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Abstract

Verb Phrase Ellipsis (VPE) is a linguistic phenomenon, where
some verb phrases as syntactic constituents are omitted and
typically referred by an auxiliary verb. It is ubiquitous in both
formal and informal text, such as news articles and dialogues.
Previous work on VPE resolution mainly focused on manu-
ally constructing features extracted from auxiliary verbs, syn-
tactic trees, etc. However, the optimization of feature repre-
sentation, the effectiveness of continuous features and the au-
tomatic composition of features are not well addressed. In this
paper, we explore the advantages of neural models on VPE
resolution in both pipeline and end-to-end processes, compar-
ing the differences between statistical and neural models. Two
neural models, namely multi-layer perception and the Trans-
former, are employed for the subtasks of VPE detection and
resolution. Experimental results show that the neural models
outperform the state-of-the-art baselines in both subtasks and
the end-to-end results.

Introduction
Ellipsis is a linguistic phenomenon where some syntactic
constituents are omitted but can be reconstructed from con-
text. One type of ellipsis, Verb Phrase Ellipsis (VPE), de-
notes the omission of verb phrases. In English, a VPE is usu-
ally associated with an auxiliary verb without a verb phrase.
For example, in the sentence “Not only is development of
the new company’s initial machine tied directly to Mr. Cray,
so is its balanced sheet.”, the verb phrase “tied directly to
Mr. Cray” is omitted for “its balanced sheet” with the aux-
iliary verb “is” being given. In the above instance, the aux-
iliary verb is usually called a trigger and the omitted verb
phrase the antecedent. Given a sentence, there are two NLP
tasks associated with VPE, namely VPE detection, which
is to detect a trigger verb, and VPE resolution, which is
to identify the antecedent of a given trigger (Hardt 1992;
Nielsen 2003b; 2005; Van Craenenbroeck 2017). Figure 1
shows an example VPE resolution process.

VPE occurs frequently in both formal and informal texts,
such as news articles and dialogues (Nielsen 2005). Thus re-
solving VPE is important for downstream NLP tasks such
as event extraction, dialogue systems, etc (Kenyon-Dean,
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Not only is development of the new company's initial 
machine [tied directly to Mr. Cray], so is its balance sheet.

Not only is development of the new company's initial 
machine tied directly to Mr. Cray, so is its balance sheet.

wsj_0018 (line 5, ant vped):

Not only is development of the new company's initial 
machine tied directly to Mr. Cray, so is its balance sheet.Raw Sentence

VPE Detection
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Detected Trigger

Identified Antecedent

Figure 1: An example of VPE resolution process, where “is”
and the VP in square bracket “tied directly to Mr. Cray”
denote the trigger and antecedent of VPE, respectively.

Cheung, and Precup 2016). Previous work on VPE resolu-
tion has addressed the sub-tasks of VPE detection (Hardt
1992; 1997; Hobbs and Kehler 1997; Nielsen 2003b; 2004a;
2004b) and VPE resolution (Hardt 1998; Nielsen 2003a;
2005; Bos 2005) separately, pipeline processing of VPE
detection and VPE resolution (Bos and Spenader 2011;
Bos 2012; Kawai 2013; Liu, Pellicer, and Gillick 2016;
Bakhshandeh, Wellwood, and Allen 2016), and end-to-end
modeling of the two steps (Kenyon-Dean, Cheung, and Pre-
cup 2016; McShane and Babkin 2016). Most existing work
uses heuristic rules, manually constructed features extracted
from auxiliaries and syntactic structures, and linguistic theo-
ries such as Discourse Representation Structure (DRS) (Bos
2012), Simple Parallel Configuration (SPC) (McShane and
Babkin 2016), etc1. Despite the success of existing work,
heuristic rules and manual features are sparse and cannot
fully explored deep semantic information across a sentence.
Such limitations can potentially be addressed by using neu-
ral network models (Collobert and Weston 2008).

In this paper, we explore neural network models for VPE
resolution in both pipeline and end-to-end processes, com-
paring statistical models and neural models while investigat-
ing novel lexical and slot pattern features. For VPE detec-
tion, we choose an SVM model with non-linear kernel func-

1Here, DRS and SPC are proposed based on the discourse rep-
resentation theory (Kamp, Reyle, and others 1993) and parallelism
theory (Hobbs and Kehler 1997), respectively.
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tion as a state-of-the-art statistical model, a simple multi-
layer perception (MLP) and the Transformer (Vaswani et al.
2017) as our neural models. For VPE resolution, we apply
a MLP and the Transformer models. Finally, for the end-to-
end VPE resolution task, we propose a novel neural frame-
work to uniformly integrate the two subtasks.

Results on a WSJ dataset (Bos and Spenader 2011) show
that the proposed neural models outperform the state-of-the-
art baselines. In addition, we further analyze the distribution
of the VPE phenomenon through data annotation, which in-
cludes the extended annotation of sentences that 1) have trig-
ger verb and VPE, 2) have trigger verb but no VPE, 3) have
VPE but no trigger, 4) have no trigger and no VPE. We re-
lease the extended corpus and code for VPE resolution re-
search.

Related Work
VPE Detection Hardt (1992) proposed a 3-step algorithm,
which includes 3 operations to remove, assign and select
on VPlist and VPE. Hardt (1997) was the first empiri-
cal study on VPE detection. They utilized syntactic-based
matching pattern and proposed 4 preference factors to iden-
tify the VPE. Hobbs and Kehler (1997) introduced a paral-
lelism theory in discourse to analyze the VPE phenomenon.
Nielsen (2003b) verified the performance of different statis-
tical machine learning approaches on VPE detection and ex-
plored the combination of these approaches. Nielsen (2004a)
and Nielsen (2004b) verified the performance of VPE de-
tection (or target detection) in the automatically parsed data
and built a robust, accurate and domain independent VPE
detection system. We follow Hardt (1997), Nielsen (2004a)
and Nielsen (2004b) in utilizing lexical and syntactic fea-
tures, but are the first apply neural models to explore deep
semantic information across a sentence for VPE detection.

VPE Resolution Hardt (1998) employed a transformation
learning-based approach to generated patterns for VPE res-
olution. Nielsen (2003a) first proposed a corpus based ap-
proach to VPE resolution. A 3-step end-to-end approach,
which includes VPE detection, antecedent identification and
VPE resolution, was proposed as a pipeline framework.
Bos (2005) analyzed the VPE and sloppy identity through
case study. All the above work uses statistical features, while
we employ neural models to optimize the feature represen-
tation and composition for VPE resolution.

Although there are some previous research of VPE de-
tection and resolution on the BNC dataset, it is difficult to
use as it depends on a particular set of tools for preprocess-
ing (Kenyon-Dean, Cheung, and Precup 2016). Recently,
Bos and Spenader (2011) extended and released an anno-
tated corpus of VPE in 25 sections of the WSJ corpus dis-
tributed with the Penn Treebank dataset. Bos (2012) utilized
the Discourse Representation Structure (DRS) to resolve the
VPE detection, location and resolution tasks. Kawai (2013)
analyzed the identity condition on VPE and provided a pre-
liminary formulation for the nondistinctness condition. Liu,
Pellicer, and Gillick (2016) explored the steps of VPE and
splitted the target detection and antecedent identification
into three tasks as target detection, antecedent head reso-

No. Extended Lexical Feature
1 Current word wi

2 Previous word wi−1
3 Next word wi+1

4 The string of POS tags of wi

5 The string of POS tags of wi−3, wi−2, wi−1
6 The string of POS tags of wi−2, wi−1
7 The string of POS tags of wi−1
8 The string of POS tags of wi+1

9 The string of POS tags of wi+1, wi+2

10 The string of POS tags of wi+1, wi+2, wi+3

Slot Pattern Feature
11 ,/. so/or/nor/but/while [slot] do/to/did/does
12 as [slot] were/do/does/did
13 if it is/does/isn’t
14 ,/. have [slot] ,/.
15 [slot] wasn’t/ would/ do/ might/have to [slot] ,/.
16 all the/the way/that/who/and [slot] does/will/can
17 the same [slot] do
18 doing/do [slot] the same/so
19 than [slot] do/is/had/has

Table 1: Summary of the proposed extended lexical features
and slot pattern features for VPE detection.

lution and antecedent boundary determination. Bakhshan-
deh, Wellwood, and Allen (2016) proposed a framework
to jointly model the comparison and ellipsis as an inter-
connected structure of predicate-argument. McShane and
Babkin (2016) considered the syntactic parallelism, modal-
ity correlation and sentence constituents for VPE detection
and resolution. Kenyon-Dean, Cheung, and Precup (2016)
explored auxiliary, lexical, syntactic features and proposed
an alignment algorithm based MIRA approach for VPE res-
olution. All the above work mainly focuses on the heuristic
rules and manual features under statistical models on both
two separate tasks and the end-to-end task. In contrast, our
work explores the advantages of neural models for modeling
the deep semantics across a sentence on all the 3 tasks.

The Proposed Approach
We investigate an end-to-end learning framework to inte-
grate the VPE detection and VPE resolution as shown in Fig-
ure 2. We provide an alternative choices of models in each
steps. For example, for VPE detection, the classifier can be
SVM, MLP or Transformer. For VPE resolution, the model
can be either MLP or Transformer.

VPE Detection
Previous research (Nielsen 2003b; 2004a; 2004b; 2005;
Bos 2012; Liu, Pellicer, and Gillick 2016; Kenyon-Dean,
Cheung, and Precup 2016) regards VPE detection as a bi-
nary classification task over auxiliary verbs. In this paper, we
follow the task specification. Given an auxiliary verb and the
sentence where the auxiliary verb is in as input, VPE detec-
tion is to extract features and predict whether the auxiliary
verb is a trigger or not.
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Figure 2: Framework of the proposed end-to-end approach to VPE resolution.

For VPE detection, we follow the features proposed
by Kenyon-Dean, Cheung, and Precup (2016), but investi-
gate a range of novel features. Table 1 summarizes the pro-
posed lexical features extended from (Kenyon-Dean, Che-
ung, and Precup 2016), and slot pattern features. For ex-
tended lexical features, we aim to capture the distributional
semantics of words (No.1-3) and POS tag (No.4) as well as
the sequential context information of POS tags (No.5-10).
For the slot pattern feature, we proposed to explore the aux-
iliary related syntactical structures. The slot is set to gen-
eralize the matching scope. In particular, No.11-16 are re-
lated to the auxiliaries. No.17 and 18 are for a specific phe-
nomenon “the same” reference and No.19 is for the phe-
nomenon of “comparative deletion”. Both phenomena are
explored by Hobbs and Kehler (1997).

We compare the effectiveness of SVM and an attention-
based neural network model. For the SVM classifier, we
used the scikit-learn2 with 5-fold cross validation for train-
ing and test. For the attention-based neural network model,
we utilized Transformer (Vaswani et al. 2017). The data split
and feature input to the Transformer model is the same as the
SVM classifier.

VPE Resolution
VPE resolution is defined as a binary classification task over
verb phrases and adverb phrases. Formally, given a sentence,

2http://scikit-learn.org/stable/modules/svm.html#svm

Figure 3: Example VPE training data. The VP in square
bracket denotes a candidate antecedent ai, the underlined
text represents the context (ci) of ai and “is” is a trigger (t)
for VPE.

let ai, t and ci denote the i-th candidate antecedent, trigger
and the context, respectively, the VPE resolution problem is
then described as:

f(ai, t, ci)→ {0, 1} (1)

where 1 denotes that the candidate antecedent ai is the cor-
rect antecedent of trigger t and 0 vice versa. Figure 3 is an
example. In this paper, we first learn the joint representation
of ai, t and ci and then resolve VPE with two neural network
models.

Representation Learning To obtain a joint representation
of ai, t and ci, we initially obtain word representations using
fastText3 on the WSJ corpus4 except for the 554 training and
test instances. The joint representation of ai, t and ci are then
obtained using three different functions.
• Sum Pooling directly sums the word embeddings of ai, t

and ci, respectively, to obtain their representations. waij

and wcik denote the vector representation of the j-th and

3https://fasttext.cc/
4https://catalog.ldc.upenn.edu/ldc99t42
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k-th word in the i-th candidate antecedent and the i-th
context, respectively.

vSum =
∑
j

waij
+
∑
k

wcik + t (2)

• GRU uses a GRU layer (Chung et al. 2014) to obtain the
representations of ai and ci, which are the outputs of the
last hidden state of two separate GRU models, respec-
tively. The inputs to the GRU models are word embed-
dings. We use xt to represent the embedding of word in
candidate antecedent, trigger and the context. Initially, for
t = 0, the output vector is h0 = 0. The GRU model can
be formally represented as:

zt = σg(Wzxt + Uzht−1 + bz) (3)

rt = σg(Wrxt + Urht−1 + br) (4)
vGRU = zt◦ht−1+(1−zt)◦σh(Whxt+Uh(rt◦ht−1)+bh) (5)

Here xt, ht, zt, rt denote the input vector, output vector,
update gate vector and reset gate vector, respectively. W
and U are parameter matrices and b∗ is bias. σg and σh
represent the sigmoid function and the hyperbolic tangent
function, respectively.

• Attention-based GRU uses attention-based GRU (Bah-
danau, Cho, and Bengio 2014) to obtain the representa-
tions of ai and ci, which are the outputs of the weighted
sum of each hidden state on GRU model. Given the word
embedding sequence x1, ..., xt, we measure the similarity
between each word and the last word as follow:

si = sim(xi, xt) =
xi · xt

‖xi‖ · ‖xt‖
(6)

Then, we calculate the attention (weight) of each word.

αi =
exp(si)∑n
j=0 exp(sj)

(7)

Finally, the encoded vector vAttGRU of the sentence is
calculated as:

vAttGRU =

n∑
i=0

αihi (8)

Where hi is the output vector of GRU at time step i. Note
that the representation of t equals to its word embedding
in the above three different functions.

Neural Model For VPE resolution, we utilized two neural
network models. The first is a multi-layer perception (MLP).
The linear layer is defined as:

Linear(x) = xAT + b (9)

where x is the input, A is the parameter matrix and b is a
bias. Then we use LeakyReLU as activation function, which
is defined as:

LeakyRelu(x) = max(0, x) + ns ∗min(0, x) (10)

where ns controls the angle of the negative slope and its
default value equals to 1e-2. Our MLP is defined as:

fl1 = LeakyRelu(Linear(x)) (11)

fl2 = LeakyRelu(Linear(fl1)) (12)
fl3 = LeakyRelu(Linear(fl2)) (13)
fl4 = LeakyRelu(Linear(fl3)) (14)
y = softmax(Linear(fl4)) (15)

where x denotes the input vector which is obtained by con-
catenating the representations of ai, t and ci, and y is the
output vector.

The second VPE resolution model is the Transformer
model (Vaswani et al. 2017), which is based on self-
attention. In our task, we model the binary classification pro-
cess as a self-attention based encoder as shown in Equation
(16).

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (16)

Here Q, K and V denote the matrices of query, key and
value, respectively, as described in Vaswani et al. (2017). dk
is the dimension of the vector of a key in K. In our task, Q,
K and V is the same vector, which comes from the output
of previous layer in encoder. The initialization of Q, K and
V equals to the concatenation of the representations of ai,
t and ci. Besides the scaled dot-product attention as shown
in Equation (16), the Transformer model also leverages a
multi-head attention mechanism as:

MultiHead(Q,K, V ) = Concat(head1, ..., headh)W
O

where headi = Attention(QWQ
i ,KW

K
i , V WV

i ) (17)

Here WO, WQ
i , WK

i and WV
i are parameter matri-

ces. Then a feed-forward network (FFN) with two lin-
ear layers and ReLU activation function is used. Let
x = LayerNorm(MultiHead(Q,K, V ) + Sublayer(PE)),
the FFN is as follows:

FFN(x) = max(0, xW1 + b1)W2 + b2 (18)
where PE denotes the result of positional encoding. Sub-
layer is the function implemented by the sub-layer it-
self (Vaswani et al. 2017). W1, W2 are parameter matrices
and b1, b2 are biases. The output is then obtained by:

y = softmax(Linear(FFN(x) + Sublayer(x))) (19)
where the form of Linear function is similar to Equation (9)
but with different parameters5. The neural models can lever-
age manual features in addition to dense representation fea-
tures which are obtained through the representation learning,
but also can use the manually constructed features which are
depended on the experience of experts. In addition to neu-
ral features, we also integrate the features of Kenyon-Dean,
Cheung, and Precup (2016).

Experiments
We conduct experiments on standard benchmarks for ver-
ifying the effectiveness of neural models, the performance
of the 3 functions on obtaining context representations, and
the usefulness of traditional manual features on improving
the performance of neural models. We analyze the additional
VPE phenomena through manual annotating 820 sentences,
and release the annotated sentences as an extended data.

5For more details of the Transformer model, please see the orig-
inal paper (Vaswani et al. 2017).
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Auxiliary Type Trigger VPE Freq Sum (%)
DO do 213 213(38.45%)
BE be 108 108 (19.49%)
HAVE have 44 44 (7.94%)
TO to 29 29 (5.23%)

MODAL

can 29

93 (16.79%)

will 26
would 14
could 11
should 7
might 4
may 1
must 1

SO

so 54

67 (12.09%)same 8
likewise 3
opposite 2

TOTAL 554

Table 2: Statistics of auxiliary categories and the corre-
sponding trigger words and VPE in experimental dataset.
Auxiliary, Trigger and VPE Freq denote the auxiliary type,
trigger words and VPE frequency, respectively.

Dataset
We use the dataset released by Bos and Spenader (2011).
Following Kenyon-Dean, Cheung, and Precup (2016), we
divide auxiliaries into six types, including DO, BE, HAVE,
TO, MODAL and SO, as shown in Table 2.

For the VPE detection task, the training set contains 554
sentences with trigger words as positive instances and 554
sentences. For the VPE resolution task, we first obtain the
syntactic tree of each sentence using Berkeley parser6. We
then use NLTK7 to extract all the verb phrases (VP) and
adjective phrases (ADJP) in a sentence as candidate an-
tecedents of VPE. The training set also contains 554 sen-
tences with ground truth antecedents as positive instances,
and the randomly sampled antecedents from the rest of the
extracted VPs and ADJPs as negative instances.

Baselines
Three state-of-the-art baselines are selected for VPE detec-
tion and VPE resolution, respectively. For VPE detection,
the first two baselines include a rule-based approach (Rule)
and a machine learning based approach (ML). Both are pro-
posed by Kenyon-Dean, Cheung, and Precup (2016). The
third baseline is a 3-step approach proposed by Liu, Pel-
licer, and Gillick (2016), which includes VPE detection, an-
tecedent identification and VPE resolution.

For VPE resolution, the first baseline is a DR
theory-based VPE resolution approach (DRVPE) proposed
by Bos (2012). The second is a Margin-Infused-Relaxed-
Algorithm based approach (MIRA) for VPE resolution,
which is proposed by Kenyon-Dean, Cheung, and Pre-
cup (2016). The third is the 3-step VPE resolution approach

6https://github.com/slavpetrov/berkeleyparser
7https://www.nltk.org/

of Liu, Pellicer, and Gillick (2016). We directly use the
experimental results of VPE detection and VPE resolution
from Kenyon-Dean, Cheung, and Precup (2016) and Liu,
Pellicer, and Gillick (2016) for comparison.

Parameter Settings
VPE detection. For the SVM model, the hyper parameter
C = 100, γ = 0.5 and the kernel function is “RBF” . For the
MLP model, the size of hidden state is 1,024, the learning
rate equals 0.005 with 1,000 training epochs and the batch
size is 64.
VPE resolution. For the MLP model, the batch size equals
to 64, learning rate and weight decay are both 0.005. We use
a cross entropy loss and Adam optimization (Kingma and
Ba 2014). For the Transformer model, we use the default
parameter settings of Vaswani et al. (2018) except that the
beam size equals to 4 and length penalty α = 0.5 for both
VPE detection and VPE resolution.

Results
VPE Detection We have two experimental settings ac-
cording to the split of the training and test data. Table 3
shows the accuracies of VPE detection in 5-fold cross val-
idation. We can see from Table 3 that ML and SVM give
comparable performance, where the SVM model uses our
proposed features as shown in Table 1. The Transformer
model outperforms the ML and SVM models with the same
features demonstrating that the neural model (Transformer)
can better explore the composition of features and improve
the performance of prediction.

In addition to the proposed features shown in Table 1, for
empirical comparison, we also integrate the features pro-
posed by Kenyon-Dean, Cheung, and Precup (2016)(ML),
denoted by F, We can see that both the performance of SVM
and Transformer models improve by integrating the features
used by ML model. We conclude that: first, the features pro-
posed by Kenyon-Dean, Cheung, and Precup (2016) can be
integrated into the neural model (Transformer) to further im-
prove the performance of VPE detection; second, to com-
pare the performance of SVM+F and Transformer+F, the
neural model (Transformer) can better utilize the features
than the statistical model (SVM) on the VPE detection task.

We also compare the precision (P), recall (R) and F1 score
(F) of VPE detection in the train-test data split used by Bos
and Spenader (2011), Liu, Pellicer, and Gillick (2016) and
Kenyon-Dean, Cheung, and Precup (2016) (ML). The ex-
perimental results are shown in Table 5. We can see that
SVM, MLP and Transformer outperform the baseline mod-
els (Rule and ML). It again verifies that the features pro-
posed by Kenyon-Dean, Cheung, and Precup (2016) can fur-
ther improve the performance of both the statistical models
and neural models.

VPE Resolution We follow the setting of Kenyon-Dean,
Cheung, and Precup (2016) on the split of train and test data.
As presented in the above section, the representations of the
antecedent ai, the context (ci) of ai and the trigger (t) are ob-
tained using three different functions. Besides the proposed
three measures, we also consider to integrate the features
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Auxiliary Rule ML SVM† SVM+F†‡ MLP MLP+F†‡ Transformer† Transformer+F†‡
DO 0.83 0.89 0.94 0.93 0.88 0.94 0.85 0.96
BE 0.34 0.63 0.71 0.76 0.66 0.89 0.60 0.89
HAVE 0.43 0.75 0.76 0.90 0.67 0.83 0.77 0.90
TO 0.76 0.79 0.64 0.86 0.72 0.91 0.79 0.98
MODAL 0.80 0.86 0.95 0.95 0.70 0.82 0.88 0.97
SO 0.67 0.86 0.91 0.90 0.80 0.90 0.88 0.98
ALL 0.71 0.82 0.87 0.90 0.87 0.95 0.88 0.96

Table 3: The F1 scores of VPE detection obtained with 5-fold cross validation. Rule and ML are baselines. SVM, SVM+F,
MLP, MLP+F, Transformer and Transformer+F are the approaches in VPE detection. † and ‡ indicate the experimental
results are statistically significant to the results of Rule, ML, respectively, with p < 0.05. The results in bold indicate the best
performance.

Auxiliary DO BE HAVE TO MODAL SO ALL
DRVPE 0.42 0.37 0.42 0.15 0.39 0.03 0.36
MIRA 0.71 0.63 0.67 0.53 0.61 0.58 0.65

MLP

Sum†‡ 0.65 0.67 0.69 0.63 0.63 0.64 0.66
Sum+F†‡ 0.76 0.76 0.78 0.74 0.73 0.74 0.76
GRU† 0.50 0.52 0.51 0.45 0.51 0.48 0.51
GRU+F†‡ 0.81 0.75 0.78 0.71 0.84 0.75 0.78
AttGRU† 0.53 0.53 0.51 0.54 0.53 0.51 0.53
AttGRU+F†‡ 0.89 0.84 0.86 0.84 0.89 0.86 0.87

Transformer

Sum† 0.77 0.65 0.56 0.60 0.54 0.67 0.83
Sum+F†‡ 0.78 0.70 0.75 0.77 0.75 0.85 0.88
GRU† 0.74 0.67 0.65 0.73 0.79 0.68 0.85
GRU+F†‡ 0.87 0.84 0.90 0.87 0.84 0.89 0.90
AttGRU†‡ 0.84 0.71 0.74 0.76 0.68 0.64 0.84
AttGRU+F†‡ 0.93 0.93 0.89 0.91 0.93 0.85 0.94

Table 4: VPE resolution results on accuracy obtained with 5-fold cross validation. Here, DRVPE and MIRA are two baselines.
Sum, GRU and AttGRU denote the three encoding mechanisms, namely sum-pooling, GRU and attention-based GRU, respec-
tively. Sum+F, GRU+F and AttGRU+F represent the three encoding mechanisms with the manually constructed features,
respectively. † and ‡ denote the performance is statistical significant over the baselines of DRVPE and MIRA, respectively,
with p < 0.05. The results in bold indicate the best performance.

that proposed by Kenyon-Dean, Cheung, and Precup (2016)
to enrich the representations of ai, ci and t. Therefore, for
each neural model, there are 6 experimental settings for VPE
resolution. Accuracy, precision (P), recall (R) and F1 score
(F) are used for evaluation. Table 4 shows the VPE reso-
lution results on accuracy obtained with 5-fold cross vali-
dation. We can see that the neural models outperform the
baselines significantly. It also reveals that the features F can
further improve the performance of both MLP and Trans-
former models.

Similar to VPE detection, we also compare the precision
(P), recall (R) and F1 score (F) of VPE resolution in the
train-test data split used by Bos and Spenader (2011), Liu,
Pellicer, and Gillick (2016) (Liu et al. (2016)) and (Kenyon-
Dean, Cheung, and Precup 2016) (ML) for comparisons.
The experimental results are shown in Table 6. We find that
MLP outperforms the baselines significantly in three differ-
ent functions, namely Sum Pooling, GRU and Attention-

based GRU. Transformer also outperforms the baselines in
F score. It again verifies that the features F can further im-
prove the performance of both MLP and Transformer mod-
els for end-to-end VPE resolution.

Data Extension for VPE
Recent VPE resolution models are mainly working on a
benchmark dataset (Bos and Spenader 2011) in which each
sentence has an antecedent and a trigger. However, consid-
ering to explore more VPE phenomena, we further extended
the data in four conditions as shown in Table 7, where 0,
1, 2, 3 indicate the sentence that has a trigger and VPE, no
trigger but has a VPE, has a trigger but no VPE, no trigger
and VPE, respectively. The proportion of the extended data
is shown in Figure 4, where the number of sentences that
are labeled in 0, 1, 2, 3, s are 15, 5, 8, 784, 8, respectively.
The total number of the extended data equals 820. The cor-
responding examples are shown in Table 8.
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Test Set Results P R F
Liu et al. (2016) 0.8022 0.6135 0.6953
ML 0.7574 0.8655 0.8078
SVM† 0.8803 0.8782 0.8780
SVM+F†‡ 0.9048 0.9034 0.9033
MLP 0.8268 0.8824 0.8537
MLP+F† 0.9304 0.8992 0.9145
Transformer‡ 0.8504 0.9076 0.8780
Transformer+F†‡ 0.9569 0.9328 0.9447

Table 5: The precision (P), recall (R) and F1 score (F) of
VPE detection obtained with the train-test split used by Bos
and Spenader (2011), Liu, Pellicer, and Gillick (2016) (Liu
et al. (2016)) and (Kenyon-Dean, Cheung, and Precup 2016)
(ML). † and ‡ denote the performance is statistical signifi-
cant over the baselines of Liu et al. (2016)) and ML, respec-
tively, with p < 0.05. The results in bold indicate the best
performance.

End-to-end Results P R F
Liu et al. (2016) 0.5482 0.4192 0.4751
MIRA 0.4871 0.5567 0.5196

MLP

Sum‡ 0.5834 0.8035 0.6760
Sum+F†‡ 0.5724 0.9200 0.7057
GRU†‡ 0.6396 0.6801 0.6592
GRU+F 0.5507 0.8936 0.6814
AttGRU‡ 0.6052 0.8348 0.7017
AttGRU+F‡ 0.6024 0.9226 0.7289

Transformer

Sum 0.4464 0.8739 0.5909
Sum+F 0.4856 0.8487 0.6177
GRU 0.4414 0.8235 0.5748
GRU+F 0.4673 0.8403 0.6006
AttGRU 0.4696 0.9076 0.6189
AttGRU+F 0.5354 0.8908 0.6688

Table 6: The end-to-end results of precision (P), recall (R)
and F1 score (F) of VPE resolution obtained with the train-
test split used by Bos and Spenader (2011), Liu, Pellicer, and
Gillick (2016) (Liu et al. (2016)) and (Kenyon-Dean, Che-
ung, and Precup 2016) (MIRA).† and ‡ denote the perfor-
mance is statistical significant over the baselines of DRVPE
and MIRA, respectively, with p < 0.05. The results in bold
indicate the best performance.

Trigger Non-Trigger
VPE 0 1
Non-VPE 2 3

Table 7: Labels for the annotation of extended data.

In addition to the four conditions, we observed a phe-
nomenon where the antecedent is not a continuous sequence.
We treat this as a special case of VPE and annotate it with a
label “s”. For example, in the sentence “Since the reforms
went in place, for example, no state has posted a higher
rate of improvement on the Scholastic Aptitude Test than

Figure 4: Proportion of the extended data.

Sentence Label
The government [includes money spent on
residential renovation]antecedent; Dodge
[does]triggern’t.

0

Steam [may be changed]antecedent into water
and water into ice.

1

She has a dog and I also [have]trigger too. 2

Table 8: Examples of extended data.

South Carolina, although the state still posts the lowest av-
erage score of the about 21 states who use the as the primary
college entrance examination.” The antecedent is “posted a
rate of improvement”. This is due to the comparative form
of the sentence. We will explore all the VPE phenomena in
the extended data in future work.

Conclusion
We investigated neural network models for VPE resolution,
proposing a novel framework for end-to-end processing of
VPE detection and VPE resolution. Results show that the
neural models outperforms the baselines on both VPE de-
tection and the VPE resolution and the end-to-end process
gives higher results than the baselines. In addition, tradi-
tional manual features are still useful for improving neural
models. We release an extended dataset for VPE detection
and resolution.
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