye 2016) If (16) is solvable,
then it has a solution contains G∗ with rank(G∗) = p such
that p(p+1)/2 ≤ |C|. Moreover, Algorithm 1 efficiently finds
suchG∗.

Algorithm 1: rank-reduction(β+, p)

Input: β+ = [G+,γ+] is a solution of (21),
p is the embedding dimension.

Output:G∗, which satisfies rank(G∗) = p.
1 InitializeG∗ = G+;
2 repeat
3 G∗ = UU>, U ∈ Rn×p;
4 find a nonzero ∆ ∈ null(AU ) (if possible);
5 find a maximum-magnitude eigenvalue σ1 of ∆;
6 update

G∗ = U

(
I − 1

σ1
∆

)
U>.

7 until null(AU ) = {0};

At the end of this section, we summarize the whole opti-
mization algorithm as Algorithm 2. The reproducible code
can be found here2.

Algorithm 2: FISTA with rank reduction for (14)
Input: Comparison graph G, the edge direction flag y,

multiple edge weightw, the regularization parameter
λ and the embedding dimension p.

Output:G∗, γ∗.
1 InitializeG0 ∈ Rn×n, γ0 ∈ R|E|, β0 = [G0,γ0]; Set

L0 > 0, η > 1, t1 = 1, k = 1, β∗1 = β0;
2 while not satisfies the stopping rules do
3 Find the smallest nonnegative integer ik such that with

L̄ = ηikLk−1

F (PL̄(β∗k)) ≤ QL̄(PL̄(β∗k), β∗k)

4 Set Lk = ηikLk−1 and update

βk = PLk (β∗k) via (18) and (19)

tk+1 =
1 +

√
1 + 4t2k
2

β̃k+1 = βk +
tk − 1

tk+1

(
βk − βk−1

)
β∗k+1 = rank-reduction(β̃k+1)

5 k ← k + 1;
6 end

2https://github.com/alphaprime/ROE
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Experiments
Simulation
Dataset. The simulated dataset consists of 100 points
{xi}100

i=1 ⊂ R10, where xi ∼ N (0, 1
20I), I ∈ R10×10 is

the identity matrix. The possible similarity triple-wise com-
parisons are generated based on the Euclidean distances be-
tween {xi}. We randomly sample 10000 correct triplets as
the basic training data and a validation set is build with the
same number of triplets. The remains are served as the test
set.
Settings. The existing ordinal embedding methods adopt
triple-wise comparisons as the constraints. The triple-wise
comparison set T = {(i, j, k)} is the special case of quadru-
plet which means l = i in c = (i, j, l, k) ∈ C. The differ-
ences between the above triplets setting and the generalized
formulation are two-fold, (i) the edge of triple-wise compar-
ison graph GT = {VT , ET } only links a pair of nodes which
share the same item, such as vij and vik, (ii) the equality
constraints in (21) could be modified as 〈G,At〉 + γt =
yt, e

U
t ∈ ET , where At is a symmetric n × n matrix indi-

cated by t = (i, j, k) as

At =

i j k( )
i 0 −1 1
j −1 1 0
k 1 0 −1

. (25)

With these modifications, the proposed method employs
triple-wise comparisons T to construct the comparison
graph GT for fair competition.

The basic training comparisons are augmented to repre-
sent the votes received on a triplet. For each triplet t, there
will be s copies, t1, . . . , ts, 15 ≤ s ≤ 50. Second, errors are
then synthesized according to the different ratios: we assume
that at most q% of all relative comparisons are not consistent
with the ground-truth metric information and we change the
position of j and k in each randomly chosen triplet, where q
ranges from 10% to 25%. Thus the outliers of these compar-
isons could not be the minority of the edges between a pair
of nodes. Specially, we conduct the experiments with the
“noiseless” case where q = 0 which indicates that the lo-
cal outlier detection can detect all outliers in the augmented
training comparisons. Actually, this setting is just an ideal
case which would not be expected in real applications. At
last, the comparison graph GT is constructed, where T is
the contaminated training set.
Evaluation Metrics. We employ the classification error to
evaluate the performance of various algorithms. The learned
Gram matrix G can predict the direction of an unseen but
possible edge in the graph. The percentage of wrong pre-
diction, which is not consistent with the ground-truth metric
information, is the classification error of the learned embed-
ding. Larger classification error means lower quality of the
learned embedding.
Competitors. We compare the proposed algorithm with
three well-known ordinal embedding methods: GNMDS
(Agarwal et al. 2007), CKL (Tamuz et al. 2011) and STE
(van der Maaten and Weinberger 2012). Note that we adopt

the strategies proposed by (Jain, Jamieson, and Nowak
2016), which performs projected gradient descent with line
search. The learned matrix are projected onto the subspace
spanned by the top p eigenvalues at each iteration, i.e. setting
the smallest n−p eigenvalues to 0. We call the three new al-
gorithms: GNMDS-p, CKL-p and STE-p, correspondingly.
The parameters of these competitors are tuned on the vali-
dation set.

(a) Comparative evaluation. (b) Parameter sensitivity.

Figure 2: The results on the synthetic data. (a) The classi-
fication performance comparative evaluation. Smaller clas-
sification error means better embedding result. The mean
and standard deviation of each method over 20 trials are
shown in the plots. (b) The classification error with differ-
ent choices of λ.

Comparative Results. The embedding performance of var-
ious models are evaluated when different ratios of outliers
are considered. The results are shown in Figure 2a and Ta-
ble 1. We provide more details in supplementary materials. It
shows clearly that ROE significantly outperforms the three
alternatives for a wide range of noise density. This validates
the effectiveness of ROE. In particular, it can be observed
that: (i) the improvement over the three competitors demon-
strates the superior generalization ability of ROE thanks to
the unified framework rather than phased methodology. The
traditional methods rely heavily on majority voting and max-
imum acyclic subgraph approximation as the preprocessing,
but their models ignore the intrinsic inconsistencies between
the noise comparisons and the ground-truth similarity rela-
tionship of X . More important, these inconsistencies, espe-
cially the global ones, would not be conquered by the local
outlier detection methods. Consequently, the three alterna-
tives would suffer from the wrong training comparisons and
the classification error would be amplified and accumulated.
However, the proposed ROE method incorporate the global
outlier detection scheme with ordinal embedding. This uni-
fied framework not only benefits from the correct training
samples which would be pruned by majority voting and
maximum acyclic subgraph approximation, but also gets rid
of the contamination from the outliers. (ii) Even under the
“noiseless” situation, the proposed method also shows the
superiority. This improvement comes from the exact rank-p
solution of Algorithm 1 and the regression-based framework
which aggregates all the votes on a comparison.
Parameter Sensitivity Analysis. To show the sensitivity of
ROE toward the free parameter λ in (8) changes, we record
the average classification error over 20 runs for the syn-
thetic datasets with different λ. The corresponding result are
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Table 1: Classification error results on the synthetic dataset.

(a) Clean Data (without outlier)

Methods min median max std

GNMDS-p 0.2061 0.2434 0.2607 0.0194
CKL-p 0.1879 0.1979 0.2088 0.0062
STE-p 0.1829 0.1884 0.1930 0.0031
Ours 0.0953 0.0961 0.1049 0.0024

(b) Contaminated Data (with 25% outliers)

Methods min median max std

GNMDS-p 0.2373 0.2487 0.2586 0.0063
CKL-p 0.1443 0.1632 0.1809 0.0103
STE-p 0.1828 0.2035 0.2250 0.0127
Ours 0.0960 0.1025 0.1070 0.0032

Table 2: Classification error results on the music artists dataset.

(a) Clean Data (without outlier)

Methods min median max std

GNMDS-p 0.2373 0.2506 0.2828 0.0101
CKL-p 0.2239 0.2358 0.2813 0.0117
STE-p 0.2278 0.2356 0.2763 0.0122
Ours 0.2289 0.2312 0.2356 0.0016

(b) Contaminated Data (with 25% outliers)

Methods min median max std

GNMDS-p 0.2310 0.2460 0.2887 0.0121
CKL-p 0.2099 0.2120 0.2505 0.0120
STE-p 0.2027 0.2203 0.2579 0.0116
Ours 0.2226 0.2287 0.2389 0.0047

shown in Figure 2b. We find that the performance of ROE
keeps relatively stable overall in a wide range, from 10−3 to
103.

(a) Comparative evaluation. (b) Parameter analysis.

Figure 3: The results on the music data. (a) The classification
comparative evaluation. Smaller classification error means
better embedding result. The mean and standard deviation
of each method over 20 trials are shown in the plots. (b) The
sensitive analysis with different choices of λ.

Music Artists Similarity
Dataset. The music artist data is collected by (Ellis et al.
2002) via a web-based survey in which 1, 032 users pro-
vided triple-wise comparisons on the similarity of 412 mu-
sic artists. The traditional methods like (van der Maaten and
Weinberger 2012) adopt the majority voting and the max-
imum acyclic subgraph approximation to prune the incon-
sistence comparisons. Therefore, a much smaller version3,
which has only 9, 107 triplets for n = 400 artists, is em-
ployed by the existing methods. For fair comparison, we
evaluate ROE on this subset. The size of training samples
is 5, 000 and the validation set contains 2, 000 triplets. The
rest of triplets are treated as test set. The desired dimension

3https://lvdmaaten.github.io/ste/Stochastic Triplet Embedding.
html

of embedding is d = 9 as these music artists can be classi-
fied by genre into 9 categories. It’s worth noting that these
9, 107 triplets still include outliers duo the inappropriate pre-
processing. Accordingly, the evaluation on this data verifies
that the local outlier detection and maximum acyclic sub-
graph approximation should be eliminated.
Comparative Results. Without the ground truth of music
artists similarity values, different models were evaluated in-
directly via classification accuracy based on the noise test
comparisons in Figure 3a. The following observations can
be made: (i) the wrong data would damage the performance
of ordinal embedding methods. The outliers in training data
cause the three alternatives to generate the sub-optimal so-
lutions as they can’t prune the outliers without preprocess-
ing. The global outlier detection is more accurate but the
wrong comparisons in validation set and test set would lead
the evaluation metric of ROE to be higher than these com-
petitors. This phenomenon proves the effectiveness of ROE
from the opposite side. (ii) Benefit from the global outlier
detection ability, the variance of ROE is much smaller than
these three alternatives because ROE can prune the outliers
and keep the result more stable.

Conclusions
In this paper we introduce a novel unified robust framework
to construct the representation of items in the Euclidean
space Rp with contaminated comparisons. The key advan-
tage of our method over the existing approaches is that our
model infers the embedding and detects the outliers jointly
by minimizing a global ranking inconsistence cost. It can
be formulated as a partial penalized LASSO optimization
problem. Efficient algorithm is proposed to obtain a positive
semi-definite solution which satisfies the rank equality con-
straint. Experimental studies are conducted with both syn-
thetic and real-world data. Our results suggest that the local
outlier detection is not a reliable tool for ordinal embedding
with contaminated comparisons.
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