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Abstract

We enable aProbLog—a probabilistic logical programming
approach—to reason in presence of uncertain probabili-
ties represented as Beta-distributed random variables. We
achieve the same performance of state-of-the-art algorithms
for highly specified and engineered domains, while simul-
taneously we maintain the flexibility offered by aProbLog
in handling complex relational domains. Our motivation is
that faithfully capturing the distribution of probabilities is
necessary to compute an expected utility for effective deci-
sion making under uncertainty: unfortunately, these probabil-
ity distributions can be highly uncertain due to sparse data. To
understand and accurately manipulate such probability distri-
butions we need a well-defined theoretical framework that is
provided by the Beta distribution, which specifies a distribu-
tion of probabilities representing all the possible values of a
probability when the exact value is unknown.

1 Introduction
In the last years, several probabilistic variants of Prolog have
been developed, such as ICL (Poole 2000), Dyna (Eisner,
Goldlust, and Smith 2005), PRISM (Sato and Kameya 2001)
and ProbLog (De Raedt, Kimmig, and Toivonen 2007), with
its aProbLog extension (Kimmig, Van den Broeck, and De
Raedt 2011) to handle arbitrary labels from a semiring (Sec-
tion 2.1). They all are based on definite clause logic (pure
Prolog) extended with facts labelled with probability values.
Their meaning is typically derived from Sato’s distribution
semantics (Sato 1995), which assigns a probability to every
literal. The probability of a Herbrand interpretation, or pos-
sible world, is the product of the probabilities of the literals
occurring in this world. The success probability is the prob-
ability that a query succeeds in a randomly selected world.

∗This research was sponsored by the U.S. Army Research Lab-
oratory and the U.K. Ministry of Defence under Agreement Num-
ber W911NF-16-3-0001. The views and conclusions contained in
this document are those of the authors and should not be interpreted
as representing the official policies, either expressed or implied,
of the U.S. Army Research Laboratory, the U.S. Government,
the U.K. Ministry of Defence or the U.K. Government. The U.S.
and U.K. Governments are authorized to reproduce and distribute
reprints for Government purposes notwithstanding any copyright
notation hereon.
Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Faithfully capturing the distribution of the probabilities
of such queries is necessary for effective decision making
under uncertainty to compute an expected utility (Von Neu-
mann and Morgenstern 2007). Often such distributions are
learned from prior experiences that can be provided either
by subject matter experts or by objective recordings.

Unfortunately, these probability distributions can be
highly uncertain and this significantly affects decision mak-
ing (Anderson, Hare, and Maskell 2016; Antonucci, Karls-
son, and Sundgren 2014). In fact, not all scenarios are
blessed with a substantial amount of data enabling reason-
able characterisation of probability distributions. For in-
stance, when dealing with adversarial behaviours such as
policing operations, training data is sparse or subject matter
experts have limited experience to elicit the probabilities.

To understand and accurately manipulate such probabil-
ity distributions, we need a well-defined theoretical frame-
work that is provided by the Beta distribution, which speci-
fies a distribution of probabilities representing all the pos-
sible values of a probability when the exact value is un-
known. This has been recently investigated in the context of
singly-connected Bayesian Network, in an approach named
Subjective Bayesian Network (SBN) (Ivanovska et al. 2015;
Kaplan and Ivanovska 2016; 2018), that shows higher per-
formance against other traditional approaches dealing with
uncertain probabilities, such as Dempster-Shafer Theory of
Evidence (Dempster 1968; Smets 1993), and replacing sin-
gle probability values with closed intervals representing the
possible range of probability values (Zaffalon and Fagiuoli
1998). SBN is based on Subjective Logic (Jøsang 2016)
(Section 2.2) that provides an alternative, more intuitive,
representation of Beta distributions as well as a calculus for
manipulating them. Subjective logic has been successfully
applied in a variety of domains, from trust and reputation
(Jøsang, Hayward, and Pope 2006), to urban water manage-
ment (Moglia, Sharma, and Maheepala 2012), to assessing
the confidence of neural networks for image classification
(Sensoy, Kaplan, and Kandemir 2018).

In this paper, we enable aProbLog (Kimmig, Van den
Broeck, and De Raedt 2011) to reason in presence of uncer-
tain probabilities represented as Beta distribution. Among
other features, aProbLog is freely available1 and it directly

1https://dtai.cs.kuleuven.be/problog/
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handles Bayesian networks,2 which simplifies our experi-
mental setting when comparing against SBN and other ap-
proaches on Bayesian Networks with uncertain probabili-
ties. We determine a parametrisation for aProbLog (Section
3) deriving operators for addition, multiplication, and divi-
sion operating on Beta-distributed random variables match-
ing the results to a new Beta-distributed random variable
using the moment matching method (Minka 2001; Kleiter
1996; Allen et al. 2008; Kaplan and Ivanovska 2018).

We achieve the same results of highly engineered ap-
proaches for inferencing in single-connected Bayesian
networks—in particular in presence of high uncertainty
in the distribution of probabilities which is our main re-
search focus—and simultaneously we maintain the flexi-
bility offered by aProbLog in handling complex relational
domains. Results of our experimental analysis (Section 4)
indeed indicate that the proposed approach (1) handles
inferences in general aProbLog programs better than us-
ing standard subjective logic operators (Jøsang 2016) (Ap-
pendix A), and (2) it performs equivalently to state-of-
the-art approaches of reasoning with uncertain probabilities
(Kaplan and Ivanovska 2018; Zaffalon and Fagiuoli 1998;
Smets 1993), despite the fact that they have been highly en-
gineered for the specific case of single connected Bayesian
Networks while we can handle general aProbLog programs.

2 Background
2.1 aProbLog
For a set J of ground facts, we define the set of literals LpJq
and the set of interpretations IpJq as follows:

LpJq “ J Y t f | f P Ju (1)
IpJq “ tS | S Ď LpJq ^ @l P J : l P S Ø  l R Su (2)

An algebraic Prolog (aProbLog) program (Kimmig, Van
den Broeck, and De Raedt 2011) consists of:
• a commutative semiring xA,‘,b, e‘, eby3

• a finite set of ground algebraic facts F “ tf1, . . . , fnu

• a finite set BK of background knowledge clauses
• a labeling function δ : LpFq Ñ A
Background knowledge clauses are definite clauses, but their
bodies may contain negative literals for algebraic facts.
Their heads may not unify with any algebraic fact.

For instance, in the following aProbLog program
alarm :- burglary.
0.05 :: burglary.

burglary is an algebraic fact with label 0.05, and
alarm :- burglary represents a background knowl-
edge clause, whose intuitive meaning is: in case of burglary,
the alarm should go off.

2As pointed out by (Fierens et al. 2015), for such Bayesian net-
work models, ProbLog inference is tightly linked to the inference
approach of (Sang, Bearne, and Kautz 2005).

3That is, addition ‘ and multiplication b are associative and
commutative binary operations over the set A, b distributes over
‘, e‘

P A is the neutral element with respect to ‘, eb
P A that

of b, and for all a P A, e‘
b a “ ab e‘

“ e‘.

The idea of splitting a logic program in a set of facts
and a set of clauses goes back to Sato’s distribution se-
mantics (Sato 1995), where it is used to define a probabil-
ity distribution over interpretations of the entire program in
terms of a distribution over the facts. This is possible be-
cause a truth value assignment to the facts in F uniquely
determines the truth values of all other atoms defined in
the background knowledge. In the simplest case, as re-
alised in ProbLog (De Raedt, Kimmig, and Toivonen 2007;
Fierens et al. 2015), this basic distribution considers facts to
be independent random variables and thus multiplies their
individual probabilities. aProbLog uses the same basic idea,
but generalises from the semiring of probabilities to general
commutative semirings. While the distribution semantics is
defined for countably infinite sets of facts, the set of ground
algebraic facts in aProbLog must be finite.

In aProbLog, the label of a complete interpretation I P
IpFq is defined as the product of the labels of its literals

ApIq “
â

lPI

δplq (3)

and the label of a set of interpretations S Ď IpFq as the sum
of the interpretation labels

ApSq “
à

IPS

â

lPI

δplq (4)

A query q is a finite set of algebraic literals and atoms from
the Herbrand base,4 q Ď LpFq YHBpFYBKq. We denote
the set of interpretations where the query is true by Ipqq,

Ipqq “ tI | I P IpFq ^ I Y BK |ù qu (5)
The label of query q is defined as the label of Ipqq,

Apqq “ ApIpqqq “
à

IPIpqq

â

lPI

δplq. (6)

As both operators are commutative and associative, the la-
bel is independent of the order of both literals and interpre-
tations.

In the context of this paper, we extend aProbLog to
queries with evidence by introducing an additional division
operator m that defines the conditional label of a query as
follows:
Apq|E “ eq “ ApIpq ^ E “ eqq m ApIpE “ eqq (7)

where ApIpq ^ E “ eqq m ApIpE “ eqq returns the
label of q ^ E “ e given the label of E “ e. We refer to
a specific choice of semiring, labeling function and division
operator as an aProbLog parametrisation.

ProbLog is an instance of aProbLog with the following
parameterisation, which we denote Sp:

A “ Rě0;
a ‘ b “ a` b;
a b b “ a ¨ b;
e‘ “ 0;
eb “ 1;
δpfq P r0, 1s;
δp fq “ 1´ δpfq;
a m b “ a

b

(8)

4I.e., the set of ground atoms that can be constructed from the
predicate, functor and constant symbols of the program.
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2.2 Beta Distribution and Subjective Logic
Opinions

When probabilities are uncertain—for instance because of
limited observations—such an uncertainty can be captured
by a Beta distribution, namely a distribution of possible
probabilities. Let us consider only binary variables such as
X that can take on the value of true or false, i.e., X “ x or
X “ x̄. The value of X does change over different instanti-
ations, and there is an underlying ground truth value for the
probability px that X is true (px̄ “ 1 ´ px that X is false).
If px is drawn from a Beta distribution, it has the following
probability density function:

fβppx;αq “
1

βpαx, αx̄q
pαx´1
x p1´ pxq

αx̄´1 (9)

for 0 ď px ď 1, where βp¨q is the beta function and the beta
parameters are αX “ xαx, αx̄y, such that αx ą 1, αx̄ ą 1.
Given a Beta-distributed random variable X ,

sX “ αx ` αx̄ (10)

is its Dirichlet strength and

µX “
αx
sX

(11)

is its mean. From (10) and (11) the beta parameters can
equivalently be written as:

αX “ xµXsX , p1´ µXqsXy. (12)

The variance of a Beta-distributed random variable X is

σ2
X “

µXp1´ µXq

sX ` 1
(13)

and from (13) we can rewrite sX (10) as

sX “
µXp1´ µXq

σ2
X

´ 1. (14)

Parameter Estimation Given a random variable Z with
known mean µZ and variance σ2

Z , we can use the method of
moments and (14) to estimate the α parameters of a Beta-
distributed variable Z 1 of mean µZ1 “ µZ and

sZ1 “ max

"

µZp1´ µZq

σ2
Z

´ 1,
WaZ
µZ

,
W p1´ aZq

p1´ µZq

*

.

(15)
(15) is needed to ensure that the resulting Beta-distributed
random variable Z 1 does not lead to a αZ1 ď x1, 1y.

Beta-Distributed Random Variables from Observations
The value of X can be observed from Nins independent
observations of X . If over these observations, nx times
X “ x, nx̄ “ Nins ´ nx times X “ x̄, then αX “

xnx`WaX , nx̄`W p1´aXqy: aX is the prior assumption,
i.e. the probability that X is true in the absence of observa-
tions; and W ą 0 is a prior weight indicating the strength
of the prior assumption. Unless specified otherwise, in the
following we will assume @X, aX “ 0.5 and W “ 2, so to
have an uninformative, uniformly distributed, prior.

Subjective Logic Subjective logic (Jøsang 2016) provides
(1) an alternative, more intuitive, way of representing the
parameters of a Beta-distributed random variables, and (2) a
set of operators for manipulating them. A subjective opinion
about a proposition X is a tuple ωX “ xbX , dX , uX , aXy,
representing the belief, disbelief and uncertainty that X is
true at a given instance, and, as above, aX is the prior prob-
ability that X is true in the absence of observations. These
values are non-negative and bX ` dX ` uX “ 1. The pro-
jected probability P pxq “ bX ` uX ¨ aX , provides an esti-
mate of the ground truth probability px.

The mapping from a Beta-distributed random variable X
with parameters αX “ xαx, αx̄y to a subjective opinion is:

ωX “

B

αx ´WaX
sX

,
αx̄ ´W p1´ aXq

sX
,
W

sX
, aX

F

(16)

With this transformation, the mean of X is equivalent to the
projected probability P pxq, and the Dirichlet strength is in-
versely proportional to the uncertainty of the opinion:

µX “ P pxq “ bX ` uXaX , sX “
W

uX
(17)

Conversely, a subjective opinion ωX translates directly
into a Beta-distributed random variable with:

αX “

B

W

uX
bX `WaX ,

W

uX
dX `W p1´ aXq

F

(18)

Subjective logic is a framework that includes various op-
erators to indirectly determine opinions from various log-
ical operations. In particular, we will make use of ‘SL,
bSL, and mSL, resp. summing, multiplying, and dividing
two subjective opinions as they are defined in (Jøsang 2016)
(Appendix A). Those operators aim at faithfully matching
the projected probabilities: for instance the multiplication of
two subjective opinions ωX bSL ωY results in an opinion
ωZ such that P pzq “ P pxq ¨ P pzq.

The straightforward approach to derive a aProbLog
parametrisation for operations in subjective logic is to use
the operators ‘, b, and m.
Definition 1. The aProbLog parametrisation SSL is defined
as follows:

ASL “ R4
ě0;

a ‘SL b “ a ‘SL b;
a bSL b “ a bSL b;

e
‘SL “ x0, 1, 0, 0y;
e
bSL “ x1, 0, 0, 1y;
δSLpfiq “ xbfi , dfi , ufi , afiy P r0, 1s

4;
δSLp fiq “ xdfi , bfi , ufi , 1´ afiy;

a mSL b “

"

a mSL b if defined
x0, 0, 1, 0.5y otherwise

(19)

Note that xASL,‘SL,bSL, e
‘SL , ebSLy does not form

a commutative semiring in general. If we consider only
the projected probabilities—i.e. the means of the associ-
ated Beta distributions—then ‘ and b are indeed commu-
tative, associative, and b distributes over ‘. However, the
uncertainty of the resulting opinion depends on the order of
operands.
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3 Operators for Beta-Distributed Random
Variables

While SL operators try to faithfully characterise the pro-
jected probabilities, they employ an uncertainty maximisa-
tion principle to limit the belief commitments, hence they
have a looser connection to the Beta distribution. The op-
erators we derive in this section aim at maintaining such a
connection.

Let us first define a sum operator between two indepen-
dent Beta-distributed random variablesX and Y as the Beta-
distributed random variable Z such that µZ “ µX`Y and
σ2
Z “ σ2

X`Y . The sum (and in the following the product as
well) of two Beta random variables is not necessarily a Beta
random variable. Our approach, consistent with (Kaplan and
Ivanovska 2018), approximates the resulting distribution as
a Beta distribution via moment matching on mean and vari-
ance: this guarantees to approximate the result as a Beta dis-
tribution.

Definition 2 (Sum). Given X and Y independent Beta-
distributed random variables represented by the subjective
opinion ωX and ωY , the sum of X and Y (ωX ‘β ωY ) is
defined as the Beta-distributed random variable Z such that:
µZ “ µX`Y “ µX ` µY and σ2

Z “ σ2
X`Y “ σ2

X ` σ
2
Y .

ωZ “ ωX ‘β ωY can then be obtained as discussed in
Section 2.2, taking (15) into consideration. The same applies
for the following operators as well.

Let us now define the product operator between two inde-
pendent Beta-distributed random variables X and Y as the
Beta-distributed random variable Z such that µZ “ µXY
and σ2

Z “ σ2
XY .

Definition 3 (Product). Given X and Y independent Beta-
distributed random variables represented by the subjective
opinion ωX and ωY , the product of X and Y (ωX bβ ωY )
is defined as the Beta-distributed random variable Z such
that: µZ “ µXY “ µX µY and σ2

Z “ σ2
XY “ σ2

XpµY q
2 `

σ2
Y pµXq

2 ` σ2
Xσ

2
Y .

Finally, let us define the conditioning-division operator
between two independent Beta-distributed random variables
X and Y , represented by subjective opinions ωX and ωY , as
the Beta-distributed random variable Z such that µZ “ µX

Y

and σ2
Z “ σ2

X
Y

.

Definition 4 (Conditioning-Division). Given ωX “

xbX , dX , uX , aXy and ωY “ xbY , dY , uY , aY y subjective
opinions such that X and Y are Beta-distributed random
variables, Y “ ApIpE “ eqq “ ApIpq ^ E “

eqq ‘ ApIp q ^ E “ eqq, with ApIpq ^ E “ eqq “ X .
The conditioning-division ofX by Y (ωX mβ ωY ) is defined
as the Beta-distributed random variable Z such that:5

µZ “ µX
Y
“ µXµ 1

Y
»
µX
µY

(20)

and
5In the following, » highlights the fact that the results are ob-

tained using the the first order Taylor approximation.

σ2
Z » pµZq

2p1´ µZq
2¨

¨

ˆ

σ2
X

pµXq2
`

σ2
Y ´ σ

2
X

pµY ´ µXq2
`

2σ2
X

µXpµY ´ µXq

˙

(21)

We can now define a new aProbLog parametrisation sim-
ilar to Definition 1 operating with our newly defined opera-
tors ‘β , bβ , and mβ .

Definition 5. The aProbLog parametrisation Sβ is defined
as follows:

Aβ “ R4
ě0;

a ‘β b “ a ‘β b;
a bβ b “ a bβ b;

e‘
β

“ x1, 0, 0, 0.5y;

eb
β

“ x0, 1, 0, 0.5y;
δβpfiq “ xbfi , dfi , ufi , afiy P r0, 1s

4;
δβp fiq “ xdfi , bfi , ufi , 1´ afiy;
a mβ b “ a mβ b

(22)

As per Definition 1, also xAβ ,‘β ,bβ , e‘β , ebβ y is not
in general a commutative semiring. Means are correctly
matched to projected probabilities, therefore for them Sβ

actually operates as a semiring. However, for what con-
cerns variance, the product is not distributive over addi-
tion: σ2

XpY`Zq “ σ2
XpµY ` µZq

2 ` pσ2
Y ` σ2

Zqµ
2
X `

σ2
Xpσ

2
Y `σ

2
Zq ‰ σ2

Xpµ
2
Y `µ

2
Zq`pσ

2
Y `σ

2
Zqµ

2
X`σ

2
Xpσ

2
Y `

σ2
Zq “ σ2

pXY q`pXZq. The approximation error we introduce
is therefore

epX,Y, Zq ď

2µY µZσ
2
X

σ2
Xpµ

2
Y ` µ

2
Zq ` pµ

2
X ` σ

2
Xqpσ

2
Y ` σ

2
Zq

(23)

and it minimally affects the results both in the case of low
and in the case of high uncertainty in the random variables.

4 Experimental Analysis
To evaluate the suitability of using Sβ in aProbLog for un-
certain probabilistic reasoning, we run an experimental anal-
ysis involving several aProbLog programs with unspecified
labelling function. For each program, first labels are derived
for Sp by selecting the ground truth probabilities from a
uniform random distribution. Then, for each label of the
aProbLog program over Sp, we derive a subjective opin-
ion by observingNins instantiations of the random variables
comprising the aProbLog program over Sp so to simulate
data sparsity (Kaplan and Ivanovska 2018). We then pro-
ceed analysing the inference on specific query nodes q in the
presence of a set of evidence E “ e using aProbLog with
SSL and Sβ over the subjective opinion labels, and com-
pare the RMSE to the actual ground truth of using aProbLog
with Sp. This process of inference to determine the marginal
Beta distributions is repeated 1000 times by considering 100
random choices for each label of the aProbLog with Sp, i.e.
the ground truth, and for each ground truth 10 repetitions
of sampling the interpretations used to derive the subjective
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(a) (b) (c)

Figure 1: Actual versus desired significance of bounds derived from the uncertainty for Smokers & Friends with: (a)Nins “ 10;
(b Nins “ 50; and (c) Nins “ 100. Best closest to the diagonal. In the figure, SL Beta represents aProbLog with Sβ , and SL
Operators represents aProbLog with SSL.

Program Nins Sβ SSL

Friends
&
Smokers

10 Actual 0.1014 0.1514
Predicted 0.1727 0.1178

50 Actual 0.0620 0.1123
Predicted 0.0926 0.0815

100 Actual 0.0641 0.1253
Predicted 0.1150 0.0893

Table 1: RMSE for the queried variables in the Friends &
Smokers program: best results for the actual RMSE in bold.

opinion labels used in SSL and Sβ observing Nins instan-
tiations of all the variables.

Following (Kaplan and Ivanovska 2018), we judge the
quality of the Beta distributions of the queries on how well
its expression of uncertainty captures the spread between its
projected probability and the actual ground truth probabil-
ity. In simulations where the ground truths are known, such
as ours, confidence bounds can be formed around the pro-
jected probabilities at a significance level of γ and determine
the fraction of cases when the ground truth falls within the
bounds. If the uncertainty is well determined by the Beta
distributions, then this fraction should correspond to the
strength γ of the confidence interval (Kaplan and Ivanovska
2018, Appendix C).

4.1 Inferences in Arbitrary aProbLog Programs
We first considered the famous Friends & Smokers prob-
lem6 with fixed queries and set of evidence, to illustrate
the behaviour between SSL and Sβ . Table 1 provides the
root mean square error (RMSE) between the projected prob-
abilities and the ground truth probabilities for all the in-
ferred query variables for Nins = 10, 50, 100. The table
also includes the predicted RMSE by taking the square root

6https://dtai.cs.kuleuven.be/problog/tutorial/basic/05 smokers.
html

of the average—over the number of runs—variances from
the inferred marginal Beta distributions, cf. Eq. (13). Fig-
ure 1 plots the desired and actual significance levels for the
confidence intervals (best closest to the diagonal), i.e. the
fractions of times the ground truth falls within confidence
bounds set to capture x% of the data.

The aProbLog with Sβ exhibits the lowest RMSE, and
is a little conservative in estimating its own RMSE, while
aProbLog with SSL is overconfident. This reflects in Fig-
ure 1, with the results of aProbLog with Sβ being over the
diagonal, and those of aProbLog with SSL being below it.

4.2 Inferences in aProbLog Programs
Representing Single-Connected Bayesian
Networks

We compared our approach against the state-of-the-art
approaches for reasoning with uncertain probabilites—
Subjective Bayesian Network (Ivanovska et al. 2015; Kaplan
and Ivanovska 2016; 2018), Credal Network (Zaffalon and
Fagiuoli 1998), and Belief Network (Smets 1993)—in the
case that is handled by all of them, namely single connected
Bayesian networks. We considered three networks proposed
in (Kaplan and Ivanovska 2018) that are depicted in Fig-
ure 2: from each network, we straightforwardly derived a
aProbLog program.

As before, Table 2 provides the root mean square error
(RMSE) between the projected probabilities and the ground
truth probabilities for all the inferred query variables for
Nins = 10, 50, 100, together with the RMSE predicted by
taking the square root of the average variances from the in-
ferred marginal Beta distributions. Figure 3 plots the desired
and actual significance levels for the confidence intervals
(best closest to the diagonal).

Table 2 shows that aProbLog with Sβ shares the best
performance with the state-of-the-art Subjective Bayesian
Networks—in terms of actual RMSE—for Net1, and in two
out of three cases of Net2 (all of them from a practical stand-
point). This is clearly a significant achievement considering
that Subjective Bayesian network is the state-of-the-art ap-
proach when dealing only with single connected Bayesian
Networks with uncertain probabilities, while aProbLog with
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(a) (b) (c)

Figure 2: Network structures tested where the exterior gray variables are directly observed and the remaining are queried: (a)
Net1, a tree; (b) Net2, singly connected network with one node having two parents; (c) Net3, singly connected network with
one node having three parents.

Nins Sβ SSL SBN GBT Credal

Net1 10 A 0.1505 0.2078 0.1505 0.1530 0.1631
P 0.1994 0.1562 0.1470 0.0868 0.2009

50 A 0.0555 0.0895 0.0555 0.0619 0.0553
P 0.0950 0.0579 0.0563 0.0261 0.0761

100 A 0.0766 0.1182 0.0766 0.0795 0.0771
P 0.1280 0.0772 0.0763 0.0373 0.1028

Net2 10 A 0.1387 0.2089 0.1387 0.1416 0.1459
P 0.2031 0.1662 0.1391 0.1050 0.1849

50 A 0.0537 0.0974 0.0537 0.0561 0.0528
P 0.1002 0.0671 0.0520 0.0342 0.0683

100 A 0.0730 0.1229 0.0726 0.0752 0.0728
P 0.1380 0.0863 0.0725 0.0482 0.0949

Net3 10 A 0.1566 0.2111 0.1534 0.1554 0.1643
P 0.1935 0.1517 0.1467 0.0832 0.1964

50 A 0.0697 0.0947 0.0548 0.0584 0.0548
P 0.0926 0.0602 0.0553 0.0242 0.0720

100 A 0.0879 0.1242 0.0745 0.0776 0.0743
P 0.1232 0.0798 0.0743 0.0347 0.0973

Table 2: RMSE for the queried variables in the various net-
works: A stands for Actual, P for Predicted. Best results for
the Actual RMSE in bold.

Sβ can also handle much more complex problems. Net3 re-
sults are slightly worse due to approximations induced in
the floating point operations used in the implementation: the
more the connections of a node in the Bayesian network (e.g.
node E in Figure 2c), the higher the number of operations in-
volved in (7). A more accurate code engineering can address
it. Consistently with Table 1, aProbLog with Sβ has lower
RMSE than with SSL and it underestimates its predicted
RMSE, while aProbLog with SSL overestimates it.

From visual inspection of Figure 3, it is evident that
aProbLog with Sβ performs best in presence of high un-
certainty (Nins “ 10). In presence of lower uncertainty, in-

stead, it underestimates its own prediction up to a desired
confidence between 0.6 and 0.8, and overestimate it after.
This is due to the fact that aProbLog computes the condi-
tional distributions at the very end of the process and Sβ

relies, in (21), on the assumption that X and Y are uncor-
related. However, since the correlation between X and Y is
inversely proportional to

a

σ2
Xσ

2
Y , the lower the uncertainty,

the less accurate our approximation.

5 Conclusion

We enabled the aProbLog approach to probabilistic logic
programming to reason in presence of uncertain probabili-
ties represented as Beta-distributed random variables. Other
extensions to logic programming can handle uncertain prob-
abilities by considering intervals of possible probabilities
(Ng and Subrahmanian 1992), similarly to the Credal net-
work approach we compared against in Section 4; or by
sampling random distributions, including ProbLog itself and
cplint (Alberti et al. 2017) among others. Our approach does
not require sampling or Monte Carlo computation, thus be-
ing significantly more efficient.

Our experimental section shows that the proposed opera-
tors outperform the standard subjective logic operators and
they are as good as the state-of-the-art approaches for un-
certain probabilities in Bayesian networks while being able
to handle much more complex problems. Moreover, in pres-
ence of high uncertainty, which is our main research focus,
the approximations we introduce in this paper are minimal,
as Figures 3a, 3d, and 3g show, with the results of aProbLog
with Sβ being very close to the diagonal.

As part of future work we will (1) provide a different char-
acterisation of the variance in (21) taking into considera-
tion the correlation between X and Y ; (2) test the bound-
aries of our approximations to provide practitioners with
pragmatic assessments and assurances; and (3) introduce
an expectation-maximisation (EM) algorithm for learning
labels representing Beta-distributed random variables with
partial interpretations and compare it against the LFI algo-
rithm (Gutmann, Thon, and De Raedt 2011) for ProbLog.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3: Actual versus desired significance of bounds derived from the uncertainty for: (a) Net1 with Nins “ 10; (b) Net1
with Nins “ 50; (c) Net1 with Nins “ 100; (d) Net2 with Nins “ 10; (e) Net2 with Nins “ 50; (f) Net2 with Nins “ 100; (g)
Net3 with Nins “ 10; (h) Net3 with Nins “ 50; (i) Net3 with Nins “ 100. Best closest to the diagonal. In the figure, SL Beta
represents aProbLog with Sβ , and SL Operators represents aProbLog with SSL.

A Subjective Logic Operators of Sum,
Multiplication, and Division

Let us recall the following operators as defined in
(Jøsang 2016). Let ωX “ xbX , dX , uX , aXy and ωY “

xbY , dY , uY , aY y be two subjective logic opinions, then:

• the opinion about X Y Y (sum, ωX ‘SL ωY ) is de-
fined as ωXYY “ xbXYY , dXYY , uXYY , aXYY y, where
bXYY “ bX ` bY , dXYY “

aXpdX´bY q`aY pdY ´bXq
aX`aY

,
uXYY “

aXuX`aY uY
aX`aY

, and aXYY “ aX ` aY ;

• the opinion about X ^ Y (product, ωX bSL ωY )
is defined—under assumption of independence—as
ωX^Y “ xbX^Y , dX^Y , uX^Y , aX^Y y, where bX^Y “
bXbY `

p1´aXqaY bXuY `aXp1´aY quXbY
1´aXaY

, dX^Y “ dX `

dY ´dXdY , uX^Y “ uXuY `
p1´aY qbXuY `p1´aXquXbY

1´aXaY
,

and aX^Y “ aXaY ;
• the opinion about the division of X by Y ,
X r̂Y (division, ωX mSL ωY ) is defined as
ωX r̂Y “ xbX r̂Y , dX r̂Y , uX r̂Y , aX r̂Y y bX r̂Y =

aY pbX`aXuXq
paY ´aXqpbY `aY uY q

´
aXp1´dXq

paY ´aXqp1´dY q
, dX r̂Y “

dX´dY
1´dY

,

uX r̂Y “
aY p1´dXq

paY ´aXqp1´dY q
´

aY pbX`aXuXq
paY ´aXqpbY `aY uY q

, and
aX r̂Y “

aX
aY

,
subject to: aX ă aY ; dX ě dY ; bX ě
aXp1´aY qp1´dXqbY
p1´aXqaY p1´dY q

; uX ě
p1´aY qp1´dXquY
p1´aXqp1´dY q

.
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