The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

Learning Semantic Representations for
Novel Words: Leveraging Both Form and Context

Timo Schick
Sulzer GmbH
Munich, Germany
timo.schick @sulzer.de

Abstract

Word embeddings are a key component of high-performing
natural language processing (NLP) systems, but it remains a
challenge to learn good representations for novel words on
the fly, i.e., for words that did not occur in the training data.
The general problem setting is that word embeddings are in-
duced on an unlabeled training corpus and then a model is
trained that embeds novel words into this induced embedding
space. Currently, two approaches for learning embeddings of
novel words exist: (i) learning an embedding from the novel
word’s surface-form (e.g., subword n-grams) and (ii) learn-
ing an embedding from the context in which it occurs. In this
paper, we propose an architecture that leverages both sources
of information — surface-form and context — and show that it
results in large increases in embedding quality. Our architec-
ture obtains state-of-the-art results on the Definitional Nonce
and Contextual Rare Words datasets. As input, we only re-
quire an embedding set and an unlabeled corpus for training
our architecture to produce embeddings appropriate for the
induced embedding space. Thus, our model can easily be in-
tegrated into any existing NLP system and enhance its capa-
bility to handle novel words.

1 Introduction

Distributed word representations (or embeddings) are a
foundational aspect of many natural language processing
systems; they have successfully been used for a wide vari-
ety of different tasks (Goldberg 2016). The idea behind em-
beddings is to assign to each word a low-dimensional, real-
valued vector representing its meaning. In particular, neural
network based approaches such as the skipgram and cbow
models introduced by Mikolov et al. (2013) have gained in-
creasing popularity over the last few years.

Despite their success, an important problem with current
approaches to learning embeddings is that they require many
observations of a word for its embedding to become reliable;
as a consequence, they struggle with small corpora and in-
frequent words (Ataman and Federico 2018). Furthermore,
as models are typically trained with a fixed vocabulary, they
lack the ability to assign vectors to novel, out-of-vocabulary
(OOV) words once training is complete.
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In recent times, several ways have been proposed to over-
come these limitations and to extend word embedding mod-
els with the ability to obtain representations of previously
unseen words on the fly. These approaches can roughly be
divided into two directions: (i) the usage of subword in-
formation, i.e., exploiting information that can be extracted
from the surface-form of the word and (ii) the usage of
context information. The first direction aims to obtain good
embeddings for novel words by looking at their characters
(Pinter, Guthrie, and Eisenstein 2017), morphemes (Lazari-
dou et al. 2013; Luong, Socher, and Manning 2013; Cot-
terell, Schiitze, and Eisner 2016) or n-grams (Wieting et al.
2016; Bojanowski et al. 2017; Ataman and Federico 2018;
Salle and Villavicencio 2018). Naturally, this direction is
especially well-suited for languages with rich morphology
(Gerz et al. 2018). The second, context-based direction
tries to infer embeddings for novel words from the words
surrounding them (Lazaridou, Marelli, and Baroni 2017;
Herbelot and Baroni 2017; Khodak et al. 2018). Both direc-
tions show promising results on various benchmarks. How-
ever, for both purely surface-form-based and purely context-
based approaches, there are many cases in which they are
highly unlikely to succeed in obtaining meaningful embed-
dings. As an example, suppose that we encounter the fol-
lowing three words — highlighted in bold letters — as novel
words in the given contexts:

(1) We should write no one off as being unemployable.

(2) A cardigan is a knitted jacket or sweater with buttons
up the front.

(3) Unlike the grapefruit, the pomelo has very little impor-
tance in the marketplace.

In sentence (1), the context is of almost no help for de-
termining the meaning of the novel word, but we can de-
duce its meaning without great difficulty from an analy-
sis of the morphemes “un”, “employ” and “able”. For sen-
tence (2), the reverse is true: While the novel word’s mor-
phemes give no indication that it is a piece of clothing, this
information can easily be derived from the context in which
it occurs. Perhaps most interesting is sentence (3): Both the
close occurrence of the word “grapefruit” and the fact that
the novel word’s morphemes resemble words like “pome”,
“pomegranate” and “melon” are indicative of the fact that it
may be some sort of fruit. While none of those indicators



may be strong enough on its own, their combination gives a
pretty strong clue of the word’s meaning.

As all three of the above sentences demonstrate, for an
approach to cover a wide range of novel words, it is essen-
tial to make use of all available information. In this work,
we therefore propose an architecture that, given a new word,
captures both its subword structure and all available context
information and combines them to obtain a high-quality em-
bedding. To this end, we first infer two distinct embeddings,
one incorporating the word’s inner structure and one captur-
ing its context, and then combine them into a unified word
embedding. Importantly, both embeddings and their compo-
sition function are learned jointly, allowing each embedding
to rely on its counterpart whenever its available informa-
tion is not sufficient. In a similar fashion to work by Pinter,
Guthrie, and Eisenstein (2017) and Khodak et al. (2018),
our approach is not trained from scratch, but instead makes
use of preexisting word embeddings and aims to reconstruct
these embeddings. This allows for a much faster learning
process and enables us to easily combine our approach with
any existing word embedding model, regardless of its inter-
nal structure.

Our approach is able to generate embeddings for OOV
words even from only a single observation with high accu-
racy in many cases and outperforms previous work on the
Definitional Nonce dataset (Herbelot and Baroni 2017) and
the Contextual Rare Words dataset (Khodak et al. 2018). To
the best of our knowledge, this is the first work that jointly
uses surface-form and context information to obtain repre-
sentations for novel words.

In summary, our contributions are as follows:

We propose a new model for learning embeddings for
novel words that leverages both surface-form and context.

We demonstrate that this model outperforms prior work —
which only used one of these two sources of information
— by a large margin.

Our model is designed in a way which allows it to eas-
ily be integrated into existing systems. It therefore has
the potential to enhance the capability of any NLP sys-
tem that uses distributed word representations to handle
novel words.

2 Related Work

Over the last few years, many ways have been proposed
to generate embeddings for novel words; we highlight here
only the ones most relevant to our work.

As shown by Lazaridou, Marelli, and Baroni (2017), one
of the simplest context-based methods to obtain embeddings
for OOV words is through summation over all embeddings
of words occurring in their contexts. Herbelot and Baroni
(2017) show that with some careful tuning of its hyper-
parameters, the skipgram model by Mikolov et al. (2013)
can not only be used to assign vectors to frequent words,
but also does a decent job for novel words; they refer to
their tuned version of skipgram as Nonce2Vec. Very recently,
Khodak et al. (2018) introduced the A La Carte embedding
method that, similar to the summation model by Lazaridou,
Marelli, and Baroni (2017), averages over all context words.
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Subsequently, a linear transformation is applied to the re-
sulting embedding, noticeably improving results on several
datasets.

In the area of subword-based approaches, Luong, Socher,
and Manning (2013) make use of morphological structure
and use a recurrent neural network to construct word em-
beddings from embeddings assigned to each morpheme.
Similarly, Lazaridou et al. (2013) try several simple com-
position functions such as summation and multiplication
to acquire word embeddings from morphemes. Both ap-
proaches, however, rely on external tools to obtain a seg-
mentation of each word into morphemes. For this reason,
another direction chosen by several authors is to resort
to n-grams instead of morphemes (Wieting et al. 2016;
Ataman and Federico 2018). The fastText model introduced
by Bojanowski et al. (2017) is basically an extension of the
skipgram model by Mikolov et al. (2013) which, instead of
directly learning vectors for words, assigns vectors to char-
acter n-grams and represents each word as the sum of its n-
grams. In a similar fashion, Salle and Villavicencio (2018)
incorporate n-grams and morphemes into the LexVec model
(Salle, Idiart, and Villavicencio 2016). A purely character-
based approach was taken by Pinter, Guthrie, and Eisen-
stein (2017) who, given a set of reliable word embeddings,
train a character-level bidirectional LSTM (Hochreiter and
Schmidhuber 1997) to reproduce these embeddings. As it
learns to mimic a set of given embeddings, the authors call
their model Mimick.

3 The Form-Context Model

As previously demonstrated, for both purely context-based
approaches and approaches that rely entirely on surface-
form information, there are cases in which it is almost im-
possible to infer a high-quality embedding for a novel word.
We now show how this issue can be overcome by combining
the two approaches into a unified model. To this end, let X
denote an alphabet and let V C X* be a finite set of words.
We assume that for each word in V, we are already provided
with a corresponding word embedding. That is, there is some
function e : V — R* where k € N is the dimension of the
embedding space and for each word w € V), e(w) is the
embedding assigned to w. This embedding function may,
for example, be obtained using the skipgram algorithm of
Mikolov et al. (2013).

Given the embedding function e, the aim of our model
is to determine high-quality embeddings for new words
w € X* \ V, even if they are observed only in a single con-
text. Let w = wy...w;, I > 0 (i.e., w has a length of [
characters) and let C = {C1,...,C,,}, m > 0 be the con-
text set of w, i.e., a set of contexts in which w occurs. That
is, foralli € {1,...,m},

is a multiset of words over X with k; € N and there is some
j €{1,...,k;} such that w/ = w. We compute two distinct
embeddings, one using only the surface-form information
of w and one using only the context set C, and then combine
both embeddings to obtain our final word representation.



We first define the surface-form embedding that is ob-
tained making use only of the word’s letters w1, . .., w; and
ignoring the context set C. To this end, we pad the word with

special start and end tokens wg = (s), w11 = {(e) and de-
fine the multiset
Nmax  +2—n
Sw = U U {wiwi+1 cee wz‘+n71}
N=Nmin =0

consisting of all n-grams contained within w for which
Nmin < N < Nmax. FOr example, given npin = 2, Nmax = 3,
the n-gram set for the word pomelo is

Spomelo = {<5>P, po, om, me, elv 107 0<6>}
U {(s)po, pom, ome, mel, elo, lo{e) }.

To transform the n-grams into our semantic space, we in-
troduce an n-gram embedding function engram @ X* — R
which assigns an embedding to each n-gram. In a fash-
ion similar to Bojanowski et al. (2017), we then define the
surface-form embedding of w to be the average of all its n-
gram embeddings:

1
1
) = Tou] D Cngram(s)-
SESw

Unlike the word-based embedding function e, we do not as-
sume engram to be given, but instead treat it as a learnable
parameter of our model, implemented as a lookup table.

Complementary to this first embedding based solely on
surface-form information, we also define a context embed-
ding. This embedding is constructed only from the context
set C in which w is observed, making no use of its charac-
ters. Analogous to the surface-form embedding, we obtain
this embedding by averaging over all context words:

niex 1
=Y Y W
cec w'eCny
where ¢ = ). |C' N V| is the total number of words in C
for which embeddings exist. In accordance with results re-
ported by Khodak et al. (2018), we found it helpful to apply
a linear transformation to the so-obtained embedding, result-
ing in the final context embedding
A-v

context

(w,C)

~context

we) —
with A € R¥** being a learnable parameter of our model.
We finally combine both embeddings to obtain a joint em-
bedding v (v ¢y for w. The perhaps most intuitive way of do-
ing so is to construct a linear combination
(1-a)

form

~context
“U(w,C)

V(w,e) = Q@ VUwe) T

In one configuration of our model, @ € [0,1] is a sin-

gle learnable parameter. We call this version the single-
parameter model.

However, it is highly unlikely that there is a single value of

« that works well for every pair (w, C) — after all, we want o

to be large whenever C helps in determining the meaning of

w and, conversely, want it to be small whenever Sy, is more

helpful. We therefore also consider a second, more complex
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Figure 1: Schematic representation of the form-context word
embedding architecture. Learnable parameters of the model
are indicated by dashed lines.

architecture in which the value of « directly depends on the
two embedding candidates. This is achieved by setting

context form

T[U(W,C) ° U(W,C)] + b)

a=o(w
with w € R?* b € R being learnable parameters of our
model, o denoting vector concatenation and ¢ denoting the
sigmoid function. We call this version of the model the gated
model since we can view « as a gate in this case.

In addition to the single-parameter and gated models, we
also tried several more sophisticated composition functions,
including a variant where « is computed using a multi-layer
neural network and another variant with o € [0, 1]* being a
component-wise weighing parameter. Furthermore, we ex-
perimented with an iterative procedure that refines the com-
bined embedding over multiple iterations by adjusting the
composition based on embeddings obtained from previous
iterations. In our experiments, however, none of these modi-
fications did consistently improve the model’s performance,
so we do not investigate them in detail here.

As it combines context and surface-form embeddings, we
refer to the final embedding vy, ¢y obtained using the com-
position function (in both single-parameter and gated mod-
els) as a form-context word embedding. The overall architec-
ture of our model is shown schematically in Figure 1.

For training of our model and estimation of its learnable
parameters, we require the embedding function e and a train-
ing corpus T, consisting of pairs (w,C) as above. Given a
batch B C T of such training instances, we then aim to min-
imize the function

i
|B]

i.e., our loss function is the squared error between the em-
bedding assigned to w by e and the embedding constructed
by our model.

L= Z lvw,c)y — e(w)|?

(w,C)eB



4 Experimental Setup
Datasets

We evaluate our model on two different datasets: the Defini-
tional Nonce (DN) dataset introduced by Herbelot and Ba-
roni (2017) and the Contextual Rare Words (CRW) dataset
of Khodak et al. (2018). The DN dataset consists of 300
test and 700 train words; for each word, a corresponding
definitional sentence extracted from Wikipedia is provided.
The authors also provide 400-dimensional embedding vec-
tors for a set of 259,376 words, including the test and train
words. These embeddings were obtained using the skipgram
algorithm of Mikolov et al. (2013). On the DN dataset, our
model can be evaluated by training it with all given word
vectors — except for the test set — and then comparing the
inferred embeddings for the test words with their actual em-
beddings.

Our second benchmark, the CRW dataset, is based on the
Rare Words dataset by Luong, Socher, and Manning (2013)
and contains 562 pairs of rare words along with human sim-
ilarity judgments. For each rare word, 255 corresponding
sentences are provided. In contrast to the sentences of the
DN dataset, however, they are sampled randomly from the
Westbury Wikipedia Corpus (WWC) (Shaoul and Westbury
2010) and, accordingly, do not have a definitional charac-
ter in many cases. Khodak et al. (2018) also provide a set
of 300-dimensional word embeddings which, again, can be
used to train our model. We may then compare the similar-
ities of the so-obtained embeddings with the given similar-
ity scores. As the CRW dataset comes without development
data on which hyperparameters might be optimized, we ex-
tend the dataset by creating our own development set.! To
this end, we sample 550 random pairs of words from the
Rare Words dataset, with the only restrictions that (i) the cor-
responding rare words must not occur in any of the pairs of
the CRW dataset and (ii) they occur in at least 128 sentences
of the WWC. We then use the WWC to obtain randomly
sampled contexts for each rare word in these pairs.

Model Setup and Training

For our evaluation on both datasets, we use the WWC to
obtain the contexts required for training; the same corpus
was also used by Herbelot and Baroni (2017) and Khodak et
al. (2018) for training of their models.

To construct our set of training instances, we restrict our-
selves to words occurring at least 100 times in the WWC.
We do so because embeddings of words occurring too infre-
quently generally tend to be of rather low quality. We there-
fore have no clear evaluation in these cases as our model
may do a good job at constructing an embedding for an in-
frequent word, but it may be far from the word’s original,
low-quality embedding. Let w € V be a word and let ¢(w)
denote the number of occurrences of w in our corpus. For
each iteration over our dataset, we create n(w) training in-
stances {(W,C1), ..., (W,Cyw))} from this word, where

J;5).

'Our development set is publicly available at https:/github.
com/timoschick/form-context-model

c(w)

n(w) = min(|
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The number n(w) is designed to put a bit more emphasis
on very frequent words as we assume that, up to a certain
point, the quality of a word’s embedding increases with its
frequency. For each i € {1,...,n(w)}, the context set C;
is constructed by sampling 20 random sentences from our
corpus that contain w.

For surface-form embeddings, we set nn;, = 3 and
Nmax = D. We only consider n-grams that occur in at least
3 different words of our training corpus; every other n-gram
is replaced by a special (unk) token. We initialize all param-
eters as described by Glorot and Bengio (2010) and use a
batch size of 64 examples per training step. Training is per-
formed using the Adam optimizer (Kingma and Ba 2015)
and a learning rate of 0.01. For training of our model with
the embeddings provided by Herbelot and Baroni (2017),
both the learning rate and the number of training epochs is
determined using the train part of the DN dataset, search-
ing in the range {0.1,0.01,0.001} and {1, ..., 10}, respec-
tively. As we assume both the quality and the dimension of
the original embeddings to have a huge influence on the opti-
mal parameters for our model, we separately optimize these
parameters for training on the embeddings by Khodak et al.
(2018) using our newly constructed development set. In all
of the experiments described below, we use the cosine dis-
tance to measure the similarity between two embedding vec-
tors.

5 Evaluation

To evaluate the quality of the representations obtained using
our method, we train our model using the embeddings of
Herbelot and Baroni (2017) and compare the inferred em-
beddings for all words in the DN test set with their actual
embeddings. For this comparison, we define the rank of a
word w to be the position of its actual embedding e(w) in the
list of nearest neighbors of our inferred embedding v(w c),
sorted by similarity in descending order. That is, we simply
count the number of words whose representations are more
similar to the embedding assigned to w by our model than
its original representation. For our evaluation, we compute
both the median rank and the mean reciprocal rank (MRR)
over the entire test set.

The results of our model and various other approaches
are shown in Table 1. Scores for the original skipgram algo-
rithm, the Nonce2Vec model and an additive baseline model
that simply sums over all context embeddings are adopted
from Herbelot and Baroni (2017), the result of the A La
Carte embedding method is the one reported by Khodak et
al. (2018). To obtain results for the Mimick model, we used
the original implementation by Pinter, Guthrie, and Eisen-
stein (2017). Recall that we distinguish between the single-
parameter model, in which the composition coefficient « is a
single learnable parameter, and the gated model, in which «
depends on the two embeddings. To see whether any poten-
tial improvements over previous approaches are indeed due
to our combination of surface-form and context information
and not just due to differences in the models themselves, we
also report scores obtained using only the surface-form and
only the context parts of our model, respectively.



Model Type Median Rank MRR

Mimick S 85573 0.00006
Skipgram C 111012 0.00007
Additive C 3381 0.00945
Nonce2Vec C 623 0.04907
A La Carte C 165.5 0.07058
surface-form S 404.5 0.12982
context C 184 0.06560
single-parameter S&C 55 0.16200
gated S&C 49 0.17537

Table 1: Results of various approaches on the DN dataset.
The “Type” column indicates whether the model makes use
of surface-form information (S) or context information (C).
Results are shown for single-parameter and gated configu-
rations of the form-context model.

As can be seen, using only surface-form information re-
sults in a comparatively high MRR, but the obtained median
rank is rather bad. This is due to the fact that the surface-
form model assigns very good embeddings to words whose
meaning can be inferred from a morphological analysis, but
completely fails to do so for most other words. The con-
text model, in contrast, works reasonably well for almost
all words but only infrequently achieves single-digit ranks.
The combined form-context model clearly outperforms not
only the individual models, but also beats all previous ap-
proaches. Interestingly, this is even the case for the single-
parameter model, in which « is constant across all words.
The optimal value of o learned by this model is 0.19, show-
ing a clear preference towards surface-form embeddings.

The gated configuration further improves the model’s
performance noticeably. Especially the median rank of 49
achieved using the gated model architecture is quite remark-
able: Considering that the vocabulary consists of 259,376
words, this means that for 50% of the test set words, at most
0.019% of all words in the vocabulary are more similar to
the inferred embedding than the actual embedding. Similar
to the single-parameter model, the average value of o over
the entire test set for the gated model is 0.20, with individual
values ranging from 0.07 to 0.41. While this shows how the
gated model learns to assign different weights based on word
form and context, the fact that it never assigns values above
a = 0.41 —i.e., it always relies on the surface-form embed-
ding to a substantial extent — indicates that the model may
even further be improved through a more elaborate compo-
sition function.

As a second evaluation, we turn to the CRW dataset for
which results are shown in Figure 2.2 We use Spearman’s
rho as a measure of agreement between the human similar-
ity scores and the ones assigned by the model. As the CRW

Results reported in Figure 2 differ slightly from the ones by
Khodak et al. (2018) because for each word pair (w1, wz) of the
CRW corpus, the authors only estimate an embedding for wo and
take e(w1) as the embedding for wy; if wi is not in the domain
of e, a zero vector is taken instead. In contrast, we simply infer an
embedding for w; analogically to w in the latter case.
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Figure 2: Results on the CRW dataset by (Khodak et al.
2018) for the averaging baseline (avg), A La Carte (alc),
the surface-form model (form), the context model (context)
and the combined form-context model in its gated version
(frm-ctx) as well as for the skipgram algorithm (skip) when
trained on all 255 contexts

dataset provides multiple contexts per word, we can also an-
alyze how modifying the number of available contexts influ-
ences the model’s performance. As can be seen, our model
again beats the averaging baseline and A La Carte by a large
margin, regardless of the number of available contexts. In-
terestingly, with as little as 8 contexts, our model is almost
on par with the original skipgram embeddings — which were
obtained using all 255 contexts — and even improves upon
them given 16 or more contexts. However, it can also be
seen that the surface-form model actually outperforms the
combined model. While this may at first seem surprising,
it can be explained by looking at how the CRW dataset was
constructed: Firstly, Luong, Socher, and Manning (2013) fo-
cused explicitly on morphologically complex words when
creating the original Rare Words dataset, so the CRW dataset
contains many words such as “friendships”, “unannounced”
or “satisfactory” that are particularly well-suited for an ex-
clusively surface-form-based model. Secondly, the provided
contexts for each word are sampled randomly, meaning that
they are of much lower definitional quality than the single
sentences provided in the DN dataset. Despite this bias of
the dataset towards surface-form-based models, given 32 or
more contexts, the combined model performs comparable to
the surface-form embeddings. However, the results clearly
indicate that our model may even further be improved upon
by incorporating the number and quality of the available
contexts into its composition function.

Of course, we can also compare our approach to the
purely surface-form-based fastText method of Bojanowski
et al. (2017), which, however, makes no use of the orig-
inal embeddings by Khodak et al. (2018). We therefore
train 300-dimensional fastText embeddings from scratch on
the WWC, using the same values of npi, and ny.x as for
our model. While the so-trained model achieves a value of



p = 0.496 — as compared to p = 0.471 for our surface-
form model — a direct comparison to our method is not ap-
propriate as our model’s performance is highly dependent
on the embeddings it was trained from. We can, however,
train our method on the embeddings provided by fastText to
allow for a fair comparison. Doing so results in a score of
p = 0.508 for the gated model when using 128 contexts,
showing that even for word embedding algorithms that al-
ready make use of surface-form information, our method
is helpful in obtaining high-quality embeddings for novel
words. Noticeably, when trained on fastText embeddings,
the form-context model even outperforms the surface-form
model (p = 0.501).

We also evaluate the form-context model on seven super-
vised sentence-level classification tasks using the SentEval
toolkit (Conneau and Kiela 2018).3 To do so, we train a
simple bag-of-words model using the skipgram embeddings
provided by Khodak et al. (2018) and obtain embeddings
for OOV words from either the form-context model, the
A La Carte embedding method or the averaging baseline, us-
ing as contexts all occurrences of these words in the WWC.
While the form-context model outperforms all other mod-
els, it does so by only a small margin with an average ac-
curracy of 75.34 across all tasks, compared to accuracies of
74.98, 74.90 and 75.27 for skipgram without OOV words,
A La Carte and the averaging baseline, respectively. Presum-
ably, this is because novel and rare words have only a small
impact on performance in these sentence-level classification
tasks.

6 Analysis

For a qualitative analysis of our approach, we use the gated
model trained with the embeddings provided by Herbelot
and Baroni (2017), look at the nearest neighbors of some
embeddings that it infers and investigate the factors that con-
tribute most to these embeddings. We attempt to measure the
contribution of a single n-gram or context word to the em-
bedding of a word w by simply computing the cosine dis-
tance between the inferred embedding v(w c) and the em-
bedding obtained when removing this specific n-gram or
word.

For a quantitative analysis of our approach, we measure
the influence of combining both models on the embedding
quality of each word over the entire DN test set.

Qualitative analysis

Table 2 lists the nearest neighbors of the inferred embed-
dings for selected words from the DN dataset where the con-
text set C simply consists of the single definitional sentence
provided. For each embedding v(w,c), Table 2 also shows
the rank of the actual word w, i.e., the position of the ac-
tual embedding e(w) in the sorted list of nearest neighbors.
It can be seen that the combined model is able to find high-
quality embeddings even if one of the simpler models fails
to do so. For example, consider the word “spies” for which
the surface-form model fails to find a good embedding. The

3We use the MRPC, MR, CR, SUBJ, MPQA, SST2 and SST5
tasks for this evaluation.
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spies hygiene perception
. hyg?‘”“C’ interception,
pies, cakes, hygiene, . .
f ied i nterceptions,
orm spied, cleansers,
sandwiches hypoaller- fumble,
VP touchdowns
genic
rank 668 2 115
espionage, hygieia, Sensory,
clandestine, goddess, perceptual,
context oo .
covert, eileithyia, auditory,
spying asklepios contextual
rank 8 465 51
espionage, hygienic, sensory,
frm- spying, hygieia, perceptual,
ctx clandestine, health, perception,
covert hygiene auditory
rank 6 4 3

Table 2: Nearest neighbors and ranks of selected words
when using surface-form embeddings, context embeddings
and gated form-context (frm-ctx) embeddings

reason for this becomes obvious when analyzing the contri-
bution of each n-gram for the final embedding. This contri-
bution is shown at the top of Figure 3, where a darker back-
ground corresponds to higher contribution. It can be seen
there that the high contribution of n-grams also occurring
in the word “pies” — which, while having a similar surface-
form, is semantically completely different from “spies” —, is
the primary reason for the low quality embedding. Despite
this, the embeddings found by both the context model and
the combined model are very close to its actual embedding.

In a similar fashion, the context model is not able to come
up with a good embedding for the word “hygiene” from the
provided definitional sentence. This sentence can be seen at
the bottom of Figure 3 where, as before, words are high-
lighted according to their importance. While the linear trans-
formation applied to the context embeddings helps to filter
out stop words such as “which”, “of” and “the” which do
not contribute to the word’s meaning, the sentence is still
too complex for our model to focus on the right words. This
results in the context embedding being closer to words from
Greek mythology than to words related to hygiene. Again,
the combined model is able to alleviate the negative effect of
the context model, although it performs slightly worse than
the purely surface-form-based model. For the last example
provided, “perception”, neither of the two simpler models
performs particularly well: The surface-form model is only
able to capture the word’s part of speech whereas the context
model finds semantically related words with different parts
of speech. Interestingly, the form-context model is still able
to infer a high-quality embedding for the word, combining
the advantages of both models it is composed of.

The values of « assigned to all three of the above words by
the gated model show that, to some extent, it is able to dis-



(s)sp (s)spi (s)spie spi spie spies pie  pies
pies(e) ies ies(e) es(e)

which comes from the name of the greek
goddess of health hygieia is a set of
practices performed for the preservation of
health

Figure 3: Importance of n-grams for the surface-form em-
bedding of “spies” (top) and of context words for the context
embedding of “hygiene” (bottom)

tinguish between cases in which context is helpful and cases
where it is better to rely on surface-form information: While
the embedding for “hygiene” is composed with a value of
o = 0.22, both the embeddings of “spies” and “perception”
put more focus on the context (o« = 0.32 and o« = 0.33,
respectively). To further analyze the weights learned by our
model, Table 3 lists some exemplary words with both com-
parably high and low values of o.. The words with the lowest
values almost exclusively refer to localities that can easily be
identified by their suffixes (e.g. “ham”, “bury”). Among the
words with high values of «, there are many abbreviations
and words that can not easily be reduced to known lemmas.

Quantitative analysis

While the selected words in Table 2 demonstrate cases in
which the representation’s quality does either improve or at
least not substantially deteriorate through the combination of
both embeddings, we also quantitatively analyze the effects
of combining them to gain further insight into our model. To
this end, let 7orm (W), Tcontext (W) and rm.cx (W) denote the
rank of a word w when the surface-form model, the context
model and the form-context model is used, respectively. We
measure the influence of combining both models by com-
puting the differences

dm(W) = Tfrm—clx(w) - Tm(w)

for each word w of the DN test set and m € {context, form}.
We then define a set of rank difference buckets

B ={£10° i€ {1,...,4}} U {0}
and assign each word w to its closest bucket,

bw,m = arg min [b — dyn (W)].

The number of words in each so-obtained bucket can be seen
for both surface-form and context embeddings in Figure 4.
To get an understanding of how different combination func-
tions influence the resulting embeddings, rank differences
are shown for both the single-parameter and gated configu-
rations of the form-context model.

As can be seen in Figure 4 (top), the combined archi-
tecture dramatically improves representations for approxi-
mately one third of the test words, compared to the purely
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Words with high form weight (o < 0.1)
cookstown, feltham, sydenham, wymondham, cleveland,
banbury, highbury, shaftesbury

Words with high context weight (« > 0.3)
poverty, hue, slang, flax, rca, bahia, atari, snooker, icq,
bronze, esso

Table 3: Selection of words from the DN development set
where the weight of the surface-form embedding (top) or
context embedding (bottom) is especially high

surface-form-based model. These are almost exclusively
words which can not or only with great difficulty be derived
morphologically from any known words, including many
abbreviations such as “BMX” and “DDT”, but also regular
words such as “whey”, “bled”, and “wisdom”. While a more
sophisticated model might actually be able to morphologi-
cally analyze the latter two words, our simple n-gram based
model fails to do so. For most other words, adding context
information to the surface-form model only moderately af-
fects the quality of the obtained representations.

As the context model assigns to most words represen-
tations that at least broadly capture their semantics, only
very few of its embeddings improve as much as for the
surface-form model when adding surface-form information
(Figure 4, bottom). However, it can be seen that many em-
beddings can at least slightly be refined through this ad-
ditional information. As one might expect, the words that
profit most are those for which the provided definitions are
hard to understand and a morphological analysis is compar-
atively easy, including “parliamentarian”, “virtuosity” and
“drowning”. We can also see the positive influence of de-
signing « as a function of both embeddings, i.e., of the gated
model: It does a better job at deciding when context-based
embeddings may be improved by adding surface-form-based
information. However, it can also be seen that the represen-
tations of several words worsen when combining the two
embeddings. In accordance with the observations made for
the CRW dataset, this indicates that the model might further
be improved by refining the composition function.

In order to gain further insight into the model’s strengths
and weaknesses, we finally evaluate it on several subgroups
of the DN test set. To this end, we categorize all nouns con-
tained therein as either proper nouns or common nouns, fur-
ther subdividing the latter category into nouns whose lemma
also occurs in other frequent words (e.g. “printing” and
“computation”) and other nouns (e.g. “honey” and “april”).
Table 4 shows the performance of the form-context model
for each of these word groups. Naturally, the surface-form
model performs far better for words with known lemmas
than for other words; it struggles the most with proper nouns
as the meaning of many such nouns can not easily be de-
rived from their surface form. Accordingly, proper nouns
are the only category for which the purely context-based
model performs better than the surface-form model. It is in-
teresting to note that the improvements from combining the
two embeddings using the gated model are consistent across
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Figure 4: Effect of adding the context submodel (top) and the
surface-form submodel (bottom). The rank difference buck-
ets were created by applying the djoy, difference function
(top) and deonexe difference function (bottom) to the entire
DN test set.

all categories. The largest difference between the single-
parameter and the gated model can be observed for nouns
whose lemma does not occur in other frequent words. This
further indicates that the gated model is able to detect words
which can not easily be reduced to known lemmas and, ac-
cordingly, gives less weight to the surface-form embedding
for those words.

7 Conclusion and Future Work

We have presented a model that is capable of inferring
high-quality representations for novel words by processing
both the word’s internal structure and words in its context.
This is done by intelligently combining an embedding based
on n-grams with an embedding obtained from averaging
over all context words. Our algorithm can be trained from
and combined with any preexisting word embedding model.
On both the Definitional Nonce dataset and the Contextual
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Model Proper nouns  Common nouns
(126) lem (79) oth (86)
surface-form 0.03 0.29 0.12
context 0.06 0.09 0.05
single-parameter 0.10 0.32 0.11
gated 0.11 0.32 0.15

Table 4: MRR of the embeddings inferred by the form-
context model and its components for proper nouns and
common nouns from the DN test set. Common nouns are di-
vided into nouns with known lemmas (lem) and those with-
out (oth). The number of words in each group is shown in
parantheses.

Rare Words dataset, our model outperforms all previous ap-
proaches to learning embeddings of rare words by a large
margin, even beating the embedding algorithm it was trained
from on the latter dataset. Careful analysis of our combined
model showed that in many cases, it is able to effectively
balance out the influences of both embeddings it is com-
posed of, allowing it to greatly improve upon representations
that are either purely surface-form-based or purely context-
based. By providing a development set that complements the
CRW dataset, we hope to further spur research in the area of
“few-shot learning” for word embeddings.

While we showed that a context-dependent combination
of surface-form and context embeddings substantially im-
proves the model’s performance on the Definitional Nonce
task, results on the Contextual Rare Words dataset indicate
that there is still room for further enhancement. This could
potentially be achieved by incorporating the number and in-
formativeness of the available contexts into the composition
function; i.e., the gate would not only be conditioned on
the embeddings, but on richer information about the context
sentences. It would also be interesting to investigate whether
our model profits from using more complex ways than aver-
aging to obtain surface-form and context embeddings, re-
spectively. For example, one might introduce weights for
n-grams and words depending on their contexts (i.e. the
n-grams or words surrounding them). For scenarios in which
not just one, but multiple contexts are available to infer a
word’s embedding, a promising extension of our model is
to weight the influence of each context based on its “defi-
nitional quality”; a similar modification was also proposed
by Herbelot and Baroni (2017) for their Nonce2Vec model.
Yet another interesting approach would be to integrate rela-
tive position information into our model. This could be done
similar to Shaw, Uszkoreit, and Vaswani (2018) by addition-
ally learning position embeddings and weighting the influ-
ence of context words based on those embeddings.
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