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Abstract

In the literature, tensors have been effectively used for captur-
ing the context information in language models. However, the
existing methods usually adopt relatively-low order tensors,
which have limited expressive power in modeling language.
Developing a higher-order tensor representation is challeng-
ing, in terms of deriving an effective solution and showing
its generality. In this paper, we propose a language model
named Tensor Space Language Model (TSLM), by utiliz-
ing tensor networks and tensor decomposition. In TSLM, we
build a high-dimensional semantic space constructed by the
tensor product of word vectors. Theoretically, we prove that
such tensor representation is a generalization of the n-gram
language model. We further show that this high-order tensor
representation can be decomposed to a recursive calculation
of conditional probability for language modeling. The exper-
imental results on Penn Tree Bank (PTB) dataset and Wiki-
Text benchmark demonstrate the effectiveness of TSLM.

Introduction
Language Modeling (LM) is a fundamental research topic
that underpins a wide range of Natural Language Process-
ing (NLP) tasks, e.g., speech recognition, machine transla-
tion, and dialog system (Yu and Deng 2014; Lopez 2008;
Wang, Chung, and Seneff 2006). Statistical learning of a
language model aims to approximate the probability dis-
tribution on the set of expressions in the language (Brown
et al. 1992). Recently, Neural networks (NNs), e.g., Recur-
rent Neural Networks (RNNs) have been shown effective for
modeling language (Bengio et al. 2003; Mikolov et al. 2010;
Jozefowicz et al. 2016).

In the literature, a dense tensor is often used to represent a
sentence or document. Cai et al. (2006) proposed TensorLSI,
which considered sentences or documents as 2-order tensors
(matrices) and tried to find an optimal basis for the tensor
subspace in term of reconstruction error. The 2-order ten-
sor (matrix) only reflects the local information (e.g., bi-gram
information). Liu et al. (2005) proposed to model text by
a multilinear algebraic tensor instead of a vector. Specifi-
cally, they represented texts using 3-order tensors to capture
the context of words. However, they still adopted relatively
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low-order tensors, rather than high-order ones constructed
by the tensor product of vectors. For a sentence with nwords
(n > 3), a n-order tensor (a high-order tensor) constructed
by the tensor product of n word vectors, can consider all
the combinatorial dependencies among words (not limited
to two/three consecutive words in 2/3-order tensor). It turns
out that low-order tensors have limited expressive power in
modeling language.

It is challenging to construct a high-order tensor based
language model (LM), in the sense that it will involve an ex-
ponentially increasing number of parameters. Therefore, the
research problems are how to derive an effective high-order
tensor based LM and how to demonstrate the generality of
such a tensor-based LM. To address these problems, our mo-
tivation is to explore the expressive ability of tensor space in
depth, by making use of tensor networks and tensor decom-
position, in the language modeling process.

Tensor network is an elegant mathematical tool and an
effective method for solving high-order tensors (e.g., ten-
sors in quantum many-body problem), through contractions
among lower-order tensors (Pellionisz and Llinás 1980). Re-
cent research shows the connections between neural net-
works and tensor networks, which provides a novel per-
spective for the interpretation of neural network (Cohen et
al. (2016) and Levine et al. (2017; 2018)). With the help of
tensor decomposition, the high dimensionality of parame-
ters in tensor space can be reduced greatly. Based on tensors,
a novel language representation using quantum many-body
wave function was also proposed in (Zhang et al. 2018).

Inspired by the recent research, in this paper, we propose
a Tensor Space Language Model (TSLM), which is based
on high-dimensional semantic space constructed by the ten-
sor product of word vectors. Tensor operations (e.g., multi-
plication, inner product, decomposition) can be represented
intuitively in tensor networks. Then, the probability of a sen-
tence will be obtained by the inner product of two tensors,
corresponding to the input data and the global parameters,
respectively.

Theoretically, we prove that TSLM is a generalization of
the n-gram language model, by showing that the conditional
probability of a language sequence can be calculated by the
tensor representation we constructed. We further show that,
after tensor decomposition, the high-order tensor represen-
tation can be decomposed to a recursive calculation of con-
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Figure 1: Introduction of Tensor Networks. (a) Tensors in the TN are represented by nodes. (b) A matrix A multiplying a vector
v in TN notation. The contracted indices are denoted by j and are summed upon. The open indices are denoted by i, their
number equals the order of the tensor represented by the entire network. The contraction is marked by the dashed line. (c) A
TN notation illustrates the SVD of a matrix A. (d) A TN notation shows the inner product of two tensors.

ditional probability for language modeling. Finally, we eval-
uate our model on the PTB dataset and the WikiText bench-
mark, and the experimental results demonstrate the effec-
tiveness of TSLM.

The main contributions of our work can be summarized as
follows: (1) We propose a novel language model aiming to
consider high-order dependencies of words via tensors and
tensor networks. (2) We prove that TSLM is a generalization
of the n-gram language model. (3) We can derive a recursive
calculation of conditional probability for language modeling
via tensor decomposition in TSLM.

Preliminaries
We first briefly introduce tensors and tensor networks.

Tensors
1. A tensor can be thought as a multidimensional array. The
order of a tensor is defined to be the number of indexing en-
tries in the array, which are referred to as modes. The dimen-
sion of a tensor in a particular mode is defined as the num-
ber of values that may be taken by the index in that mode.
A tensor T ∈ Rm1×···×mn means that it is a n-order ten-
sor with dimension mi in each mode i ∈ [n] := {1, . . . , n}.
For simplicity, we also call it amn-dimensional tensor in the
following text. A specific entry in a tensor will be referenced
with subscripts, e.g. Td1...dn ∈ R.
2. Tensor product is a fundamental operator in tensor anal-
ysis, denoted by ⊗, which can map two low-order tensors
to a high-order tensor. Similarly, the tensor product of two
vector spaces is a high-dimensional tensor space. For exam-
ple, tensor product intakes two tensors A ∈ Rm1×···×mj

(j-order) and B ∈ Rmj+1×···×mj+k (k-order), and returns a
tensor A ⊗ B = T ∈ Rm1×···×mj+k ((j+k)-order) defined
by : Td1...dj+k

= Ad1...dj
· Bdj+1...dj+k

.

3. A n-order tensorA is rank-one if it can be written as the
tensor product of n vectors, i.e.,

A = α1 ⊗α2 ⊗ · · · ⊗αn (1)

This means that each entry of the tensor is the product of the
corresponding vector elements:

Ad1d2...dn
= α1,d1

α2,d2
· · ·αn,dn

∀ i, di ∈ [mi] (2)

4. The rank of a tensor T is defined as the smallest number
of rank-one tensors that generate T as their sum (Hitchcock
1927; Kolda and Bader 2009).

Tensor Networks
A Tensor Network (TN) is formally represented by an undi-
rected and weighted graph. The basic building blocks of a
TN are tensors, which are represented by nodes in the net-
work. The order of a tensor is equal to the number of edges
incident to it. The weight of a edge is equal to the dimension
of the corresponding mode of a tensor. Fig. 1 (a) shows five
examples for tensors: 1) A vector is a node with one edge. 2)
A matrix is a node with two edges. 3) In particular, a triangle
node represents a δ tensor, δ ∈ Rm×···×m, which is defined
as follow:

δd1...dn =

{
1, d1 = · · · = dn
0, otherwise

(3)

with di ∈ [m] ∀i ∈ [n], i.e. its entries are equal to one only
on the super-diagonal and zero otherwise. 4) The rounded
rectangle node is the same as the circle node representing
an arbitrary tensor. Accordingly, a tensor of order n is rep-
resented in the TN as a node with n edges. 5) A n-order
rank-one tensor A can be represented by the tensor product
of n vectors.
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Edges which connect two nodes in the TN represent
a contraction operation between the two corresponding
modes. An example for a contraction is depicted in Fig. 1
(b), in which a TN corresponding to the operation of multi-
plying a vector v ∈ Rn by a matrixA ∈ Rm×n is performed
by summing over the only contracted index j. As there is
only one open index i, the result of contracting the network
is a vector: u ∈ Rm which upholds u = Av.

An important concept in the later analysis is Singular
Value Decomposition (SVD), which denotes that a matrix
A ∈ Rm×n can be decomposed as A = UΛV , where Λ ∈
Rr×r represents a diagonal matrix and U ∈ Rm×r, V ∈
Rr×n represent orthogonal matrices. In TN notation, we rep-
resent the SVD as A =

∑r
i=1 λiui ⊗ vi in Fig. 1 (c). λi is

a singular value, ui, vi are the components of U , V respec-
tively. The effect of the δ tensor is shown obviously, which
can be observed as ‘forcing’ the i-th ‘row’ of any tensor to
be multiplied only by the i-th ‘rows’ of other tensors.

Fig. 1 (d) shows the inner product of two tensors T and
A, which returns a scalar value that is the sum of the prod-
ucts of their entries (Kolda and Bader 2009).

Basic Formulation of Language Modeling in
Tensor Space

In this section, we describe the basic formation of Tensor
Space Language Model (TSLM), which is used for comput-
ing probability for the occurrence of a sequence s = wn

1 :=
(w1, . . . , wn) of length n, composed of |V| different tokens,
and the vocabulary V containing all the words in the model,
i.e. wi ∈ V. In the next sections, we will prove that when
we use one-hot vectors, TSLM is a generalization of n-gram
language model. If using word embedding vectors, TSLM
can result in a recursive calculation of conditional probabil-
ity for language modeling. In Related Work, we will discuss
the relations and differences between our previous work on
language representation for matching sentences (Zhang et al.
2018) and the tensor space language modeling in this paper.

Representations of Words and Sentences
First, we define the semantic space of a single word as a
m-dimensional vector space V with the orthogonal basis
{ed}md=1, where each base vector ed is corresponding to a
specific semantic meaning. A word wi in a sentence s can
be written as a linear combination of the m orthogonal basis
vectors as a general representation:

wi =

m∑
di=1

αi,diedi (4)

where αi,di is its corresponding coefficient. For the basis
vectors {ed}md=1, there can be two different choices, one-hot
vectors or embedded vectors.

As for a sentence s = (w1, . . . , wn) with length n, it can
be represented in the tensor space:

V⊗n := V⊗ V⊗ · · · ⊗ V︸ ︷︷ ︸
n

(5)

as:
s = w1 ⊗ · · · ⊗wn (6)

which is a mn-dimensional tensor. Through the interaction
of each dimension of words, the sentence tensor has a strong
expressive power. Substituting Eq. 4 into Eq. 6, the repre-
sentation of the sentence s can be expanded by:

s =

m∑
d1,...,dn=1

Ad1...dned1 ⊗ · · · ⊗ edn (7)

where {ed1
⊗ · · · ⊗ edn

}md1,...,dn=1 are the basis with mn

dimension in the tensor space V⊗n, which denotes the high-
dimensional semantic meaning. A is a mn-dimensional ten-
sor and its each entry Ad1...dn

is the corresponding coeffi-
cient of each basis. According to the Eq. 1 and 2, we will
see A, computed as

∏n
i=1 αi,di

, is a rank-one tensor.

A Probability Estimation Method of Sentences
A goal of language modeling is to learn the joint probability
function of sequences of words in a language (Bengio et al.
2003). We assume that each sentence si appears with a prob-
ability pi. Then, we can construct a mixed representation c
which is a linear combination of sentences, denoted as:

c :=
∑

pisi (8)

We consider the mixed representation c as a high-
dimensional representation of a sequence containing n
words. For each sentence si, it can be represented by coeffi-
cient tensorAi and basis vectors. Therefore, based on Eqs. 7
and 8, the mixed representation c can be formulated with a
coefficient tensor T :

c =

m∑
d1,...,dn=1

Td1...dn
ed1
⊗ . . .⊗ edn

(9)

The difference between s in Eq. 7 and c in Eq. 9 is mainly
on two different tensors A and T . According to the Prelim-
inaries, A is essentially rank-one while T has a higher rank
and is harder to solve. We will show that the tensor T en-
codes the parameters, and A is the input, in our model.

In turn, if we have estimated such a mixed representation
c (in fact, its coefficient tensor T ) from our model, we can
get the probability pi of a sentence si via computing the in-
ner product of c and si:

p(si) = 〈si, c〉 (10)

Based on the Eq. 7, 9 and 10, we can obtain:

p(si) =

m∑
d1,...,dn=1

Td1...dnAd1...dn (11)

as shown in the tensor network of Fig 1(d). This is the basic
formula in TSLM for estimating the sentence probability.

TSLM as a Generalization of N-Gram
Language Model

The goal of the n-gram language model is to estimate the
probability distribution of sentences. For a specific sentence
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Figure 2: The TN represents the recursive calculation process of TSLM. (a) represents the inner product of two tensors T and
A, (b) denotes the recursive representations of T(t) and (c) is the recursive representations of ht, respectively. (d) is a general
RNN architecture.

s, its joint probability p(s) = p(wn
1 ) := p(w1, . . . , wn) re-

lies on the Markov Chain Rule of conditional probability:

p(wn
1 ) = p(w1)

n∏
i=2

p(wi|wi−1
1 ) (12)

and the conditional probability p(wi|wi−1
1 ) can be calcu-

lated as:

p(wi|wi−1
1 ) =

p(wi
1)

p(wi−1
1 )

≈ count(wi
1)

count(wi−1
1 )

(13)

where the count denotes the frequency statistics in corpus.
Claim 1. In our TSLM, when we set the dimension of vec-
tor space m = |V| and each word w as an one-hot vector,
the probability of sentence s consist of words d1 . . . dn in
vocabulary is the entry Td1...dn of tensor T .

Proof. The detailed proof can be found in Appendix.

Intuitively, the specific sentence s can be represented as an
one-hot tensor. The mixed representation c can be regarded
as the total sampling distribution. The tensor inner product
〈s, c〉 represents statistics probability that a sentence s ap-
pears in a language.
Claim 2. In our TSLM, we define the word sequence wi

1 =
(w1, w2, . . . , wi) with length i as:

wi
1 := w1 ⊗ · · · ⊗wi ⊗ 1i+1 ⊗ · · · ⊗ 1n (14)

which means that the sequence wi
1 is padded via using full

one vector 1. Then, the probability p(wi
1) can be computed

as p(wi
1) = 〈wi

1, c〉.

Proof. It can be proved by the marginal probability of mul-
tiple discrete variables (in Appendix).

Therefore, the conditional probability p(wi|wi−1
1 ) in n-

gram language model can be calculated by Bayesian Condi-
tional Probability Formula using tensor representations and
tensor inner product as follow:

p(wi|wi−1
1 ) =

〈wi
1, c〉

〈wi−1
1 , c〉

(15)

This kind of representation of conditional probability is a
special case of TSLM based on the one-hot basis vectors.
Because of the one-hot vector representation, the n-gram
language model hasO(|V|n) parameters. Compared with n-
gram language model, our general model hasO(mn) param-
eters (m � |V|). However, the tensor space still contains
exponential parameters, and in the next section, we will in-
troduce tensor decomposition to deal with this problem.

Deriving Recursive Language Modeling
Process from TSLM

We have defined the method for estimating probability of a
sentence s by the inner product of two tensors T and A in
Eq. 11. In this section, we describe the recursive language
modeling process in Fig. 2. Firstly, our derivation is under
the condition of basis vectors {ed}md=1 as embedded vec-
tors. Secondly, we recursively decompose the tensor T (see
Fig. 3), to obtain the TN representation of tensor T in Fig. 2
(a). Then, we use the intermediate variables in Fig. 2 (bc)
to estimate the conditional probability p(wt|wt−1

1 ). In the
following, we introduce the recursive tensor decomposition,
followed by the calculation of conditional probability.

Recursive Tensor Decomposition
We generalize the SVD from matrix to tensor as shown in-
tuitively in Fig. 3, inspired by the train-style decomposition
of Tensor-Train (Oseledets 2011) and Tucker Decomposi-
tion (Kolda and Bader 2009). Fig. 3 illustrates a high-order
tensor recursively decomposed as several low-order tensor
(vectors, matrices, etc.).

The formula of the recursive decomposition about tensor
T is :

T =

r∑
i=1

λiS(n),i ⊗ ui

S(n),k =

r∑
i=1

Wk,iS(n−1),i ⊗ ui

(16)

where we define : S(1) = 1 ∈ Rr. It means that a n-order
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Figure 3: The recursive generalized SVD for the tensor T .

tensor T ∈ Rm×···×m can be decomposed as a n-order ten-
sor1 S(n) ∈ Rm×···×r, a diagonal matrix Λ ∈ Rr×r and a
matrix U ∈ Rr×m. One can consider this decomposition as
the matrix SVD after tensor matricization, also as unfold-
ing or flattening the tensor to matrix by one mode. Recur-
sively, (n-1)-order tensor S(n),k, which can be seen as the
k-th ‘row’ of the tensor S(n), can be decomposed like the
tensor T and W is a matrix composed by r groups of singu-
lar value vectors.

We employ this decomposition to extract the main fea-
tures of the tensor T which is similar with the effect of
SVD on matrix, then approximately represent the parame-
ters of our model, where r (r ≤ m) denotes the rank of ten-
sor decomposition. This tensor decomposition method re-
duce the O(mn) magnitude of parameters approximatively
to O(m× r).

A Recursive Calculation of Conditional Probability
In our model, we compute the conditional probability distri-
bution as :

p(wt|wt−1
1 ) = softmax(〈T(t),A(t−1)〉) (17)

where A(t−1) is the input of (t-1) words, represented as
α1, . . . ,α(t−1) in Fig. 2 (a). 〈T(t),A(t−1)〉 is denoted as yt.

As shown in Fig. 2 (b), T(t) ∈ Rm×···×m×|V| is con-
structed by matrix V ∈ Rr×|V|, S(t−1) and matrix U . The
V is the weighted matrix mapping to the vocabulary:

T(t),k =

r∑
i=1

Vk,iS(t−1),i ⊗ ui (18)

As shown in Fig. 2 (c), when calculating the inner prod-
uct of two tensors T and A, we can introduce intermediate
variables ht, which can be recursively calculated as:

h1 = Wh0 � Uα1

...

ht = Wht−1 � Uαt

(19)

where setting the h0 := W−11, and the matrices W and
U decomposed from Eq. 16 in the last section. The sym-

1To distinguish, we use the first parenthesized subscript to indi-
cate the order of the tensor.

bol� denotes the element-wise multiplication between vec-
tors. This multiplicative operation is derived from the ten-
sor product (in Eq. 16) and the δ-tensor, which we have ex-
plained it ‘forces’ the two vectors connected with it to be
multiplied by elements (in Preliminaries).

Based on the analysis above, the recursive calculation of
conditional probability of our TSLM can be formulated as:

p(wt|wt−1
1 ) = softmax(yt)

yt = V ht

ht = g(Wht−1, Uαt)

g(a, b) = a� b

(20)

where αt ∈ Rm is the input at time-step t ∈ [n], ht ∈ Rr is
the hidden state of the network, yt ∈ R|V| denotes the out-
put, and the trainable weight parameters U ∈ Rm×r,W ∈
Rr×r, V ∈ Rr×|V| are the input to hidden, hidden to hidden
and hidden to output weights matrices, respectively, and g is
a non-linear operation.

The operation � stands for element-wise multiplication
between vectors, for which the resultant vector upholds (a�
b)i = ai·bi. Differently, in the RNN and TSLM architecture,
g is defined as:

g
RNN

(a, b) = σ(a+ b)

g
TSLM

(a, b) = a� b (21)

where σ(·) is typically a point-wise activation function such
as sigmoid, tanh etc. A bias term is usually added to Eq. 21.
Since it has no effect with our analysis, we omit it for sim-
plicity. We show a general structure of RNN in Fig. 2(d).

In fact, recurrent networks that include the element-wise
multiplication operation have been shown to outperform
many of the existing RNN models (Sutskever, Martens, and
Hinton 2011; Wu et al. 2016). Wu et al. (2016) had given a
more general formula for hidden unit in RNN, named Mul-
tiplicative Integration, and discussed the different structures
of the hidden unit in RNN.

Related Works
Here, we present a brief review of related work, including
some representative work in language modeling, and the
more recent research on the cross fields of tensor network,
neural network and language modeling.

There have been tremendous research efforts in the field
of statistical language modeling. Some earlier language
models are based on the Markov assumption are represented
by n-gram models (Brown et al. 1992), where the predic-
tion of the next word is often conditioned just on n pre-
ceding words. For n-gram models, Kneser and Ney (2002)
proposed the most well-known KN smoothing method,
and some researchers continued to improve the smoothing
method, as well as introduced the low-rank model. Neu-
ral Probabilistic Language Model (Bengio et al. 2003) is to
learn the joint probability function of sequence of words in
a language, which shows the improvement on n-gram mod-
els. Recently, RNN (Mikolov et al. 2010) and Long Short-
Term Memory (LSTM) networks (Soutner and Müller 2013)
achieve promising results on language model tasks.
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PTB WikiText-2
Train Valid Test Train Valid Test

Articles - - - 600 60 60
Tokens 929,590 73,761 82,431 2,088,628 217,646 245,569

Vocab size 10,000 33,278
OOV rate 4.8% 2.6%

Table 1: Statistics of the PTB and WikiText-2.

PTB WikiText-2
Model Hidden size Layers Valid Test Hidden size Layers Valid Test
KN-5(Mikolov and Zweig 2012) - - - 141.2 - - - -
RNN(Mikolov and Zweig 2012) 300 1 - 124.7 - - - -
LSTM(Zaremba, Sutskever, and Vinyals 2014) 200 2 120.7 114.5 - - - -
LSTM(Grave, Joulin, and Usunier 2016) 1024 1 - 82.3 1024 1 - 99.3
LSTM(Merity et al. 2017) 650 2 84.4 80.6 650 2 108.7 100.9
RNN† 256 1 130.3 124.1 512 1 126.0 120.4
LSTM† 256 1 118.6 110.3 512 1 105.6 101.4
TSLM 256 1 117.2 108.1 512 1 104.9 100.4
RNN+MoS†(Yang et al. 2018) 256 1 88.7 84.3 512 1 85.6 81.8
TSLM+MoS 256 1 86.4 83.6 512 1 83.9 81.0

Table 2: Best perplexity of models on the PTB and WikiText-2 dataset. Models tagged with † indicate that they are reimple-
mented by ourselves.

Recently, Cohen et al. (2016) and Levine et al. (2017;
2018) use tensor analysis to explore the expressive power
and interpretability of neural networks, including convolu-
tional neural network (CNN) and RNN. Levine et al. (2018)
even explored the connection between quantum entangle-
ment and deep learning. Inspired by their work, Zhang et
al. (2018) proposed a Quantum Many-body Wave Function
inspired Language Modeling (QMWF-LM) approach. How-
ever, in QMWF-LM and TSLM, the term language mod-
eling has different meanings and application tasks. Specif-
ically, QMWF-LM is basically a language representation
which encodes language features extracted by a CNN, and
performs the semantic matching in Question Answer (QA)
task as an extrinsic evaluation.

Different from QMWF-LM, in this paper, TSLM focuses
on the Markov process of conditional probabilities in lan-
guage modeling task with an intrinsic evaluation. Based
on the tensor representation and tensor networks, we pro-
pose the tensor space language model. We have established
the connection between TSLM and neural language models
(e.g., RNN based LMs) and proved that TSLM is a more
general language model.

Experiments
Datasets
PTB Penn Tree Bank dataset (Marcus, Marcinkiewicz, and
Santorini 1993) is often used to evaluate language models. It
consists of 929k training words, 73k validation words, 82k
test words, and has 10k words in its vocabulary.
WikiText-2 (WT2) dataset (Merity et al. 2017). Compared
with the preprocessed version of PTB, WikiText-2 is larger.
It also features a larger vocabulary and retains the original
case, punctuation and numbers, all of which are removed in
PTB. It is composed of full articles.

Table 1 shows statistics of these two datasets. The out
of vocabulary (OOV) rate denotes the percentage of tokens
have been replaced by an 〈unk〉 token. The token count in-
cludes newlines which add to the WikiText-2 dataset.

Evaluation Metrics
Perplexity is the typical measure used for reporting progress
in language modeling. It is the average per-word log-
probability on the holdout data set.

PPL = e(−
1
n

∑
i ln p(wi))

The lower the perplexity, the more effective the model is. We
follow the standard procedure and sum over all the words.

Comparative Models and Experimental Settings
In order to demonstrate the effectiveness of TSLM, we
compare our model with several baseline models, in-
cluding Kneser-Ney 5-gram (KN-5) (Mikolov and Zweig
2012), RNN based language model (Mikolov et al. 2010),
Long Short-Term Memory network (LSTM) based language
model (Zaremba, Sutskever, and Vinyals 2014), and RNN
added Matrix of Softmax (MoS) language model (Yang et
al. 2018). Models tagged with † indicate that they are reim-
plemented by ourselves.

Kneser-Ney 5-gram (KN-5): It uses Kneser-Ney
Smoothing on the n-gram language model (n=5) (Chen and
Goodman 1996; Mikolov and Zweig 2012). It is also the
most representative statistical language model, and we con-
sider it as a low-order tensor language model.

RNN: Recurrent neural network based language mod-
els (Mikolov et al. 2010), use a recurrent hidden layer to
represent longer and variable length histories, instead of us-
ing fixed number of words to represent the context.
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LSTM: LSTM neural network is an another variant of
RNN structure. It allows to discover both long and short pat-
terns in data and eliminates the problem of vanishing gradi-
ent by training RNN. LSTM approved themselves in vari-
ous applications and it seems to be very promising course
also for the field of language modeling (Soutner and Müller
2013).

RNN+MoS: A high-rank RNN language model (Yang
et al. 2018) breaking the softmax bottleneck, formulates
the next-token probability distribution as a Matrix of Soft-
max (MoS), and improves the perplexities on the PTB and
WikiText-2. It is the state-of-the-art softmax technique for
solving probability distributions.

Since our focus is to show the effectiveness of language
modeling in tensor space, we choose to set a relatively small
scale network structure. Specifically, we set the same scale
parameters for comparison experiments, i.e. 256/512 hid-
den size, 1 hidden layer, 20 batch size and 30/40 sequence
length. Among them, the hidden size is equivalent to the ten-
sor decomposition rank r, and sequence length means the
tensor order n in our model.

Experimental Results and Analysis
Table 2 shows the results on PTB and WT2, respectively.
From Table 2, we could observe that our proposed TSLM
achieves the lower perplexity, which reflects that TSLM out-
perform others. It is obvious that KN-5 method gets the
worst performance. We choose KN-5 as a baseline, since it
is a typical n-gram model and we prove that TSLM is a gen-
eralization of n-gram. Although the most advanced Kneser-
Ney Smoothing is used, it still has not achieved good perfor-
mance. The reason could be that statistic language model is
based on the word frequency statistics and does not have the
semantic advantages that word vectors in continuous space
can satisfy.

The LSTM based language modeling can theoretically
model arbitrarily long dependencies. The experimental re-
sults show that our model has achieved relatively better re-
sults than LSTM reimplemented by ourselves. Based on the
MoS, RNN based language models achieve state-of-the-art
results. To prove the effectiveness of our model using MoS,
we compared our model to RNN+MoS model on the same
parameters. The empirical results of our model have also
been improved, which also illustrates the effectiveness of
our model structure.

We have shown that TSLM is a generalized language
model. In practice, its performance is better than RNN based
language model. The reason could be that the non-linear op-
eration g in Eq. 20 is an element-wise multiplication, which
is capable of expressing more complex semantic informa-
tion than a standard RNN structure with activation function
using an addition operation.

Note that, the parameters n, m and r are crucial factors
for modeling language in TSLM. The order n of the ten-
sor reflects the maximum sentence length. With the increase
of the maximum sentence length, the performance of the
model gradually increases. However, after a certain degree
of growth, the expressive ability of the TSLM will reach an
upper bound. The reason can be summarized as: The size of
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Figure 4: Perplexity (PPL) with different max length of sen-
tences in corpus.
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the corpus determines the size of the tensor space we need to
model. The larger the order is, the larger the semantic space
that TSLM can model and the more semantic information it
can contain. As shown in Fig. 4, we can see that the model
is optimal when n equals 30 and 40 on PTB and WikiText
datasets, respectively. There are similar experimental phe-
nomena in RNN and LSTM.

Other key factors that affect the capability of TSLM are
the dimension of the orthogonal basis m and the rank of
tensor decomposition r, where each orthogonal basis de-
note the basic semantic meaning. The tensor decomposi-
tion is enough to extract the main features of the tensor
T when r = m. They correspond to the word embedding
size and hidden size in RNN or LSTM, and are usually
set as the same value. We try to set the value of them as
[16, 32, 64, 128, 256, 512, ...]. As shown in Fig. 5, we can
see that the model is optimal when the decomposition rank
r equals 256 and 512 on PTB and WikiText datasets, respec-
tively. These phenomena is mainly due to the saturation of
semantic information in tensor space, which means that the
number of the basic semantic meaning is finite with respect
to the specific corpus.

Conclusions and Future work
In this paper, we have proposed a language model based
on tensor space, named Tensor Space Language Model
(TSLM). We use the tensor networks to represent the high-
order tensor for modeling language, and calculate the prob-
ability of a specific sentence by the inner product of tensors.
Moreover, we have proved that TSLM is a generalization
of n-gram language model and we can derive the recursive
language model process from TSLM. Experimental results
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demonstrate the effectiveness of our model, compared with
the standard RNN-based language model and LSTM-based
language model on two typical datasets to evaluate language
modeling. In the future, we will further explore the potential
of tensor network for modeling language in both theoretical
and empirical directions.
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Appendix
Claim 1
In our TSLM, when we set the dimension of vector space
m = |V| and each word w as an one-hot vector, the proba-
bility of sentence s consist of words d1, . . . , dn in vocabu-
lary is the entry Td1...dn

of tensor T .

Proof of Claim 1
Proof. In our TSLM, when we set the dimension of vec-
tor space m = |V| and each word w as an one-hot vec-
tor, the specific sentence s will be represented as an one-hot
tensor. The mixed representation c can be regarded as the
total sampling distribution. The tensor inner product 〈s, c〉
represents statistics probability that a sentence s appears in
a language. Specifically, the word wi is an one-hot vector
wi = (0, . . . , 1, . . . , 0), and the vectors of any two different
words are orthogonal (word vector itself is basis vector):

〈wi,wj〉 = 〈ei, ej〉 =

{
1, i = j
0, i 6= j

(22)

Firstly, for the sentence s = (w1, . . . , wn) with length n
is represented as s = w1⊗· · ·⊗wn. It is an one-hot tensor,
and the tensors of any two different sentences are orthogonal
(when being viewed as the flatten vectors):

si = wi,1 ⊗ · · · ⊗wi,n

sj = wj,1 ⊗ · · · ⊗wj,n

⇒ 〈si, sj〉 =

n∏
k=1

〈wi,k,wj,k〉

=

{
1, wi,k = wj,k, ∀ k ∈ [n]
0, otherwise

⇒ 〈si, c〉 = 〈si,
∑
j

pjsj〉 = pi

(23)

Secondly, for the representations in TSLM, the orthogonal
basis can be composed by {wd}|V|d=1, and the sentence s will
be represented as:

s =

|V|∑
d1,...,dn=1

Ad1...dn
wd1
⊗ · · · ⊗wdn

(24)

where

Ad1...dn
=

{
1, dk = index(wk,V),∀ k ∈ [n]
0, otherwise

(25)

which means tensorA is an one-hot tensor, and index(w,V)
means the index ofw in vocabulary V. We have defined c :=∑
pisi as :

c =

|V|∑
d1,...,dn=1

Td1...dn
wd1
⊗ · · · ⊗wdn

(26)

Then, the probability of sentence si is:

pi = 〈si, c〉

=

|V|∑
d1,...,dn=1

Td1...dn
Ad1...dn

= Td1...dn , dk = index(wk,V),∀ k ∈ [n]

(27)

Therefore, the probability of sentence s consist of words
d1, . . . , dn is p(w1 . . . wn = d1 . . . dn) = Td1...dn

.

Claim 2
In our TSLM, we define the word sequence wi

1 =
(w1, w2, . . . , wi) with length i as:

wi
1 := w1 ⊗ · · · ⊗wi ⊗ 1i+1 ⊗ · · · ⊗ 1n (28)

Then, the probability p(wi
1) can be computed as p(wi

1) =
〈wi

1, c〉.

Proof of Claim 2
Proof. According to the marginal distribution in probability
theory and statistics, for two discrete random variables, the
marginal probability function can be written as p(X = x):

p(X = x) =
∑
y

p(X = x, Y = y) (29)

where p(X = x, Y = y) is the joint distribution of two
variables X and Y .

Firstly, in our TSLM, we can define the marginal distribu-
tion using the word variable w as:

p(wi) =
∑
wj∈V

p(wi, wj)

p(w1, . . . , wn−1) =
∑

wn∈V
p(w1, . . . , wn−1, wn)

(30)

Secondly, the probability of the word sequence wi
1 can be

written as:

p(wi
1)

=p(w1, . . . , wi)

=
∑

wi+1,··· ,wn∈V
p(w1, . . . , wi, wi+1, . . . , wn)

=

|V|∑
di+1,··· ,dn=1

Td1...dn , dk = index(wk,V),∀ k ∈ [i]

(31)
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Then, the inner product 〈wi
1, c〉 can be written as:

〈wi
1, c〉

=〈w1 ⊗ · · · ⊗ 1,

|V|∑
d1,··· ,dn=1

Td1...dnwd1 ⊗ · · · ⊗wdn〉

=

|V|∑
d1,··· ,dn=1

Td1...dn
〈w1 ⊗ · · · ⊗ 1,wd1

⊗ · · · ⊗wdn
〉

=

|V|∑
d1,··· ,dn=1

Td1...dn

i∏
j=1

〈wj ,wdj
〉

n∏
j=i+1

〈1,wdj
〉

=

|V|∑
di+1,··· ,dn=1

Td1...dn
, dk = index(wk,V),∀ k ∈ [i]

(32)
Therefore, we derive that the probability p(wi

1) can be com-
puted as p(wi

1) = 〈wi
1, c〉 according to Eq. 31 and 32.
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