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Abstract

Networks observed in real world like social networks, collab-
oration networks etc., exhibit temporal dynamics, i.e. nodes
and edges appear and/or disappear over time. In this paper,
we propose a generative, latent space based, statistical model
for such networks (called dynamic networks). We consider
the case where the number of nodes is fixed, but the presence
of edges can vary over time. Our model allows the number of
communities in the network to be different at different time
steps. We use a neural network based methodology to perform
approximate inference in the proposed model and its simpli-
fied version. Experiments done on synthetic and real world
networks for the task of community detection and link pre-
diction demonstrate the utility and effectiveness of our model
as compared to other similar existing approaches.

1 Introduction
Many networks encountered in real world evolve with time,
i.e. new nodes and edges appear while some existing ones
disappear. For example, consider the network of people con-
nected via Facebook, where the users and their interactions
change over time. It is interesting to study the underlying
dynamics of such networks to understand what drives these
changes, how communities are formed, how will a network
behave in future and what has lead to the current state of the
network etc.

In static network setting, one of the problems that has
been extensively studied is community detection (Fortunato
2010). In a dynamic setting, this problem becomes more
challenging since communities themselves take birth, meet
death, grow, shrink, split and merge etc. (Rossetti and Caza-
bet 2017). In this paper, we address the problem of modeling
dynamic networks that exhibit a community structure where
the number of nodes is invariant over time but the presence
of edges is time dependent.

A wide range of dynamic networks with different charac-
teristics can be found in real world. In order to model these
networks in a meaningful way, it is essential to focus on cer-
tain specific types of networks. In this paper, we consider
undirected (edges are not directional), assortative (similar
types of nodes have a high probability of connecting), posi-
tive influence based (adjacent nodes positively influence a
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given node) and gradually evolving networks. Many real
world networks such as friendship networks, communica-
tion networks etc., fall in this category.

We propose a generative model, which we call Evolv-
ing Latent Space Model (ELSM), for dynamic networks
of the type mentioned above. The main advantage of our
model over existing models (Xing, Fu, and Song 2010;
Foulds et al. 2011; Heaukulani and Ghahramani 2013;
Kim and Leskovec 2013; Xu and Hero 2014), is that our
model uses a more flexible, continuous latent space and we
allow the number of communities to vary over time (also
supported by (Kim and Leskovec 2013)). It also allows one
to generate a dynamic graph with a temporally stable com-
munity structure. The purpose of proposing this generative
model is three-folds: (i) it will help in understanding how
networks evolve over time, (ii) it will provide synthetic data
for other dynamic community detection and link prediction
algorithms to operate on and (iii) it will allow model based
inference for problems like community detection and link
prediction.

Though ELSM can be used both as a generative model
and an inference model, for the inference problem, we pro-
pose a simplified version of our model that is computa-
tionally less expensive. This model can be used exclusively
for inference and we refer to it as iELSM. Inference in
ELSM is given in supplementary material (Gupta, Sharma,
and Dukkipati 2018). Exact inference in ELSM and iELSM
is intractable, thus we resort to variational techniques for
performing approximate inference. We use a recurrent neu-
ral network (RNN) to model various variational parameters.
We also present an extension of our model that deals with
weighted graphs in the experiments section (§5).

Our main contributions are: (i) We propose a generative
model (ELSM) for dynamic networks with fixed number of
nodes that allows the number of communities to vary over
time. (ii) We derive a variational approximation to exact in-
ference in ELSM and iELSM and use a neural network ar-
chitecture to learn variational parameters. (iii) We outline
a general inference methodology that can be customized in
various ways by using problem specific information. (iv) We
demonstrate the applicability of proposed model and infer-
ence methodology by performing experiments on real and
synthetic networks for community detection and link pre-
diction where we obtain state of the art results.
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2 Evolving Latent Space Model
Notation: We use capital bold letters (A, Σ etc.) for ma-
trices and set of vectors, small bold letters (m, α etc.) for
vectors and small letters (a, b etc.) for scalars. If a quantity
is associated with time step t, we add (t) to the superscript
as in A(t). We use the same letter for denoting set of vectors
and an element in this set. For example, Σ(t) is a set of vec-
tors associated with time step t and σ

(t)
i is the ith vector in

this set. The jth element of a vector c is denoted by cj (note
that this is not bold).

Our model draws motivation from two phenomena that
are frequently observed in real world networks: (i) similar
nodes are more likely to connect to each other and (ii) over
a time, nodes tend to become similar to their neighbors. We
aim to model a latent space, in which the euclidean distance
between embeddings of any two nodes is inversely propor-
tional to their similarity. In this space, operations mimicking
the two phenomena listed above can be modeled naturally as
we explain later in this section.

To make the underlying motivations concrete, our running
example in this section would pertain to the political incli-
nations of n hypothetical individuals. In this context, the la-
tent space can be thought of as an ideological space where
the axes correspond to different political ideologies. Each
individual can be embedded in this space based on their
inclination towards different ideologies. Distance between
two latent embeddings will then correspond to difference in
political standpoints of the corresponding individuals. The
observations will be symmetric, binary adjacency matrices
{A(t)}Tt=1 where a(t)ij = 1 if individuals i and j interacted
with each other in time window t. One can see that the two
phenomena listed in the previous paragraph naturally occur
in this setting, i.e., individuals tend to interact with people
who share their ideology and over time the peer group of an
individual positively influences their ideology.

Our proposed generative model can be summarized as
follows: first, a set of initial latent embeddings, Z(1) =

{z(1)1 , z
(1)
2 , ..., z

(1)
n }, is created. Based on the latent embed-

dings Z(1) the observed adjacency matrix A(1) is sampled.
For t = 2, 3 ... T , latent embeddings at time t, Z(t), are up-
dated based on Z(t−1), A(t−1) and some extra information
about possible new communities at time-step t and A(t) is
sampled based on Z(t). Next, we describe each component
of this process in detail.

2.1 Getting the Initial Set of Embeddings
LetK denote the maximum number of clusters at time t = 0.
We take K and a multinomial distribution over K elements,
π, as input. A vector c ∈ Rn is created such that it assigns
an integer between 1 and K sampled from π to each node .
In the general case, we sample the initial community centers
µ1,µ2, ...,µK ∼ N (m, s2I), where m ∈ Rd and s2 ∈ R
are hyperparameters and d is the dimension of latent space.
The embedding for each node in the first snapshot can then
be sampled as:

z
(1)
i ∼ N (µci , s

2
1I), i = 1, 2, ..., n (1)

Figure 1: Graphical Model for ELSM. h(t)i = 1 for nodes
that join the newly created community with center α(t) and
0 otherwise. This splitting mechanism models the birth of
new communities.

The parameter s1 dictates the spread within communities.
In the context of our example, this step corresponds to the
creation of an initial set of political ideologies and individ-
uals subscribing to these ideologies. Since µ1,µ2, ...,µK
are sampled independently, there will be at-most K distinct
communities in latent space for the first time step. To encode
prior information about communities in the model, rather
than sampling µ1,µ2, ...,µK independently from a normal
distribution, one can specify these vectors explicitly.

2.2 Generating Observed A(t) from Latent Z(t)

In ELSM, the probability of an edge between two nodes is
inversely proportional to the distance between their embed-
dings in the latent space. By this, one hopes to get embed-
dings that are easier to deal with for a clustering algorithm
like k-means. We model this as follows:

a
(t)
ij = a

(t)
ji ∼ Bernoulli

(
f(z

(t)
i − z

(t)
j )
)
, i > j, (2)

where f(.) is a nonlinear function. The observed matri-
ces are symmetric and we do not allow self loops. In our
experiments on generation of synthetic networks, we used
f(x) = 1 − tanh(||x||22/s22), where s2 is a parameter that
controls the radius around a node’s embedding in the la-
tent space within which it is more likely to connect to other
nodes.

We will demonstrate via experiments in §5, that one can
have other choices for the function f(.) and the distribution
parameterized by f(.) depending on problem context. For
example, in the case of weighted graph with positive integer
weights, Poisson distribution can be used.

2.3 Emergence of New Communities
If the nodes are only allowed to become similar to their
neighbors, then over time the latent embeddings will col-
lapse onto a single point and all the community structure in
the network will be lost. But such a phenomenon is not ob-
served in real world networks. In the absence of any other
guiding force, to avoid the collapse of latent space and to
model the emergence of new communities ELSM randomly
generates a new community center at each time step.

At each time step t, a new community center α(t) is sam-
pled from the same prior that was used in the first layer to
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generate the original community centers µ1,µ2, ...,µK , i.e.
α(t) ∼ N (m, s2I). We define a Bernoulli random variable
h
(t)
i for each node i at time t. If h(t)i = 1, then node i’s

updated latent embedding is sampled as:

z
(t)
i ∼ N (α(t), s21I) (3)

The parameter s1 has the same meaning as in (1). If h(t)i =
0, then node i’s latent embedding will be updated based on
the embeddings of its neighbors at time step t− 1 by the
process described in the next subsection. We model the prob-
ability P (h(t)i = 1) as a function of the distance between
α(t) and z

(t−1)
i . If the latent embedding of node i at time

step t− 1 is close to α(t), then P (h(t)i = 1) will be high
and vice-versa. We model this as follows:

h
(t)
i ∼ Bernoulli

(
g(z

(t−1)
i −α(t))

)
, (4)

where g(.) is a nonlinear function. In our experiments
for generating synthetic data, we use g(x) = 1 −
tanh(||x||22/s23). The parameter s3 controls the influence of
the newly created community on other nodes. Note that this
step does not necessarily involve the creation of a new com-
munity as the sampled α(t) may lie within an existing com-
munity in the latent space.

In the context of our example, this step will correspond
to new political ideologies appearing in the latent space.
Individuals that have a similar political ideology are more
likely to embrace this new ideology. Individuals from differ-
ent communities may come together and form a new politi-
cal ideology of their own.

2.4 Evolving the Latent Space
ELSM tries to make nodes similar to their neighbors over
time. To model this, for time step t = 2, 3, ..., T , a mean
vector µ(t)

i is obtained for each node i as follows:

µ
(t)
i =

1

1 +
∑
j 6=i a

(t−1)
ij l(z

(t−1)
i − z

(t−1)
j )

×
(
z
(t−1)
i

+
∑
j 6=i

a
(t−1)
ij l(z

(t−1)
i − z

(t−1)
j )z

(t−1)
j

) (5)

Here, we use l(x) = e−||x||
2/s24 and s4 is a parameter that

controls the influence of neighbors on a node. Note that only
the immediate neighbors at time t− 1 can affect the future
embedding of a node at time t. Also, note that the value of
µ

(t)
i lies in the convex hull formed by the embeddings of the

node and its neighbors in the latent space a time step t − 1.
If h(t)i = 0 for a given node, then the updated embedding of
the node is given by:

z
(t)
i ∼ N (µ

(t)
i , s21I) (6)

Then, (3) and (6) can be combined to get the general update
equation for the evolution of latent embeddings of the nodes
as:

z
(t)
i ∼ N (h

(t)
i α(t) + (1− h(t)i )µ

(t)
i , s21I), i = 1, 2, ..., n

(7)

Algorithm 1 Generating Synthetic Networks
Input: n, T , π, K, m, s, s1, s2, s3, s4
Sample µ1, µ2, ..., µK ∼ N (m, s2I)
Sample c1, c2, ..., cn ∼ π
Sample Z(1) using (1)
Sample A(1) using (2)
for t = 2 to T do

Sample α(t) ∼ N (m, s2I)
Sample h(t) using (4)
Sample Z(t) using (7)
Sample A(t) using (2)

end for
Return: {A(1),A(2), ...,A(T )}

Figure 2: Graphical Model for iELSM

This not only allows the nodes to become similar over time,
it also allows them to move apart to form new communities
as it is observed in real world networks. In the context of our
example, (5) says that an individual’s political ideology will
be influenced by the political ideology of their peers.

It is easy to see that ELSM supports operations like birth,
death, growth, shrinkage, merge and split on the commu-
nities. The latent space offers a nice community structure
(as we will show via our experiments, visualization of latent
space is in supplementary material) because the operations
presented in (2), (4) and (5) depend on distances between
embeddings in the latent space. Figure 1 presents the under-
lying graphical model for ELSM. The procedure for gener-
ating synthetic networks is listed in Algorithm 1.

3 Inference Network
Inference is concerned with finding the latent embedding of
each node at each time step, {Z(1),Z(2), ...,Z(T )}, that best
explains an observed dynamic network specified by the se-
quence of adjacency matrices {A(1),A(2), ...,A(T )}. In this
section, we describe the inference procedure for a simpli-
fied version of ELSM. We argue that this simplified version,
which we call Evolving Latent Space Model for Inference
(iELSM), is as good as the original ELSM for the task of
inference. Inference for ELSM follows along the same lines
as iELSM and full details have been worked out in supple-
mentary material.

3.1 Evolving Latent Space Model for Inference
While generating a synthetic dynamic network using ELSM,
a guiding force is needed to: (i) select the initial commu-
nity membership for each node so that there is a commu-
nity structure in the first layer and (ii) force nodes to move
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apart over time and form new communities. In the absence
of any other guiding force during the generation process,
ELSM achieves this by the use of initial community cen-
ters µ1,µ2, ...,µK , the initial membership vector c and the
splitting mechanism as explained in §2.3.

However, during inference, given a sequence of observed
adjacency matrices {A(1),A(2), ...,A(T )} for a dynamic
network, the required guiding force is provided by the need
to explain the observed data. In this case one need not in-
corporate any of the elements mentioned above. Thus for
the purpose of inference, we eliminate these elements and
get a simplified model which we call iELSM. The graphical
model for iELSM is shown in Figure 2. Note that iELSM
also captures both the motivating phenomena (similar nodes
connect more often and nodes become similar to their neigh-
bors over time) mentioned in the beginning of §2.

The structures of probability distributions that govern
iELSM are similar to the structures of corresponding dis-
tributions in ELSM. The latent embeddings z

(t)
i follow (5)

and (6) for i = 1, 2, ..., n and t = 2, 3, ..., T . The observed
entries a(t)ij follow (2). In addition we impose a prior on the

first layer of latent embeddings z
(1)
i for i = 1, 2, ..., n as:

z
(1)
i ∼ N (m, s2I), (8)

Where m and s are hyperparameters. We make the following
independence assumptions:

1. The latent embeddings in the first layer z
(1)
i for i =

1, 2, ..., n are independent.

2. a(t)ij is independent of everything else given z
(t)
i and z

(t)
j

for all i, j = 1, 2, ..., n, i 6= j and t = 1, 2, ..., T .

3. z
(t)
i is independent of everything else given Z(t−1) and

A(t−1) for i = 1, 2, ..., n and t = 2, 3, ..., T

Since the observed adjacency matrices are assumed to be
symmetric and self-loops are not allowed, we only need to
consider the lower triangle (without the leading diagonal) in
these matrices. The joint log likelihood for iELSM, which is
given below, can then be computed using (2), (5), (6) and (8)
as:

logP (A(1),Z(1),A(2),Z(2), ...,A(T ),Z(T )) =

n∑
i=1

logP (z
(1)
i ) +

T∑
t=1

∑
i>j

logP (a
(t)
ij |z

(t)
i , z

(t)
j )

+

T∑
t=2

n∑
i=1

logP (z
(t)
i |Z

(t−1),A(t−1))

(9)

3.2 Variational Inference for iELSM
Exact inference is intractable in iELSM because the ob-
served entries of A(t) do not follow a Gaussian distribution.
Thus, we resort to variational techniques (Blei, Kucukelbir,
and McAuliffe 2017) to perform approximate inference. We
use a LSTM based neural network to model the variational
parameters. The neural network is then trained to maximize
the ELBO which we derive next.

We approximate the true posterior distribution
P (Z(1),Z(2), ...,Z(T )|A(1),A(2), ...,A(T )) using a
distribution Q(Z(1),Z(2), ...,Z(T ); θ), where θ represents
parameters of a neural network. We further assume that
Q(., θ) belongs to the mean-field variational family of
distributions, i.e.:

Q(Z(1),Z(2), ...,Z(T ); θ) =

T∏
t=1

n∏
i=1

qti(z
(t)
i ; θ) (10)

We model each factor qti(z
(t)
i ; θ) as a Gaussian distribu-

tion whose mean ν
(t)
i ∈ Rd and variance (σ

(t)
i )2 ∈

Rd parameters are derived from the neural network. Here,
as before, d is the dimension of latent space. Note that
we have not explicitly shown the dependence of ν

(t)
i and

(σ
(t)
i )2 on θ to keep the notation clean. Let (σ

(t)
i )2I =

diag((σ
(t)
i )21, (σ

(t)
i )22, ..., (σ

(t)
i )2d), we can then write:

qti(z
(t)
i ; θ) = N (z

(t)
i | ν

(t)
i , (σ

(t)
i )2I) (11)

The objective is to maximize the ELBO function which is
given by Ez∼q[log p(x, z)− log q(z)] (Blei, Kucukelbir, and
McAuliffe 2017). Here x denotes the observed variables, z
denotes the latent variables, p(x, z) is the joint distribution
of x and z and q(z) is the distribution that approximates
the posterior p(z|x). It can be shown that ELBO provides
a lower bound on the log probability of observed data p(x)
(Kingma and Welling 2013), hence ELBO can be used as a
surrogate function to maximize the probability of observed
data. In our context, ELBO can be written as:

ELBO(θ) =EZ(1),Z(2),...,Z(T )∼Q[

logP (A(1),Z(1), ...,A(T ),Z(T ))

− logQ(Z(1),Z(2), ...,Z(T ); θ)]

(12)

The expectation of second term in (12) can be computed in
closed form since Q(., θ) factorizes according to (10) and
the factors qti(.; θ) follow a Gaussian distribution. To com-
pute the expectation of first term, we use the Monte Carlo
method to evaluate (9). In all our experiments, only one sam-
ple was used to approximate the expectation of first term.

3.3 Network Architecture
Given the variational parameters ν

(t)
i and (σ

(t)
i )2 for all

i = 1, 2, ..., n and t = 1, 2, ..., T , ELBO can be approx-
imated using (12) as described above. In this section we
describe the neural network architecture that parameterizes
these quantities. There are two main advantages of this neu-
ral network based approach: (i) neural networks are pow-
erful function approximates and hence complex node to la-
tent embedding mappings can be learned and (ii) standard
backpropagation algorithm with the reparameterization trick
(Kingma and Welling 2013) can be used that allows efficient
implementation.

The recurrent neural network is a natural model for se-
quential data. We use a bidirectional LSTM in our inference
network. At time step t, our network takes the adjacency
matrix A(t) as input. Each row is treated as an input feature
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Figure 3: Inference network architecture for iELSM. M and
V are neural networks that take g

(t)
i as input to produce the

mean and log-variance vectors respectively. Note that these
networks are shared across all timesteps.

vector. The network updates its hidden state using the usual
update rules for LSTM and produces an output g

(t)
i ∈ Rm

for each node. The output g
(t)
i is then used to produce ν

(t)
i

and log (σ
(t)
i )2 via the mean and variance networks (M and

V respectively in Figure 3) that are shared across all time
steps. Figure 3 shows the architecture of our inference net-
work.

We use the reparameterization trick for Gaussian distribu-
tion, as it was used in (Kingma and Welling 2013) to make
the whole pipeline differentiable. This enables end to end
training of the network. The embeddings sampled from this
network can be used to compute (12) via Monte Carlo ap-
proximation as it was discussed in §3.2. The objective is to
maximize ELBO(θ) with respect to the parameters θ of the
inference network.

3.4 Encoder-Decoder View of the Inference
Network

The network given in Figure 3 can be seen as an encoder.
At time step t, it takes the feature vector for each node (the
row corresponding to that node in A(t)) as input and pro-
duces a time dependent embedding z

(t)
i for the node as out-

put. Note that if observed node features are available, one
can use these features in conjunction with A(t) as input to
the network. A decoder should take these latent embeddings
and try to reconstruct A(t). By using (9) in (12), we obtain
a term that involves logP (a

(t)
ij |z

(t)
i , z

(t)
j ). The estimator of

this probability value acts as a simple decoder that tries to
predict the probability of an observed edge given the latent
embeddings of its two endpoints.

Recall from (2) that: (i) a
(t)
ij has been modeled by

a Bernoulli distribution and (ii) The parameter for this
Bernoulli distribution is given by f(z(t)i − z

(t)
j ) where for

generation we use f(x) = 1 − tanh(||x||22/s22). One can
have a more complex decoder which utilizes problem spe-
cific information. For example, the function f(x) can be
modeled using a neural network. If the weights do not fol-
low the Bernoulli distribution (i.e., the edges are weighted)

then one can use the problem context to enforce the right
distribution on weights and learn the parameters of that dis-
tribution accordingly. For example, in our experiments with
Enron dataset, the edge weights are non-negative integers,
so we model this by using a Poisson distribution and we use
a neural network to learn f(x) so that it predicts the mean
for the Poisson distribution.

This encoder-decoder view of the inference network
makes the inference methodology very flexible. One can in-
corporate domain knowledge to customize various compo-
nents of this network so that it better suits the problem at
hand.

4 Related Work
In general, dynamic networks, and in particular, link predic-
tion and community detection in dynamic networks, have
earned the attention of many researchers (Goldenberg et al.
2010; Kim et al. 2017). This can be attributed to the emer-
gence of many practical applications (for e.g., social net-
work analysis) where dynamic networks are encountered.

An extension of Mixed Membership Stochastic Block
Model (Airoldi et al. 2008) to the dynamic network setting
by coupling it with a state-space model to capture temporal
dynamics has been proposed in (Xing, Fu, and Song 2010;
Ho, Song, and Xing 2011). Along the same lines, in (Yang
et al. 2011), Stochastic Block Model (Holland, Laskey,
and Leinhardt 1983) was extended by explicitly modeling
transition between communities over time. Some other ap-
proaches that extend a static network models are (Xu and
Hero 2014; Xu 2015; Papadopoulos et al. 2012).

There have been many latent space based approaches for
modeling dynamic networks. In (Sewell and Chen 2015;
2016) the transition of nodes’ latent embeddings is mod-
eled independently for each node by using a Markov chain.
In (Heaukulani and Ghahramani 2013), the authors intro-
duced Latent Feature Propagation (LFP) that uses a dis-
crete latent space and a HMM style latent embedding tran-
sition model. In (Kim and Leskovec 2013) non-parametric
Dynamic Multigroup Membership Graph model (DMMG)
which additionally models the birth and death of communi-
ties using Indian Buffet Process (Griffiths and Ghahramani
2011) has been introduced. The work of (Miller, Jordan, and
Griffiths 2009; Foulds et al. 2011) are also along the same
lines.

Most similar to our work, is the work done in (Heauku-
lani and Ghahramani 2013; Kim and Leskovec 2013), how-
ever there are significant differences as well. (i) While these
approaches rely on MCMC, we use variational inference be-
cause it offers many advantages as mentioned in (Blei, Ku-
cukelbir, and McAuliffe 2017), (ii) We use a neural network
to perform inference which allows an efficient implemen-
tation and (iii) We have a more flexible, continuous latent
space whereas these approaches use a discrete latent space.

5 Experiments
In this section we demonstrate the applicability of our model
on two tasks that have been widely studied - community de-
tection and link prediction. We perform experiments on syn-
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thetic networks generated from ELSM and real world net-
works. Our model outperforms existing methods on standard
benchmarks. While we report the results for both ELSM and
iELSM in §5.3 and §5.4, the inference procedure for ELSM
has been described in supplementary material.

5.1 Synthetic Networks
We generated 10 synthetic networks using Algorithm 1.
For each network, we used n = 100, T = 10, K = 5,
π = [1/K, ..., 1/K], m = [0, 0]ᵀ, s = 1.0, s1 = 0.05,
s2 = 0.2, s3 = 1.0 and s4 = 0.5 as input parameters.
Community detection was performed on these networks us-
ing both normalized spectral clustering (von Luxburg 2007)
and our inference network as described in §5.3. The scores
reported in Table 1 for synthetic networks were obtained by
averaging the scores across these 10 networks. Visualiza-
tion of some generated networks and the corresponding la-
tent spaces has been provided in supplementary material. A
video that shows the evolution of latent space over time has
also been attached as part of supplementary material.

5.2 Real World Networks
We evaluate our model on three real world dynamic net-
works apart from evaluating it on synthetic networks gen-
erated by ELSM. This section describes the datasets that we
have used for our experiments:

1) Enron email: The Enron dataset (Klimt and Yang
2004) contains emails that were exchanged between 149 in-
dividuals over a period of three years. We use two different
versions of this dataset - Enron-full and Enron-50. Enron-
full has 12 snapshots, one for each month of the year 2002.
In snapshot t, entry a(t)ij counts the number of emails that
were exchanged between users i and j during that month.
We also consider unweighted Enron-full obtained by making
all snapshots binary. Following (Foulds et al. 2011), Enron-
50 considers only top 50 individuals with most number of
emails across all snapshots. Each snapshot corresponds to
a month (there are 37 snapshots). The adjacency matrix for
each snapshot is symmetric and binary where a(t)ij = 1 if at
least one email was exchanged between users i and j during
that month and 0 otherwise.

2) NIPS co-authorship: There are 17 snapshots in this
network, each corresponding to an year from 1987 to 2003.
Entry a(t)ij counts the number of NIPS conference publica-
tions in year t, that have individuals i and j as co-authors.
We use a subset of this dataset - NIPS-110, that is created by
making the snapshots binary and selecting top 110 authors
based on the number of unique co-authors that they have had
over these 17 years (Heaukulani and Ghahramani 2013).

3) Infocom: This dataset contains information about
physical proximity between 78 individuals over a 93
hours long interval at Infocom 2006. Following (Kim and
Leskovec 2013), we create snapshots corresponding to 1
hour long intervals. At time t, a(t)ij = 1 if both individuals
i and j registered each others physical proximity during the
tth hour. We remove those snapshots that have fewer than 72
non-zero entries which leaves us with 50 snapshots.

We next describe the two tasks that we have performed
on various subsets of these datasets, namely - community
detection and link prediction.

5.3 Community Detection
The task is to assign each node to a community at each time
step such that similar nodes belong to the same community.
To measure the quality of communities, at each time step, we
use the well known modularity score. The modularity score
lies in the range [−1/2, 1), with values close to 1 signify-
ing good communities (that have more edges within them
as compared to the number of edges that will be obtained
purely by chance).

We use the observed matrices {A(1),A(2), ...,A(T )} to
train the inference network for iELSM (§3.3) and ELSM
(supplementary material). The latent embeddings obtained
from the trained network are fed to the k-means clustering
algorithm. At each time step, the optimal number of commu-
nities, k(t) is chosen from the range [2, 10] by selecting the
value of k(t) that maximizes the modularity score on the ad-
jacency matrix that is induced by applying RBF kernel with
variance parameter 1 to the latent space embeddings. Note
that we do not use the original adjacency matrix A(t) while
selecting the optimal number of communities.

We experiment with different variants of decoder in the
inference network. For Enron-full, the edges have positive
integer weights, we model this by imposing a Poisson dis-
tribution on P (a

(t)
ij |z

(t)
i , z

(t)
j ). Since iELSM (and ELSM)

models the interaction between nodes as a function of dis-
tance between their latent embeddings, we predict the mean
of Poisson distribution for position (i, j) at time step t as:

ρ
(t)
ij = exp(−w2

ρ||z
(t)
i − z

(t)
j ||

2 + bρ) (13)

The parameters wρ and bρ are shared across all time steps
and positions. These parameters are learned using standard
backpropagation ((13) represents a single layer, single node
neural network with exp(.) as the activation function). One
can also employ a similar technique for learning parameters
s2 (§2.2) and s4 (§2.4) from data by using a single layer, sin-
gle node neural network to learn optimal scaling of distances
in (2) and (5).

The key claim that we wish to demonstrate here is that
the latent embeddings learned by our model are not only
good for finding communities at individual time steps, but
also lead to a more plausible, gradually changing community
structure over time. To do so, we compute the NMI score
between community assignments at successive time steps.
The NMI score lies in [0, 1] with values close to 1 signifying
gradual change in community structure in our setup.

We compare our scores against the scores obtained by
independently applying normalized spectral clustering (von
Luxburg 2007) at each snapshot. The number of communi-
ties, k(t), is chosen by using the same method that was used
for our model on the node embeddings produced by spectral
clustering.

Table 1 summarizes the average modularity and NMI
scores for various datasets. Although k(t) is chosen based
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Table 1: Community Detection Results: It can be seen that the detected communities are meaningful (as evident by modularity
scores that are comparable to the ones obtained by the spectral clustering algorithm) while at the same time being smooth (since
the NMI scores are considerably higher) thereby validating our claim.

DATASET
MODULARITY NMI

SPECTRAL iELSM (OURS) ELSM (OURS) SPECTRAL iELSM (OURS) ELSM (OURS)

SYNTHETIC .479 .489 .488 .769 .851 .864
ENRON-
FULL
(WEIGHTED)

.506 .597 .590 .455 .722 .823

ENRON-
FULL
(BINARY)

.540 .555 .551 .529 .767 .779

ENRON-50 .396 .419 .414 .560 .819 .838
NIPS-110 .497 .601 .595 .249 .804 .863
INFOCOM .283 .288 .270 .443 .643 .662

Table 2: Link Prediction Results: Our method outperforms
other approaches on both metrics. We were unable to obtain
an implementation for DMMG and hence the performance
numbers of DMMG on Enron-50 are missing.

ENRON-50 INFOCOM NIPS-110
AUC F1 AUC F1 AUC F1

BAS .874 .585 .698 .317 .703 .161
LFRM .777 .312 .640 .248 .398 .011
DRIFT .910 .578 .782 .381 .672 .084
DMMG - - .804 .392 .732 .196
iELSM (OURS) .913 .600 .868 .489 .754 .248
ELSM (OURS) .911 .596 .871 .489 .742 .251

on the graph induced by latent embeddings, the scores re-
ported in Table 1 correspond to the observed graph for the
chosen number of communities. From Table 1, it is clear
that our model achieves modularity scores that are at par (or
better) with respect to spectral clustering while exhibiting a
significantly higher NMI score, thus validating our claim.

5.4 Link Prediction
Good performance on community detection task testifies
that the latent embeddings being learned by the network
have a nice structure. But how does one ensure that the mod-
eled network dynamics are faithful to real world data? Is our
model overfitting to the training data to get good embed-
dings? These questions get answered, if the observed data
can be extrapolated to predict an unseen network snapshot
using our model. This task is known as link prediction.

Formally, given network snapshots up to time t,
{A(1),A(2), ...,A(t)}, we want to predict the next network
snapshot A(t+1). Note that this involves predicting the ap-
pearance of new links as well as removal of existing links.
We use binary networks in this experiment to compare
against other approaches. We use the well known AUC score
and F1 score for the purpose of comparison. Values close to
1 indicate good performance for both the scores.

To predict A(t+1), we train the inference network for
iELSM and ELSM on {A(1),A(2), ...,A(t)}. We update the
predicted latent embeddings Z(t) using (5) and (6) to get
Z(t+1). Then, P (aij(t+1) = 1|Z(t+1)) is computed using
(2) (or the decoder, if a decoder network has been used).
Note that for ELSM, while updating the latent embeddings
we set h(t+1)

i = 0 for all nodes.
We compare our performance against a simple baseline

(BAS) in which the probability of an edge is directly pro-
portional to the number of times it has been observed in the
past (Foulds et al. 2011). We also compare against existing
approaches - LFRM (Miller, Jordan, and Griffiths 2009) (us-
ing only the last snapshot), DRIFT (Foulds et al. 2011) and
DMMG (Kim and Leskovec 2013) (Table 2). Maximum F1
score over all thresholds is selected at each snapshot as it was
done in (Kim and Leskovec 2013). The scores reported here
have been obtained by averaging the snapshot wise scores. It
can be seen that our method outperforms other methods on
both metrics. Visualization of latent embeddings and pre-
dicted output matrices for Enron-full can be found in sup-
plementary material.

6 Conclusion and Future Work
In this paper, we proposed ELSM, a generative model for
dynamically evolving networks. We also proposed a neu-
ral network architecture that performs approximate infer-
ence in a simplified version of our model, iELSM (inference
for ELSM is in supplementary material) and highlighted the
flexibility of this approach. Our model is capable of: (i) Gen-
erating synthetic dynamic networks with gradually evolv-
ing communities and (ii) Learning meaningful latent embed-
dings of nodes in a dynamic network. We demonstrated the
quality of learned latent embeddings on downstream tasks
like community detection and link prediction in dynamic
networks.

In this paper we focused on undirected, positive influence
based, gradually changing, assortative networks with a fixed
number of nodes. Though, these properties are exhibited by
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a large number of real world networks, there are other im-
portant classes of networks that do not follow these proper-
ties. For example, one can also extend this idea to directed
networks. One can also consider the case where the number
of nodes is allowed to change over time. Considering net-
works that are not necessarily assortative (like hierarchical
networks) also poses interesting questions.
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