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Abstract

Recognizing textual entailment is a key task for many seman-
tic applications, such as Question Answering, Text Summa-
rization, and Information Extraction, among others. Entail-
ment scenarios can range from a simple syntactic variation
to more complex semantic relationships between pieces of
text, but most approaches try a one-size-fits-all solution that
usually favors some scenario to the detriment of another. We
propose a composite approach for recognizing text entailment
which analyzes the entailment pair to decide whether it must
be resolved syntactically or semantically. We also make the
answer interpretable: whenever an entailment is solved se-
mantically, we explore a knowledge base composed of struc-
tured lexical definitions to generate natural language human-
like justifications, explaining the semantic relationship hold-
ing between the pieces of text. Besides outperforming well-
established entailment algorithms, our composite approach
gives an important step towards Explainable Al, using world
knowledge to make the semantic reasoning process explicit
and understandable.

Introduction

Text entailment is formally defined as a directional relation-
ship between a pair of text expressions, denoted by 7 — the
entailing text, and H — the entailed hypothesis. We say that
T entails H if, typically, a human reading T would infer that
H is most likely true (Dagan, Glickman, and Magnini 2006).
It is an important input for a number of other natural lan-
guage processing (NLP) tasks, such as Question Answering,
Text Summarization, Information Retrieval, Machine Trans-
lation, etc., which need to deal with natural language vari-
ability to determine whether inputs and/or outputs expressed
in different forms are equivalent.

Text entailment encompasses three different scenarios: (1)
T and H are equivalent statements but expressed in slightly
different ways; (2) H generalizes information from T; and
(3) H present new information derived from T. While (1)
can usually be resolved syntactically, given that only the sen-
tence structure is altered, and (2) requires only shallow se-
mantic information, such as synonyms and hypernyms, (3)
requires knowledge that goes beyond what is expressed in T
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and H, demanding the use of external world knowledge to
solve the entailment.

Some approaches focus on exploring the syntactic struc-
tures of T and H to determine whether they are equivalent
and confirm the entailment, but can fall short of identify-
ing more complex semantic variations. On the other hand,
techniques concentrating purely on finding semantic rela-
tions between T and H will struggle to deal with pairs where
only a syntactic variation holds. To overcome these issues,
we propose the use of different methods to tackle different
entailment scenarios, integrated as components into a com-
posite approach that performs a routing, that is, it analyzes
the entailment pair and sends it to the most suitable compo-
nent to solve it.

For solving syntactic entailments, we use a tree edit dis-
tance algorithm over a dependency tree representation of T
and H. For identifying semantic relationships, we employ a
distributional (word embedding-based) navigation algorithm
over graph knowledge bases composed of natural language
dictionary definitions. By finding paths is these graphs link-
ing T and H, we can provide human-readable justifications
that shows explicitly what is the semantic relationship hold-
ing between them. Our contribution is twofold: besides pro-
viding a more flexible way to deal with different entailment
phenomena, we also analyze different knowledge sources,
showing how they compare quantitatively and qualitatively,
especially from the interpretability point of view.

Related Work

Early text entailment systems relied only on word overlap
and statistical lexical relations (Glickman and Dagan 2005;
Pérez and Alfonseca 2005; Newman et al. 2005), while
more recent approaches combine the analysis of the sentence
structure with linguistic resources like WordNet, Framenet
and Verbnet, which can add some shallow semantic infor-
mation to the syntactic data. Edit distance (Kouylekov and
Magnini 2005), alignment (Wang and Neumann 2008) and
transformation (Zanoli and Colombo 2016) are some exam-
ples of such approaches. Machine learning techniques are
also employed (Zhang et al. 2017), where T and H are rep-
resented as feature vectors, and multiple similarity measures
(computed over lexical, syntactic and shallow semantic rep-
resentations) are used to train a supervised machine learning
model. Going further on the use of world knowledge, Silva



et al. (2018b) proposed an approach that focuses on seman-
tic entailments, also exploring structured knowledge bases
to find semantic relationships that confirm and explain the
entailment.

Recently, new techniques have been introduced for Nat-
ural Language Inference (NLI), a subtask of text entail-
ment aimed at classifying a pair of pieces of text as entail-
ment, neutral or contradiction (text entailment is originally
a binary classification task, returning yes or no as an an-
swer). With the introduction of machine learning-oriented
datasets (Bowman et al. 2015; Williams, Nangia, and Bow-
man 2018), many inference models are now based on deep
neural networks (Chen et al. 2017; Gong, Luo, and Zhang
2018), frequently using attention models (Parikh et al. 2016;
Im and Cho 2017). Despite the great improvement in the
quantitative results, those models are purely accuracy-driven
and have increasingly more complex architectures, which
leads to poor interpretability, magnifying the problem of
lack of transparency and explanation already observed in
most entailment systems.

Although tree edit distance has already been used in text
entailment (Kouylekov and Magnini 2005), graph traversal
approaches are more commonly associated with informa-
tion retrieval (Frisse and others 1988; Gudivada et al. 1997),
text mining (Aggarwal and Wang 2011), text summariza-
tion (Ganesan, Zhai, and Han 2010), and semantic similarity
(Paul et al. 2016). Graphs are also used in text entailment
(Kotlerman et al. 2015) as a set of potential entailment rules
extracted from text, but the use of graph traversal methods
for exploring independent, external resources for injecting
world knowledge in the entailment recognition process is
still an emerging field.

Syntactic-Semantic Composite Text
Entailment

Our proposed text entailment approach is based on the no-
tion that syntactic and semantic phenomena require different
approaches to be solved. While in the first case an analysis
of the structure of the sentences may suffice, in the second it
is necessary to look for the semantic relationship holding be-
tween the text and hypothesis, often requiring external world
knowledge. To decide what is the best approach, we employ
a routing mechanism that relies on the notion of overlap,
which will indicate whether there are terms that could be
semantically related or not. We assume that a semantic re-
lationship holds between two entities e; and e;, e; # e,
both referring to a third entity, which we call the referent.
For example, consider the entailment pair 2.4 from the BPI'
dataset:

2.4 T: North Korea launched a test missile Wednesday.
2.4 H: The missile was launched on Wednesday.

Apart from stop words, all concepts in T are also contained
in H. Now consider the pair 43.1 from the same dataset:

43.1 T: A worker cleans up the streets.
43.1 H: The streets are tidy.

"http://www.cs.utexas.edu/users/pclark/bpi-test-suite/
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Here, some concepts differ from T to H. Furthermore, the
entities “clean up” and “tidy” are semantically related, and
both are referring to the entity “the streets”.

The overlap O is computed over the bag-of-words repre-
sentation of T and H, denoted by T = {t1, 12, ...,t,} and
H' = {hy, hy, ..., hm}, where t; and h; are tokens in T and
H, respectively, and n and m are the sizes of 7" and H’,
respectively. Therefore, O = T' N H' = {w;,w,, ..., wx},
where k is the size of O. Three scenarios may occur:

(1) total overlap, where all the tokens of H' are contained in
T’ or (Iess commonly) vice-versa, that is, k = m or k = n;
(2) partial overlap, where some but not all of the of tokens
of T” are contained in H’, so k < n and k < m; and

(3) null overlap, that is, no tokens of T are contained in H’,
soO=gand k=0

After a preprocessing stage that generates 7”7 and H’, the
router computes O and decides the entailment model the pair
will be sent to: if there is a partial overlap, it sends the pair to
the Graph Navigation model to be solved semantically, be-
cause there are entities e; € T” and e, € H' not contained
in O (so e; # e,) for which a semantic relationship can hold
and is likely that the referent is contained in O. For the other
two scenarios, the router sends the pair to be solved syntac-
tically by the Tree Edit Distance model, because if there is
a total overlap it means that only the sentence structures of
T and H are different, and if there is a null overlap, even if
there are some potential candidates e; and e, that could be
semantically related, it is more likely (although not certain)
that they are referring to completely different entities, since
there is no common referent in O.

After the entailment is solved by the suitable model, re-
turning yes or no as the output, an interpretability module
uses the evidence produced by the entailment algorithm to
generate a justification aimed at explaining the algorithm’s
decision. The general architecture of the interpretable com-
posite entailment approach is shown in Figure 1.

For solving entailments syntactically, we use the Tree
Edit Distance model, which computes the minimal-cost se-
quence of operations (insert, delete or replace) necessary to
transform the tree representation of T into the tree that rep-
resents H. We use the All Paths Tree Edit Distance (APTED)
(Pawlik and Augsten 2016), which improves over the clas-
sical algorithm of Zhang and Shasha (1989) by being tree-
shape independent. The edit distance is computed over the
syntactic dependency trees of T and H, generated by the
Stanford dependency parser (Chen and Manning 2014). Al-
though what is generated by the parser is a dependency
graph, it can be easily converted to an acyclic tree, where
nodes with more than one incoming edge are expanded only
at the first time they are referenced, and represented as child-
less nodes in subsequent references (similar to the string rep-
resentation provided by the parser for the graph). We repre-
sent dependencies between terms, which are labeled edges
in the original graph, as intermediary nodes between the two
nodes they link. Figure 2 shows the graph generated by the
dependency parser for the sentence “A worker cleans up the
streets” and the resulting dependency tree which will be sent
as input to the tree edit distance algorithm.
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Figure 1: General architecture of the proposed interpretable composite text entailment approach
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Figure 2: Dependency graph (left) and the resulting dependency tree (right) which is sent to the tree edit distance algorithm

Since we represent dependencies as nodes in the tree, our
tree edit distance model penalizes node replacement more
than insertion and deletion, because replacing a node = be-
tween nodes a and b in T by a node y between the same
nodes a and b in H means changing the dependency between
them, or changing one of the arguments of a dependency,
if the replacement comes before or after a sequence of two
node a and b which are identical in T and H. This is done by
a weighted cost model with higher weight for replacements
than for insertions and deletions, and by the calculation of
the relative edit distance relDist, which is the edit distance
dist relative to the difference diff between the sizes of the
two trees, given by relDist = dist/dif f. If the two trees
are roughly the same size, but many edit operations are per-
formed, they are probably replacements, which means many
dependencies and/or arguments are being changed, so diff is
low and relDist increases. If approximately the same num-
ber of operations are performed for trees having different
sizes (usually, T larger than H), there will be more inser-
tions and/or deletions. In this case, diff is higher and relDist
decreases, which favors scenarios where the tree for H is a
subtree of the tree for T, and, therefore, insertions/deletions
will occur more often and affect the validity of the entail-
ment less than replacements. The relDist is then compared
against a threshold ¢, and the pair is classified as an entail-
ment if relDist < t, and as a non-entailment otherwise.
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For dealing with entailments involving semantic phenom-
ena, we use the Graph Navigation model introduced by
Silva et al. (2018b). This model is based on a distributional
navigation algorithm (DNA) (Freitas et al. 2014), which uses
Distributional Semantic Models (DSMs) to perform a selec-
tive reasoning in a knowledge graph. Given a pair of terms,
namely a source and a target, and a threshold 7, the DNA
finds all paths from source to target, with length [, formed
by concepts semantically related to the target wrt n (Freitas
et al. 2014). In our approach, the source is an entity ¢; € T"
and the target is another entity e; € H’, both e; and e; not
contained in the overlap set O generated in the routing stage,
SO €j # ¢j.

As in (Silva, Freitas, and Handschuh 2018b), we use an
external knowledge graph over which we perform a depth
first search algorithm, exploring first the paths whose next
node to be visited has the highest semantic similarity value
wrt the target. Starting from the source node, the algo-
rithm retrieves all its neighbors {z|, x5, ..., 2.} and com-
putes the similarity relatedness sr(x;, target). All the nodes
for which sr > 7 are included in the set of nodes to be
visited next and each of them generates a new path. For
each path, the search continues until the next node to be
visited is equal to the target, or until the maximum path
length is reached. The search stops if no path reaches the
target before the maximum number of paths is reached. The



distributional graph navigation algorithm is schematized in
Figure 3.

sr(x;, T) <n

Figure 3: The distributional navigation algorithm. Gray
nodes, for which sr(x;,T) > 7, make up valid paths be-
tween the source node S and the target node T. The path
{S, x, x4, x5, T} is the shortest one

Differently from Silva et al. (2018b), who uses syntactic
rules to identify source-target pairs and nodes’ head words,
we select all the inputs for the graph navigation algorithm se-
mantically, also using DSMs. The source-target pairs are the
pairs of terms formed by the aforementioned entities e; € T”
and e; € H’', and the head words are the main words in a
node of the knowledge graph that contains a multi-word ex-
pression (see next Section), and which will define the next
nodes to be visited. For defining the source-target pairs, we
compute the semantic similarity measures between 7" and
H" where T" =T'—0 and H"” = H'— O, as the Cartesian
product P = T" x H". The results are then sorted and the
highest scoring pairs - the set P’ - are sent as the inputs for
the Graph Navigation algorithm. It is done similarly for the
head words, but is this case, the similarity measure is com-
puted between each word/phrase that constitutes a node and
the target node. In both cases, we remove stop words, and, to
get the head words, we also remove words with low inverse
document frequency (IDF), since they are too frequent (for
example, verbs such as “get”, “put”, “cause” or “make”) and
can be reached from almost any node in the graph, leading
to diverting paths. IDF is calculated using as the corpus the
same linguistic resource that gave origin to the knowledge
graph being explored by the algorithm (see next Section).

Word sense disambiguation comes as a natural conse-
quence of the distributional navigation mechanism while
choosing the next nodes to be visited in the graph: by look-
ing for the word/phrases that are more semantically related
to the target, the algorithm naturally selects the correct (or at
least the closest) word senses, since unrelated word mean-
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ings will have lower similarity scores wrt the target, and the
paths containing them will be excluded by the algorithm.

The Graph Navigation algorithm finds all paths between
ej and e;, for each {ej, ej} € P’. The shortest path is then
chosen as the solution, since it provides the shortest dis-
tance between the source and the target, showing that, se-
mantically, they are more closely related. The contents of
the nodes composing this path are then used to generate the
justification that explains the entailment decision. If no path
is found at all, the entailment is rejected.

Exploring Lexical Knowledge for Semantic
Interpretability

The ability to explain how decisions are reached is becom-
ing a key requirement for Al systems (Gunning 2017). Al-
though a model may produce accurate results, if it lacks
transparency, not showing clearly how it is using the data,
it can become harder for users to trust its predictions.

Generating natural language justifications is an important
feature for increasing a system’s interpretability, and the use
of external sources of world knowledge can provide a both
semantically rich and interpretable resource, which can sup-
port the generation of explanations. Dictionary-style defi-
nitions are a rich source of such knowledge and, different
from formal structured resources like ontologies, they are
domain-independent and largely available. Many NLP sys-
tems, including text entailment systems (Clark, Fellbaum,
and Hobbs 2008; Herrera, Penas, and Verdejo 2006), al-
ready explore lexicons, notably WordNet (Fellbaum 1998),
but they usually look only at the structured information, that
is, links such as synonyms, hypernyms, etc. The natural lan-
guage definition is left aside, although it contains the largest
amount of relevant information about an entity: its type, es-
sential attributes, primary functions, and often many non-
essential, but very informative, attributes as well.

We rely on the knowledge provided by lexical dictionary
definitions for looking for relationships between the text and
the hypothesis whenever the entailment is solved semanti-
cally. These relationships not only confirm the entailment
but also explain why the entailment is true. To make use of
natural language definitions in our approach, we structure
them, converting a whole dictionary into a knowledge graph
following the methodology proposed by Silva et al. (2018a).
In this model, definitions are split into entity-centered se-
mantic roles (Silva, Handschuh, and Freitas 2016) and each
of these roles become a node in the graph (the role nodes),
meaning that each node encloses a self-contained amount of
information regarding the entity being defined, which is also
a node (the entity nodes). Figure 4 depicts the graph repre-
sentation for one of the definitions of the concept “planet”
(“any of the nine large celestial bodies in the solar system
that revolve around the sun and shine by reflected light”) ac-
cording to this model.

When the Graph Navigation model explores this defini-
tion knowledge graph (DKG), it identifies the role nodes that
are more semantically related to the target, get their head
words (see previous Section) and use them as the next entity
nodes to be visited. The resulting path is, then, composed
by a sequence of entity nodes and the relevant role nodes
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has_diff_event

has_diff_qual

has_supertype
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has_diff_event
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Figure 4: The graph representation of a lexical definition.
The node labeled “planet” is an entity node (the entity being
defined), and all the other ones are role nodes. Supertype, ac-
cessory determiner, differentia quality and differentia event
are some of the semantic roles for definitions introduced in
(Silva, Handschuh, and Freitas 2016)

linked to them. This path is sent to the interpretability mod-
ule, which formats them into a human-readable justification,
which shows what the relationship between the source (and
therefore, the text T), and the target (the hypothesis H) is,
and makes clear what was the reasoning followed by the al-
gorithm. As an example, consider the entailment pair 15.6
from the BPI dataset:

15.6 T: Baghdad has seen a spike in violence since the sum-
mer.

15.6 H: Baghdad has seen an increase in violence.

15.6 A: YES

Here, the best source-target pair is e; = “spike” and e, = “in-
crease”, while the referent is “violence”, since both e; and
e; refer to this concept. A possible path between the source
and the target in a DKG is shown in Figure 5.

SOURCE

has_diff_qual

followed by a
sharp decline

has_diff_qual
in price
or value

Figure 5: A path, indicated by the gray nodes, between

source node “spike” and target node “increase” in a DKG
In this path, nodes are linked by the “has_supertype”

property, which defines the kind of an entity, so the justifi-
cation derived from this sequence of nodes is:

has_diff_qual

has_supertype

has_supertype

TARGET

A spike is a kind of rise
A rise is a kind of increase
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In order to evaluate how different resources influence the
entailment results, including the justifications generated, we
built three DKGs, using the definitions from WordNet, Wiki-
tionary, and the set of definitions extracted from Wikipedia
pages provided by Faralli and Navigli (2013). All defini-
tions were filtered so potential invalid definitions could be
removed (for example, verb definitions not beginning with
a verb or an adverbial phrase followed by a verb, noun
definitions beginning with verbs or prepositions, etc.), and,
for Wikipedia, definitions for named entities were also ex-
cluded with the aid of the Stanford Named Entity Recog-
nizer (NER), so the final content could be closer to a regular
dictionary. Due to the natural limitations of the NER, many
named entity definitions remained in the final set, but even
so, this filter helped in setting a manageable size for the final
graph, without leaving out potentially relevant information.
Each set of definitions was then labeled and finally converted
to an RDF graph. Table 1 shows the dimensions of the result-
ing graphs.

Table 1: Final dimensions of the definition knowledge
graphs used in the composite text entailment approach

Resource Noun Defs Verb Defs Total

WordNet 79,939 13,760 93,699

Wikitionary 390,417 73,826 464,243

Wikipedia 859,087 - 859,087
Evaluation

We evaluated our approach on two datasets: the Princeton-
Boeing-ISI (BPI) and the Guardian Headlines Sample?
(GHS). BPI has a good mix of syntactic and semantic exam-
ples, and GHS is fully composed of real-world data (head-
lines and sentences from The Guardian newspaper stories),
without artificially assembled hypotheses. Both datasets are
balanced, with half positive and half negative examples, and
have 250 and 800 entailment pairs, respectively.

We compare our results with a purely syntactic entail-
ment algorithm, the Edit Distance (Kouylekov and Magnini
2005) implementation provided by EOP (Magnini et al.
2014), a state-of-the-art text entailment framework; a syn-
tactic approach that employs linguistic resources from where
shallow semantic information is extracted, the Maximum
Entropy Classifier (Base+WN+TP+TPPos+TS_EN) (Wang
and Neumann 2008) using WordNet and VerbOcean, also
made available by EOP; and a purely semantic approach,
the Graph Navigation algorithm using WordNet definition
graph, as reported by Silva et al. (2018b).

All similarity measures were computed through the In-
dra (Sales et al. 2018) service, using word2vector as the
DSM. Table 2 shows the precision, recall and F-measure ob-
tained by each of the Composite Entailment approach con-
figurations, which are given by the definition graph used
by the Graph Navigation component, that is, the knowledge

*https://goo.gl/4iHdbX



Table 2: Evaluation results. The upper part shows the baselines, and at the bottom are the proposed composite entailment

approach’s results.

BPI GHS
Precision Recall F-measure Precision Recall F-measure
EditDistance 0.44 0.65 0.53 0.96 0.30 0.45
MaxEntClassifier 0.46 0.57 0.51 0.50 1.00 0.66
GraphNavigation 0.65 0.54 0.59 0.56 0.50 0.53
CompositeEntailment (WN) 0.57 0.79 0.66 0.52 0.70 0.60
CompositeEntailment (WKT) 0.53 0.70 0.60 0.50 0.70 0.58
CompositeEntailment (WKP) 0.41 0.26 0.32 0.42 0.11 0.17

bases derived from WordNet (WN), Wikitionary (WKT),
and Wikipedia (WKP), as well as the baselines results.

Among the three Composite Entailment configurations,
the one that employs WordNet as the knowledge base per-
forms better than the other ones. For the BPI dataset, the
Composite Entailment present much better results than both
syntactic approaches (EditDistance and MaxEntClassifier).
The semantic-only GraphNavigation approach still presents
better precision, but, due to the better handling of syntac-
tic pairs and also the improved, semantic-based selection
of source-target pairs and head words for multi-word ex-
pression nodes, the Composite Entailment delivers a much
higher recall, leading to an overall higher F-measure.

For the GHS dataset, the EditDistance algorithm shows
the highest precision but very low recall. Here again the
Composite Entailment presents much higher recall and, con-
sequently, better F-measure than both syntactic-only Edit-
Distance and semantic-only GraphNavigation. The MaxEnt-
Classifier shows higher F-measure, but it classifies all but
two of the 800 pairs as entailment, hence the 100% recall
and 50% precision, since the dataset is balanced. Given that
positive pairs are structurally very different from negative
ones in this dataset (in positive pairs, H is a news story short
headline and T is the first, usually long, story’s sentence, and
in negative pairs both T and H are random, often long sen-
tences from the same story) it is somewhat hard to grasp the
MaxEntClassifier’s rationale behind those decisions.

Comparing Lexical Knowledge Bases

More important than the quantitative improvements, the in-
terpretable characteristic of the Composite Entailment ap-
proach represents a concrete gain for the final user, provid-
ing them with human-like explanations for the entailment
decisions whenever a more complex semantic relationship
is involved. The justifications, though, depends heavily on
the knowledge base (KB) employed in the entailment recog-
nition. To evaluate the impact of the type and quality of the
KB contents in our approach, we chose three resources with
different characteristics: WordNet is a lexicon built by lexi-
cographers under a relatively controlled environment, Wiki-
tionary is a dictionary built collaboratively by lay users, and
Wikipedia is also built collaboratively but more focused on
encyclopedic than lexical knowledge.

The best measure for comparing the performance of the
KBs is the recall: the more useful information the graph
contains, the more paths (meaning semantic relationships
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between source and target words) can be found and, conse-
quently, more entailments can be recognized. As can be seen
in Table 2, WordNet graph offers the best quantitative re-
sults, while Wikipedia shows notably bad outcomes. Despite
the negligible results, it is worth listing Wikipedia numbers
to highlight that, for the entailment task, the content type is
more relevant than the amount of information in the graph.
WordNet graph is roughly only 10% of the Wikipedia graph,
but the first contains far more common nouns denoting ba-
sic language concepts, while the second, besides not defin-
ing verbs, privileges the definitions of people, places, arts
and entertainment artifacts (films, books, songs, etc.) and
other entities expressed by proper nouns. In fact, Wikipedia
lacks definitions for many concepts present in the datasets
for which relationships are sought: “violence” and “dam-
age”, “signatory” and “agreement”, “decontamination” and
“contaminants”, or “bet” and “gamble”, to name a few.

As for the Wikitionary graph, different from the
Wikipedia one, which fails to provide the information to
start most of the paths, most of the relevant concepts are
there as much as for the WordNet graph, but the issue here
refers more to the definition’s completeness: if not enough
information is contained in the definition, that is, the defi-
nition of an entity does not mention other entities it is es-
sentially related to, paths will start but won’t reach the tar-
get. Being built by experts, WordNet definitions tend to fol-
low some patterns and are more prone to cover essential at-
tributes. On the other hand, in a collaborative environment,
despite the larger volume of information that can be gener-
ated, high-quality standards can’t always be ensured. This is
the reason why, in spite of its much larger dimensions, Wiki-
tionary graph yields lower recall for the BPI dataset than the
WordNet one. Again, the coverage and regularity of the KB
contents prove to be more important than its size. An ex-
ample from the BPI dataset that can be solved and justified
through the WordNet graph, but not when Wikitionary or
Wikipedia ones are used:

11.2 T: The UN Security Council demands that North Korea
stop making nuclear weapons.

11.2 H: The Security Council wants North Korea to stop
making nuclear weapons.

11.2 A: YES

Justification:

To demand is a way of to ask

To ask is a way of to require

To require is synonym of to want



From the GHS dataset:

16089 T: Frank Quattrone, a star investment banker of the
dotcom era, was sentenced yesterday to 18 months in prison
for obstruction of justice.

16089 H: Quattrone jailed for obstruction

16089 A: YES

Justification:

To sentence is to pronounce a sentence on in a court of law
A sentence is a period a prisoner is imprisoned

To imprison is synonym of to jail

As mentioned before, Wikipedia does not include defini-
tions for verbs, so “to demand” and “to sentence” (the source
nodes in both examples) can’t be found as nodes in its graph.
Wikitionary does have definitions for both “to demand” and
“to sentence”, but they fail to establish a (direct or indirect)
link with “to want” in the first case and with “to jail” in
the second example, so, while traversing its graph, no paths
starting at those nodes will reach the target.

Regarding the quality of the justifications generated by
each graph, we observe that WordNet and Wikipedia expla-
nations are usually more informative than Wikitionary ones.
To illustrate this pattern, consider the entailment pair 57.1
from the BPI dataset:

57.1 T: Many soldiers were killed in the ambush.
57.1 H: The soldiers were attacked by surprise.
57.1 A: YES

The justifications given by each of the graphs are as follows:

By WordNet graph: “An ambush is an act of concealing
yourself and lying in wait to attack by surprise”.

By Wikitionary graph: “An ambush is a kind of attack”.
By Wikipedia graph: “An ambush is a military tactic to at-
tack an unsuspecting enemy from concealed positions such
as among dense underbrush or behind hilltops”.

Considering the goal of finding the relation between “am-
bush” and “attack”, all the graphs succeed, but WordNet
seems to find the best balance between being not too short
nor overly detailed.

In summary, Wikipedia graph provides good quality jus-
tifications, if too detailed (which is understandable given its
encyclopedic nature) but yields very low recall for lacking
many basic concepts. Wikitionary graph has a good cover-
age of relevant concepts, but recall and justification qual-
ity may be impaired by incompleteness resulting from the
amateur nature of the definitions creation process. WordNet
graph, despite being the smallest KB, provides the highest
recall and often the most concise justifications, thanks to
the focus on the description of basic language concepts and
a more professional creation process which leads to better
quality definitions.

Conclusion

We presented an interpretable composite approach for rec-
ognizing textual entailments that employs a routing mecha-
nism to decide whether entailment pairs should be dealt with
syntactically or semantically. For pairs predominantly show-
ing structural differences, we use a Relative Tree Edit Dis-
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tance model over dependency parse trees, and for pairs con-
taining semantic relationships we employ a Distributional
Graph Navigation model over knowledge bases composed
of structured dictionary definitions. The paths found in those
graph KBs are used to render the entailment interpretable,
providing natural language, human-like justifications for the
entailment decision.

We generated knowledge graphs from WordNet, Wiki-
tionary and Wikipedia definition sets to assess how each of
them could leverage our approach’s interpretability. Given
that text entailment deals with language variability, we con-
cluded that knowledge graphs covering the most basic, ev-
eryday language concepts yield the best results, so regular
dictionaries are more useful than encyclopedic KBs for this
task. We also found that definitions created by lexicogra-
phers under a controlled environment tend to be more com-
plete and, consequently, generate higher quality justifica-
tions than those created in collaborative environments by lay
users. All in all, our analysis shows that the use of exter-
nal world knowledge bases is a valuable feature for increas-
ing intelligent systems’ interpretability, and recent accuracy-
driven advancements, such as new NLI techniques, could
benefit from these resources to also stay in line with Ex-
plainable Al requirements.
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