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Abstract

Continuous word representations that can capture the seman-
tic information in the corpus are the building blocks of many
natural language processing tasks. Pre-trained word embed-
dings are being used for sentiment analysis, text classifica-
tion, question answering and so on. In this paper, we propose
a new word embedding algorithm that works on a smoothed
Positive Pointwise Mutual Information (PPMI) matrix which
is obtained from the word-word co-occurrence counts. One
of our major contributions is to propose an objective function
and an optimization framework that exploits the full capacity
of “negative examples”, the unobserved or insignificant word-
word co-occurrences, in order to push unrelated words away
from each other which improves the distribution of words in
the latent space. We also propose a kernel similarity measure
for the latent space that can effectively calculate the similar-
ities in high dimensions. Moreover, we propose an approx-
imate alternative to our algorithm using a modified Vantage
Point tree and reduce the computational complexity of the al-
gorithm to |V | log |V | with respect to the number of words in
the vocabulary. We have trained various word embedding al-
gorithms on articles of Wikipedia with 2.1 billion tokens and
show that our method outperforms the state-of-the-art in most
word similarity tasks by a good margin.

Introduction
Learning continuous representations of words (i.e. word em-
beddings) are becoming increasingly popular in the machine
learning and Natural Language Processing (NLP) commu-
nity. The goal is to learn a vector space representation for
words aiming to capture semantic similarities and syntactic
relationships between words. These representations are typ-
ically learned from large unlabeled corpora.

Classical vector space models use linear algebraic tech-
niques on the matrix of word-word co-occurrence counts
as studied in (Turney and Pantel 2010; Baroni and Lenci
2010). These methods include Latent Semantic Analysis
(Deerwester et al. 1990), factorizations of the co-occurrence
matrix, factorizations of the Pointwise Mutual Informa-
tion (PMI) and Positive PMI (PPMI) matrices and so on
which can be collectively called as count-based methods.
GloVe (Pennington, Socher, and Manning 2014) is certainly
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among the most popular word embedding algorithms that di-
rectly work on the co-occurrence matrix. It applies a hand-
crafted weighting scheme in the optimization for each of
the word-pair frequencies which is its main advantage over
the unweighted optimization in matrix factorization based
approaches. Another family of word embedding algorithms
uses neural network based approaches to learn the word
vectors. (Collobert and Weston 2008) proposed to learn
the word embeddings using a feed-forward neural network
that predicts a word by looking two words ahead and two
words behind. More recently, (Mikolov et al. 2013a) pro-
posed log-bilinear models known as Continuous Bag-Of-
Words (CBOW) and Skip-Gram to learn continuous repre-
sentations of words. Lately, contextual word representations
derived from bidirectional language models (biLMs) have
been shown to improve the performance for many NLP tasks
(Peters et al. 2018).

In this paper, we propose a new word embedding algo-
rithm that exploits some information that other algorithms
pay little or no attention to. Most word embedding algo-
rithms only use the word pairs that occur in the corpus
(i.e. positive examples) and maximize the similarity of those
word vectors based on how frequent they co-occur. This can
result in a concentration effect: word clusters from totally
different topics can be placed somewhat close to each other.
There are lots of possible word pairs that never co-occur in
the corpus or they co-occur insignificantly, which we call
negative examples. We argue that minimizing the similarity
of negative examples is also crucial for the quality of the fi-
nal embedding and results in a better distribution of words
in the latent space. Our first major contribution is to design
an optimization framework that exploits the full capacity of
negative examples in order to push unrelated words away
from each other which leads to a better use of the latent
space and improves the distribution of words. Skip-Gram
with Negative Sampling (SGNS) makes use of the negative
examples to a smaller extent in that for each word, it ran-
domly samples k context words as negative examples and
minimizes the similarity of the word with those k context
words. However, in SGNS, these contexts are employed in
an unweighted manner in that they all have the same strength
in the optimization. Our second major contribution is that we
incorporate a kernelized weighting scheme for the negative
examples where their influence in the optimization is propor-
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tionate to their kernel similarity with the word. We show that
our kernel similarity measure is a more powerful way of cal-
culating similarities in high-dimensional embeddings where
d > 50 and it enables the algorithm to differentiate between
the closer and further points and employ them accordingly.
Our third major contribution is that we propose a modified
Vantage Point (VP) tree and make it suitable for high di-
mensional vectors. We then use this VP-tree and propose an
approximate solution to our optimization which improves
the computational complexity of the method from |V |2 to
|V | log |V | with respect to the size of the vocabulary.

We have trained our algorithm as well as several others
on the articles of Wikipedia and compared the quality of
embeddings on various word similarity and analogy tasks.
Results show that our algorithm outperforms the state-of-
the-art in most of the tasks.

Related Work
Distributed word representation algorithms have been shown
to be very effective in capturing certain aspects of similar-
ity between words. Many neural-network based approaches
have been proposed for learning distributed word represen-
tations (Bengio et al. 2006; Collobert and Weston 2008;
Mikolov et al. 2013a; 2013b). Skip-Gram with Negative
Sampling (SGNS) (Mikolov et al. 2013a) uses a shal-
low neural network and trains the network in a way that
given a word, it predicts the probability of each context
word (Mikolov et al. 2013a). SGNS is still the state-of-
the-art word embedding algorithm and is successfully ap-
plied in a variety of linguistic tasks (Mikolov et al. 2013a;
2013b). Researchers have proposed various modifications to
the Skip-Gram model and tried to enrich that with other in-
formation. For instance, (Levy and Goldberg 2014a) pro-
posed to use the dependency parsing information and use
a dependency-aware context for each word rather than con-
sidering all the neighbors in a fixed window. This customiza-
tion makes the algorithm to learn more from the grammar
and less from the semantics. Recently, FastText (Bojanowski
et al. 2017), a library developed by Facebook, enriches the
Skip-Gram word embeddings with sub-word information. It
considers character n-grams of different lengths and repre-
sents words as the sum of their n-gram vectors. This en-
richment has been shown to substantially improve the per-
formance of NLP tasks on morphologically rich languages,
such as Turkish or Finnish. It is also shown to be very ef-
fective for text classification (Joulin et al. 2017). A ma-
jor advantage of the FastText is that it can handle Out-Of-
Vocabulary (OOV) words by predicting their word vectors
based on the learned character n-grams embeddings.

Pointwise Mutual Information (PMI) is an information
theoretic measure that can be used for finding collocations
or associations between words (Church and Hanks 1990)
and is widely used in count-based and matrix factorization
based word embeddings. For any word pair (wi, wj), PMI
is defined as the log ratio between their joint probability and
product of their marginal probabilities:

PMI(wi, wj) = log
P (wi, wj)

P (wi)P (wj)
(1)

Based on the formulation, if two words co-occur more often
than being independent then their PMI will be positive, and
if they co-occur less frequent than being independent then
their PMI will be negative. Since the co-occurrence matrix is
sparse, PMI is only calculated on the non-zero entries. An-
other commonly accepted approach is to use Positive PMI
(PPMI) matrix by replacing all the negative values with 0.

PPMI(wi, wj) = max(PMI(wi, wj), 0) (2)

In fact, a traditional approach to word representation is to
use explicit PPMI representation in which each word is de-
scribed by its corresponding sparse row vector in the PPMI
matrix and it is shown that it outperforms the PMI approach
on semantic similarity tasks (Bullinaria and Levy 2007).
(Levy and Goldberg 2014b) showed that SGNS is implicitly
factorizing a Shifted Positive Pointwise Mutual Information
(SPPMI) matrix and they argue that the shift parameter is
almost equivalent to the negative sampling parameter k in
SGNS. However, their proposed alternative approach using
SVD on shifted PPMI matrix provides lower quality embed-
dings than SGNS mainly because of the unweighted L2 op-
timization in SVD in that frequent and infrequent word pairs
have the same amount of influence on the reconstruction er-
ror of the matrix. Recently, it is shown that keeping a frac-
tion of small negative PMI values outperforms the PPMI ap-
proach (Soleimani and Matwin 2018b). Other than using the
raw PPMI matrix or the factorizations of the PPMI matrix,
the idea of PMI-based embedding has also been proposed
and studied in the literature. (Arora et al. 2016) proposed an
objective function similar to that of GloVe which implicitly
factorizes the PMI matrix instead of the log co-occurrence
matrix. They also showed that if the PMI values are good
approximations of the dot products of vectors, then the lin-
ear algebraic relations (i.e. word analogies) will hold. Nev-
ertheless, the novelty of our method is in our optimization
and the effective use of negative examples.

Another research direction in learning word embeddings
is to apply sparsity constraints on the word vectors (Sun et
al. 2016; Subramanian et al. 2018) and is shown to improve
the quality of embeddings when the desired dimensionality
is greater than 300. For other tips on training good quality
embeddings one can refer to (Lai et al. 2016) which study
the effect of various hyper-parameters in different embed-
ding algorithms.

Kernelized Unit Ball Word Embedding
(KUBWE)

Our approach at a glance builds a symmetric co-occurrence
matrix from the corpus, then calculates an adjusted form of
the PMI matrix to remove insignificant and uninformative
co-occurrences, and finally obtains the embedding by mini-
mizing a sum of squared error between the PMI values and
the cosine similarity of word vectors in the embedded space.

The intuition behind our algorithm is that if two words
have a high degree of association (i.e. high PMI), their em-
bedded word vectors must be similar (i.e. high cosine simi-
larity) and if their degree of association is low or zero, they
should not be placed close to each other. The second part of
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the intuition is usually ignored in other algorithms and is the
main strength of our method.

Our proposed algorithm, KUBWE, is aimed to preserve
the word-word connectivity structure (encoded in the PMI
matrix) in the final embedding. It uses a spherical represen-
tation for the latent space in which points are located on the
surface of a hypersphere. The spherical representation is not
restrictive as other algorithms also normalize the word vec-
tors to unit length before using them in NLP tasks. Similar
spherical embeddings have been proposed and used for vi-
sualization (Soleimani and Matwin 2018a) and image clus-
tering application (Soleimani and Matwin 2016).

In the following, we first propose an effective way to mea-
sure word-word associations. We then propose our objective
function and its gradient descent optimization. Afterward,
we propose a kernelized version of the algorithm which en-
hances the similarity calculations in the latent space. Even-
tually, we propose a modification to VP-trees to make them
suitable for high dimensional data and use them to reduce
the computational complexity of the method.

Preparing the Input for the Optimization
We first calculate the global symmetric word-word co-
occurrence counts matrix X by moving an L-sized context
window over the corpus. This co-occurrence matrix is the
main source of information for many word embedding algo-
rithms including GloVe. We also use the same co-occurrence
matrix but not in the raw format since many of the co-
occurrences are meaningless.

PPMI technique can be used to filter out uninformative
co-occurrences. However, a recognized shortcoming of PMI
and PPMI is their bias towards infrequent events (Turney
and Pantel 2010). This happens when a rare context word
wj co-occurs with a word wi a few times (or even once) and
this often results in a high PMI value since P (wj) in PMI’s
denominator is very small. To overcome this situation, we
smooth the distribution of context words in which all con-
text counts are raised to the power of α. Hence, we use the
following adjusted form of PPMI as input to our optimiza-
tion:

PPMIα(wi, wj) = max(PMIα(wi, wj), 0) (3)

PMIα(wi, wj) = log
P (wi, wj)

P (wi)Pα(wj)
(4)

Pα(wj) =
#(wj)

α∑|V |
i=1 #(wi)α

(5)

where P (wi) and Pα(wj) are the unsmoothed and smoothed
distribution of words. Context distribution smoothing alle-
viates PMI’s bias towards rare words, like other smoothing
techniques (Pantel and Lin 2002; Turney and Littman 2003).
It enlarges the probability of a rare context P (wj), which in
turn reduces the PMI of (wi, wj) for any wi co-occurring
with the rare context wj .

We refer to the adjusted PPMI matrix as A with entries
aij = PPMIα(wi, wj). In all our experiments, we used
α = 0.75 which is known to be a good smoothing factor
(Mikolov et al. 2013b).

Cost Function

Our proposed method uses a spherical representation for the
latent space which is common for natural language process-
ing tasks. In this representation, we use cosine similarity as
our similarity measure between word vectors:

S( ~wi, ~wj) =
~wi. ~wj

‖ ~wi‖‖ ~wj‖
(6)

The objective function is then defined to minimize the
sum of squared differences between the smoothed PPMI val-
ues aij and the similarities in the embedded space:

J (W ) =
1

2

|V |∑
i=1

|V |∑
j=1

(
aij − S( ~wi, ~wj)

)2
(7)

where aij and S( ~wi, ~wj) are calculated using equations (3)
and (6), respectively. Here we propose a constrained variant
of the objective function as follows which makes the nor-
malizations fade away as well as resulting in a simplified
gradient:

J (W ) =
1

2

|V |∑
i=1

|V |∑
j=1

(
aij − ~wi. ~wj

)2
subject to : ~wi. ~wi = 1 ∀i (8)

Here, the objective function forces the word vectors to be
on the surface of a hypersphere. The unit length constraints
is not restrictive since the surface of a hypersphere has only
one fewer degree of freedom than the entire volume. There-
fore, the surface will have enough room to locate all the
points in the desired way. In the constrained form of the
objective function, the dot product of output vectors gives
the cosine similarity and is used as the similarity measure
between word vectors in the embedded space.

Cosine values range in [-1, +1] and we normalize them
to [0, +1] by using 1

2 ( ~wi. ~wj + 1). This is done because
aij values are also positive. In fact, PMI values aij can be
greater than 1, however, we handle this in the next section.
By normalizing the cosine values to [0, +1], if the PMI of
two words is high (i.e. significant co-occurrence), then the
method tries to place them as close as possible. And if the
PMI is zero (i.e. unobserved or insignificant co-occurrence),
aij = 0, then the method tries to put them as far as possible.

Optimization

We use stochastic gradient descent to minimize our objec-
tive function. We initialize the word vectors randomly on the
surface of a hypersphere and incrementally change the con-
figuration of them to get a better objective value. We have
used the general projected gradient descent framework (Lin
2007) in order to satisfy the constraints. In this setting, the
solution is projected onto the feasible region after each itera-
tion. The gradient of the cost function with respect to a word

7033



vector ~wi is:

∇J ( ~wi) =
∂J
∂ ~wi

=

|V |∑
j=1

[
− aij ~wj + ( ~wi. ~wj) ~wj

]

=

v1︷ ︸︸ ︷
−
|V |∑
j=1

aij ~wj +

v2︷ ︸︸ ︷
|V |∑
j=1

( ~wi. ~wj) ~wj (9)

The gradient consists of two components v1 and v2. The
former, v1, defines the sum of attractive forces being applied
to the word vector while the latter, v2, defines the sum of
repulsive forces being applied to the word vector. In fact,
each context word is having a contribution in the gradient
of ~wi. Since W is a sparse affinity matrix, only the non-
zero PMIs will have a contribution in the attractive force v1.
However, all other words vectors will have a contribution to
the repulsive force v2 based on their similarity to the word
vector being tuned. In other words, ~wi will be attracted to its
significant context vectors and it will be pushed away from
its current neighbors if it shouldn’t be close to them. Please
note that, by normalizing the similarities in [0, +1], v2 will
be the sum of weighted repulsive forces applied from differ-
ent word vectors.

One of the distinguishing characteristics of our method is
that unlike SGNS and GloVe which update a word vector
based on each entry in the matrix (or each occurrence of two
words in the moving window), our algorithm updates the
word vector ~wi based on its entire row in the smoothed PMI
matrix A. This way, all the attractive forces in v1 are auto-
matically weighted according to their smoothed PMI value.
Therefore, using an auxiliary weighting function as in GloVe
is totally unnecessary and here, the weighting is done seam-
lessly. As for the negative force v2, we take out the non-
zero PMIs and calculate the negative force only based on the
word pairs with zero PMI. This slightly improves the distri-
bution of words as each context will have either an attractive
or repulsive effect when updating a particular word vector.

The time complexity for calculating the gradient vector
for a particular word ~wi is O(|V | × d) where |V | and d
are the vocabulary size and the dimensionality of the em-
bedded space, respectively. The calculation of the repulsive
force is more costly than the attractive force because of the
similarity computations. In total, the optimization requires
O(i× |V |2 × d) time, where i is the number of iterations in
the optimization. However, the size of the vocabulary |V | is
several orders of magnitude less than the number of tokens
in the corpus. For instance, in our experiments on Wikipedia
(dump of March 2016), 163,188 words were extracted from
2.1 billion tokens. Later, we will adopt an approximation
technique to reduce the time complexity.

Kernelized Objective Function
Figure 1 illustrates the distribution of cosine similarities be-
tween thousands of random vectors in different dimension-
ality. We generated 100,000 pairs of random vectors in each
case and calculated their cosine similarity and plotted the
distribution of similarities with respect to the dimensionality
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Figure 1: Distribution of cosine similarity of 100,000 pairs
of random vectors. The distribution of cosine similarities is
N (0, 1√

d
).

of vectors. As we can see from the figure, in lower dimen-
sions we have a wider distribution between [-1, +1]. But,
as we increase the dimensionality, the distribution narrows
down and the chances of getting two similar or dissimilar
vectors is getting lower and lower. In fact, in higher dimen-
sions, almost all vectors will be equidistant and almost or-
thogonal to each other. Specialized distance measures have
been proposed in the literature (Soleimani, Matwin, and
De Souza 2015), but the curse of dimensionality in metric
spaces is not well-studied.

Considering ineffectiveness of cosine similarity and every
other metric in higher dimensions, we propose a kernelized
variant of our objective function which improves the distri-
bution of similarities and enables the algorithm to differen-
tiate between the closer and further vectors.

Looking at equation (9), the repulsive force v2 consists
of a dot product of vectors in the embedded space which
measures their similarity. Here, we can apply a kernel to
calculate the similarities of vectors in an implicit high-
dimensional feature space. If φ(·) is the implicit mapping
function to the high-dimensional space, the kernel function
K : Rd × Rd → R will compute the inner product of those
vectors in an efficient way K( ~wi, ~wj) = 〈φ( ~wi), φ( ~wj)〉.
The gradient of the objective function is then:

∂J
∂ ~wi

= −
|V |∑
j=1

aij ~wj +

|V |∑
j=1

K( ~wi, ~wj)× ~wj (10)

Here we apply the kernel just in the repulsive force and
not in the objective function directly. PMI has proven to be
able to capture the strength of association of words very well
(Bullinaria and Levy 2007; Church and Hanks 1990). There-
fore, we do not need to adjust the attractive force and we
only want to tune the similarities in the embedded space.
Moreover, applying the kernel in the repulsive force will
simplify the formulation and consequently, simplify the nu-
merical optimization by preventing the derivative of φ(.) to
appear in the gradient. Here, we propose to use a polyno-
mial kernel to adjust the nonlinearity and further strengthen
the effect of closer points in negative force.

K( ~wi, ~wj) = ( ~wi. ~wj + 1)p (11)

where p is the degree of the polynomial kernel. Please note
that in the kernelized form, there is no need to normalize the
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dot product between [0, +1] because of the increment in the
formula which makes all similarities positive. In fact, by us-
ing a polynomial kernel p ≥ 2, the negative cosine similar-
ities are weakened while the positive cosine similarities are
strengthened. This provides a more powerful similarity mea-
sure for higher dimensions and more discriminative power
for our learning algorithm.

Reducing the time complexity by approximating
the repulsive force
The most time consuming part of our algorithm is the calcu-
lation of repulsive force that requires all the pairwise similar-
ity calculations. Here, we propose an alternative solution and
reduce the complexity from |V |2 to |V | log |V | with respect
to the size of the vocabulary. In the fast version of the algo-
rithm we only take into account the k nearest neighbors of
each word for calculating the repulsive force v2 in equation
(9). This way, each wordwi attracts wordswj if aij > 0 (i.e.
positive PMI) and pushes away words wj that are among its
nearest neighbors wj ∈ knn(wi). In fact, we do not need to
push words further away if they are already far apart, but if
they are mistakenly close to the word, we use the repulsive
force to improve the distribution of words. Please note that
the nearest neighbors for each word are selected from the
negative set with aij = 0. This is achieved using a binary
search in the positive indices to check whether the neighbor
has positive PMI or not.

We use a Vantage Point tree (VP-tree) (Yianilos 1993)
combined with a heap data structure to calculate and main-
tain the nearest neighbors of each word. A VP-tree is a bi-
nary tree that is hierarchically built by randomly selecting
a point as a vantage point and calculating the distance from
the vantage point to every other point. Then using the me-
dian distance as the splitting threshold, half of the points fall
under the left child and the other half fall under the right
child. The splitting process for each node using the median
distance can be thought of centering a hyper-sphere on the
vantage point in a way that half of the point are inside the
hyper-sphere and the other half are outside of it.

VP-trees along with kd-trees (Toth, O’Rourke, and Good-
man 2017) and almost any other data structure suffer from
the curse of dimensionality and are only suitable for low-
dimensional data. In fact, in high dimensions all the points
will be almost equidistant. Therefore, while searching a
query point in a VP-tree, if it falls within the hypersphere
of a vantage point we still need to check the outside points
since the query will be very close to the median distance
and the nearest neighbor may be on the other side. And sim-
ilarly if the query point falls outside of the hypersphere of
the vantage point we still need to check the inside points.
Consequently, this leads to traversing the entire tree and its
performance is no better than the exhaustive search.

There exist many approximate nearest neighbor search
methods as summarized in (Muja and Lowe 2014). How-
ever, due to the nature of our problem and its known struc-
ture we propose our own alternative. In our algorithm, all
the words are distributed on the surface of a hypersphere
and therefore, their dot product is equivalent to their cosine
similarity. Cosine similarity of vectors in d dimensions has

a distribution of N (0, 1√
d
) (Spruill and others 2007). Sim-

ilarly, the cosine distances are distributed from N (1, 1√
d
).

For instance, considering d = 100, then the cosine distances
will be in [0.7, 1.3] range with 99.7 probability (i.e. µ±3σ).
We incorporate this information in our VP-tree search in or-
der to decide whether or not the other branch needs visiting.
Using this technique we get more than 99% accuracy on our
k nearest neighbor search while ensuring the log |V | search
time for each word.

By adopting the aforementioned technique, the time com-
plexity of our algorithm isO(id|V |(p̄+(k+log |V |) log p̄))
where p̄ is the average number of positive examples per word
(p̄� |V |) and k is the number of nearest neighbors (i.e. neg-
ative examples) that is used.O(id|V |p̄) correspond to the at-
tractive force calculations whileO(id|V |(k+log |V |) log p̄)
correspond to the repulsive force calculations. log p̄ corre-
spond to the binary search inside the positive indices to en-
sure that the negative set do not overlap with the positives.

KUBWE is implemented in C using the OpenMP paral-
lel computing library and the source code can be found on
GitHub1.

Experiments
We have used all the articles of English Wikipedia (dump
of March 2016) as the training corpus which has around 2.1
billion tokens after applying a few basic preprocessing steps.
As for the vocabulary, we have limited the vocabulary to En-
glish words by using the WordNet database which resulted
in about 163K words. In our experiments, all the algorithms
were trained on the exact same preprocessed input corpus to
ensure a fair comparison. We have also used the exact same
vocabulary for all the algorithms.

For the quantitative evaluation of algorithms we have used
two well-known tasks of word similarity and word anal-
ogy. For the word similarity task, there exist several datasets
containing word pairs with their corresponding human-
assigned similarity score. In this task we have used 8 dif-
ferent dataset including WordSim353 (WS-ALL), WordSim
Similarity (WS-SIM) and WordSim Relatedness (WS-REL),
MEN, SimLex, MC, RG, and Stanford Rare Words (RW-
STN). For the analogy task, we have used Google’s analogy
dataset (Mikolov et al. 2013a) which contains 19,544 ques-
tions of the form “a is to a∗ as b is to b∗”. Given three of the
words, the algorithm is expected to predict the fourth word.
About half of the questions are semantic (e.g. “father is to
son as mother is to daughter”) and the other half are syntac-
tic questions (e.g. “big is to bigger as tall is to taller”).

Analysis of the Polynomial Kernel Degree
We first analyze the effect of the kernel degree in a fixed
dimensionality of 100. Our algorithm is trained using vari-
ous polynomial degrees 1, 3, . . . , 21 and the quality of em-
beddings is measured on different word similarity and word
analogy tasks. Figure 2 shows the performances with re-
spect to the kernel degree. As we can see from Figures 2a

1https://github.com/behrouzhs/kubwe
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(a) Word similarity task
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Figure 2: Quality of embeddings (d = 100) obtained from
KUBWE using different kernel degrees measured on differ-
ent (a) word similarity, and (b) word analogy tasks.
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Figure 3: The effect of polynomial kernel degree in differ-
ent dimensionality in KUBWE algorithm evaluated on (a)
WordSim353, (b) MEN, (c) MC.

and 2b the general trend is increasing as we increase the de-
gree of the polynomial. This shows that in 100-dimensional
space using a high degree polynomial kernel significantly
improves the distribution of words, nonetheless, it reaches a
plateau at some point.

In another experiment, we run the algorithm with different
embedding dimensionality (10, 20, 50, and 100) and in each
case, we use various kernel degrees 1, 3, . . . , 21. Figure 3
illustrates the performance of our algorithm on different di-
mensionality using different kernel degrees. As we can see
from the figures, generally we get better embedding as we
increase the dimensionality of the embedding. This is true in
other algorithms as well. We can also observe that in lower
dimensions (10 and 20), using a high degree kernel will de-
grade the quality of embedding significantly. This is because
of distribution of cosine similarities (i.e. dot products) in the
first place. If we look back at Figure 1 we see that when
d = 10 and d = 20 the similarities are spread all over [-1,
+1]. Using a high degree polynomial in such cases causes a
few negative examples to have extremely high kernel simi-
larity with the word being updated and they dominate all the
rest of the negative examples. This leads to inappropriate use
of negative examples which in turn deteriorates the quality
of the embedding. However, in higher dimensions where the
distributions of similarities are close to zero (almost orthog-
onal vectors), using a higher degree polynomial will further
improve the similarity calculations in the repulsive force.

Quantitative Evaluation
Table 1 compares 14 algorithms on 8 word similarity
datasets. The numbers in the table are Pearson’s correla-
tion between the rankings provided by the algorithms and
the rankings of the human-scoring. These algorithms are

0.4 0.2 0.0 0.2 0.4 0.6
First principal component

0.4

0.2

0.0

0.2

0.4

0.6

Se
co

nd
 p

rin
cip

al
 c

om
po

ne
nt

cat

dog
horse

rabbit

fish

bull lion

tiger

elephant

frog

bird
camel bear

elk

leopard

raccoon wolf
sheep

cow
pig

meal

breakfast

lunchdinner
brunchsupper

food

cuisine
soup

saltsugar

stew

sauce

curry

fruit

organic

spicy

yummy

crispy

eat

(a) KUBWE

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
First principal component

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Se
co

nd
 p

rin
cip

al
 c

om
po

ne
nt

catdog horse

rabbit

fish

bulllion

tigerelephant
frog
bird

camel bearelk

leopard

raccoon

wolf

sheep
cowpig

meal

breakfast

lunch

dinner

brunch

supper

food

cuisine

soup salt
sugarstew

sauce

curry

fruit

organic

spicy

yummy

crispy

eat

(b) SGNS

Figure 4: Distribution of 40 word vectors from two groups of
20 animal names and 20 food related words. PCA algorithm
is applied on 100-dimensional vectors from KUBWE (left)
and SGNS (right) to obtain a 2-d visualization.

selected mainly because of their popularity and the repro-
ducibility/availability of their source code. SVD, SVD-Log,
and SVD-Sqrt are the factorizations of the co-occurrence,
the log co-occurrence, and the square root of co-occurrence
matrices, respectively. SVD-PPMI and SVD-SPPMI are the
SVD factorization of the PPMI and Shifted PPMI (with shift
parameter of − log 5) matrices, respectively. SVD-NS is the
factorization of thresholded PMI table which incorporates
a fraction of negative PMI values (Soleimani and Matwin
2018b). GloVe is trained with its recommended parame-
ter setting (i.e. xmax = 100). FastText is trained with the
recommended parameter settings that considers character n-
grams of length 3 to 6. CBOW and SGNS are trained with
negative sampling set to 5 and 10. Our proposed algorithm,
KUBWE, is trained with p = 13, and the fast KUBWE is
trained with k = 3000. The dimensionality of embeddings
is 100 in the top part of the table and 300 in the bottom 5
rows.

As we can see from Table 1, our algorithm provides the
best results on 7 out of 8 datasets using 100-dimensional em-
beddings and on 6 out of 8 datasets using 300-dimensional
embeddings. It is noteworthy to mention that even the fast
approximate version of KUBWE outperforms the state-of-
the-art in 6 out of 8 word similarity tasks. Using 100-
dimensional embeddings, SGNS is the best on only Word-
Sim Similarity dataset, and on the rest of the datasets, our
method outperforms others by a good margin. We have to
mention that in the analogy task GloVe provides the best
results and is better than KUBWE and SGNS. However,
GloVe’s performance on word similarity tasks is not com-
parable with that of KUBWE and SGNS.

Qualitative Evaluation
Figure 4 illustrates the 2-d distribution of 40 word vectors
(20 animal names and 20 food related words) obtained by
applying Principal Components Analysis (PCA) on the re-
sulting embedding vectors from KUBWE and SGNS. As
we can see, our algorithm provides a better separation and
a larger gap between the two word clusters by pushing unre-
lated words away from each other which is the consequence
of the repulsive force and better utilization of negative exam-
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Table 1: Evaluation of different word embedding algorithms on 8 word similarity datasets. The dimensionality of the embed-
dings is 100 for the top part and 300 for the bottom 5 rows. Numbers in the table are Pearson’s rank-order correlation between
the human scores and scores from algorithms.

WS-SIM WS-REL WS-ALL MC RG MEN SimLex RW-STN
# of word pairs 203 252 353 30 65 3000 999 2034
SVD 0.533 0.282 0.410 0.331 0.491 0.390 0.202 0.229
SVD-Sqrt 0.754 0.605 0.681 0.729 0.667 0.657 0.286 0.395
SVD-Log 0.741 0.629 0.699 0.783 0.693 0.712 0.328 0.386
SVD-PPMI 0.720 0.638 0.692 0.803 0.740 0.740 0.318 0.381
SVD-SPPMI 0.669 0.593 0.646 0.774 0.709 0.716 0.297 0.360
GloVe (xm = 100) 0.674 0.553 0.599 0.664 0.706 0.704 0.315 0.329
CBOW (k = 10) 0.740 0.584 0.665 0.703 0.756 0.709 0.326 0.393
CBOW (k = 5) 0.745 0.585 0.671 0.742 0.773 0.707 0.327 0.398
FastText 0.765 0.649 0.713 0.793 0.787 0.741 0.326 0.442
SGNS (k = 10) 0.774 0.650 0.712 0.801 0.789 0.732 0.324 0.423
SGNS (k = 5) 0.758 0.651 0.709 0.794 0.783 0.730 0.323 0.421
SVD-NS (α = −2.5) 0.752 0.654 0.712 0.801 0.752 0.753 0.330 0.399
Fast KUBWE 0.746 0.663 0.728 0.805 0.807 0.735 0.367 0.444
KUBWE (p = 13) 0.770 0.692 0.740 0.809 0.827 0.761 0.376 0.439
GloVe (xm = 100) 0.695 0.572 0.621 0.749 0.744 0.726 0.354 0.353
FastText 0.794 0.669 0.733 0.821 0.805 0.766 0.381 0.483
SGNS (k = 10) 0.792 0.667 0.732 0.830 0.799 0.753 0.383 0.455
Fast KUBWE 0.781 0.704 0.753 0.828 0.836 0.765 0.421 0.451
KUBWE (p = 13) 0.783 0.710 0.759 0.851 0.845 0.775 0.411 0.452
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Figure 5: Heatmaps of 28 word vectors obtained from
KUBWE (top) and SGNS (bottom). The top 14 rows in the
heatmaps are animal names and the bottom 14 rows are food
related words.

ples. Moreover, in the SGNS distribution “yummy” is closer
to the animal group which is not correct, and “salt” and “or-
ganic” are also very close to the boundary.

Figure 5 shows the heatmaps of 28 word vectors (14 an-
imal names at the top and 14 food related words at the bot-
tom) from the KUBWE and SGNS embeddings. In each
of the heatmaps, columns are ordered by the difference be-
tween the average magnitude of the features among the two
word groups. Here we can see that our algorithm provides
a better inter-group dissimilarity and a nicer distinction be-
tween two unrelated word groups. This property will poten-

tially improve the accuracy of classifiers in many NLP tasks
including text classification.

Conclusion
In this paper, we analyzed different word embedding algo-
rithms and proposed our algorithm KUBWE. Our method
has clear advantages over matrix factorization methods since
the attractive and repulsive forces in the optimization are
weighted according to the similarities in the input (i.e.
smoothed PPMI) and similarities in the output (i.e. poly-
nomial kernel), respectively. It has also advantages over
“prediction-based” methods such as SGNS and GloVe for
two main reasons: 1) The smoothed PPMI input to our al-
gorithm is more reliable than the raw co-occurrence counts.
2) The adaptive way of utilizing the negative examples pre-
vents the concentration effect and improves the distribution
of words in the final embedding. Moreover, the effect of co-
sine similarity in higher dimensions is analyzed and a ker-
nelized way of calculating similarities is suggested to allevi-
ate the ineffectiveness of cosine similarity. Furthermore, by
adopting a modified VP-tree and approximating the repul-
sive force in the optimization we reduced the computational
complexity of our algorithm by orders of magnitude. Our
algorithm has only one parameter which is the polynomial
degree p in the exact version and the number of negative
neighbors k in the fast approximate version. As a rule of
thumb, one should pick the degree proportionate to the log
of embedding dimensionality p ≈ log d, and the number
of negative neighbors roughly equal to the square root of the
number of words in the vocabulary k ≈

√
|V |. Further theo-

retical analysis and a more systematic approach to choosing
the kernel parameter will be investigated in the future work.
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