
The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

Unseen Word Representation
by Aligning Heterogeneous Lexical Semantic Spaces

Victor Prokhorov,1 Mohammad Taher Pilehvar,1,2 Dimitri Kartsaklis,3∗ Pietro Liò,4 Nigel Collier1
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Abstract

Word embedding techniques heavily rely on the abundance
of training data for individual words. Given the Zipfian distri-
bution of words in natural language texts, a large number of
words do not usually appear frequently or at all in the training
data. In this paper we put forward a technique that exploits
the knowledge encoded in lexical resources, such as Word-
Net, to induce embeddings for unseen words. Our approach
adapts graph embedding and cross-lingual vector space trans-
formation techniques in order to merge lexical knowledge en-
coded in ontologies with that derived from corpus statistics.
We show that the approach can provide consistent perfor-
mance improvements across multiple evaluation benchmarks:
in-vitro, on multiple rare word similarity datasets, and in-
vivo, in two downstream text classification tasks.

1 Introduction
Word embeddings can be seamlessly integrated into var-
ious NLP systems, effectively enhancing their generalisa-
tion power (Camacho-Collados and Pilehvar 2018). How-
ever, the distributional approach to the semantic representa-
tion of words, either in its conventional count-based form or
the recent neural-based paradigm, relies on a multitude of
occurrences for each individual word to enable accurate rep-
resentations. As a result, these corpus-based methods are un-
able to provide reliable representations for words that are in-
frequent or unseen during training, such as domain-specific
terms. This is the case even if massive corpora are used for
training, such as the Wikipedia corpus.1

To address the unseen word representation problem, sev-
eral techniques have been proposed. Earlier works have
mainly focused on morphologically complex words (Lu-
ong, Socher, and Manning 2013; Botha and Blunsom 2014;
Soricut and Och 2015), whereas more recently, character-
based and subword unit information has garnered a lot of at-
tention (Bojanowski et al. 2017). Despite their success, these

∗Contributed to this work when he was with DTAL, Cambridge.
Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1In the 2015 Wikipedia dump corpus with around 1.6B tokens,
there are slightly over 1.9M word types with at least three occur-
rences. Of these word types, more than 80% appear at most 50
times in total, whereas more than two thirds of words in the vocab-
ulary have frequency ≤ 20.

models make two assumptions around the unseen word: (1)
variations of the word exist in the training corpus (for in-
stance, occurrences of track—or even untrack—should ex-
ist to induce embeddings for untracked); and (2) the seman-
tics of the word can be estimated based on its subword units
(which might not hold for single-morpheme words, e.g.,
galaxy, or for exocentric compounds, e.g., honeymoon). As
a result, they fall short of effectively representing the seman-
tics of unseen single-morpheme words for which no varia-
tion has been observed during training, essentially ignoring
most of the rare domain-specific entities which are crucial
for NLP systems when applied to those domains.

Furthermore, distributional techniques generally ignore
the lexical knowledge encoded in dictionaries, ontologies,
or other lexical resources. There exist hundreds of high cov-
erage and domain-specific lexical resources which contain
valuable information for infrequent words. Recently, various
embedding induction techniques have attempted to lever-
age lexical resources, such as WordNet (Pilehvar and Col-
lier 2017; Bahdanau et al. 2017) or Wikipedia (Lazaridou,
Marelli, and Baroni 2017). Despite their success, they either
rely on word definitions (glosses) or related words extracted
from the the lexical resource while ignoring the knowl-
edge encoded in the semantic structure. Here, we present a
methodology that exploits the semantic structure of the lex-
ical resource for unseen word representation. The technique
first embeds a knowledge base into a vector space and then
maps the embedded words from this space to a corpus-based
space, in order to expand the vocabulary of the latter with
additional representations for rare and unseen words. To our
knowledge, it is the first time that vector space transforma-
tion techniques, which are widely used in multilingual set-
tings, are leveraged for aligning heterogeneous monolingual
spaces. We evaluate the reliability of our approach on several
datasets across multiple tasks: six datasets for word similar-
ity measurement and eight sentiment analysis and topic cat-
egorization datasets. Experimental results show that, unless
ample occurrences exist in the training data, we can com-
pute more reliable embeddings than the ones generated by
state-of-the-art corpus based embedding techniques.

2 Methodology
Figure 1 illustrates our procedure for enriching an existing
corpus vector space SC based on the lexical knowledge in an
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Figure 1: Our coverage enhancement procedure. The dashed lines represent semantic bridges and the solid line represents a rare
word that is projected from the knowledge vector space to the corpus vector space.

external knowledge base (KB) K. The proposed algorithm
mainly relies on techniques from two research areas: graph
embedding and vector space transformation. Two main steps
are involved in the process. First, it views K as a knowl-
edge graph and transforms it to a vector space representa-
tion (SK) by leveraging graph embedding techniques (Sec-
tion 2.2). Then, it aligns the two vector spaces, i.e., KB- (SK)
and corpus-based (SC), by using vector space transformation
algorithms (Section 2.3). As a result of this alignment, new
embeddings are induced for unseen words in SC . In our toy
example in Figure 1, the term acidosis is missing from the
vocabulary of SC but it is covered by the knowledge base
K. First, a graph embedding algorithm is used to embed
K, represented as a graph, into a vector space SK. Then,
based on common clues from the two spaces, a transfor-
mation function is learnt in order to map the vectors across
the two spaces. The transformation function (from the em-
bedded KB space SK to the corpus space SC) allows us to
project the vector for acidosis to the latter space, hence in-
ducing a new representation for the word.

2.1 Prerequisites
The knowledge base embedding algorithms used in our pro-
cedure require K to be representable as a semantic network
(knowledge graph). In our experiments, we used WordNet
3.0 (Fellbaum 1998) as external knowledge base. The re-
source contains around 120K groups of synonyms, referred
to as synsets, which are connected to each other by means
of around 200K lexical semantic relations, such as hyper-
nymy and meronymy. Thanks to these relations, WordNet
can be readily viewed as a semantic network. We further en-
rich the network by connecting a synset to all other synsets
that appear in its disambiguated gloss2. This approach more
than doubles the number of edges in WordNet’s semantic
network. As for the corpus vector space, any distributional
semantic representation can be used. In our experiments, we
opted mainly for word embeddings (rather than conventional
count-based representations) due to their popularity.

Our procedure requires two additional conditions. Let VK
and VC be the respective vocabularies of knowledge base and

2wordnet.princeton.edu/glosstag.shtml

corpus vector spaces. The first condition to be met is that VK
and VC should have overlapping words, i.e., VK ∩ VC 6= φ.
This is required for enabling the alignment of the two spaces
(to be discussed in Section 2.3). The second condition is
that the knowledge base K has to provide lexical knowledge
for unseen or infrequent words in the corpus vector space.
Thanks to the abundance of knowledge bases and the long
tail of words in distributional representations, this condition
is not difficult to be fulfilled.

2.2 Knowledge Base Embedding
The proposed coverage enhancement procedure starts by
transforming the lexical knowledge representation in the
knowledge base K to a form which is comparable to the
corpus-based representation SC . To this end, we embed the
structural lexico-semantic knowledge of K into a vector
space SK.

We opted for node2vec3 (Grover and Leskovec 2016),
a random walk based graph embedding technique which
has proven its potential in the reliable representation of
graph nodes. Given a graph G, the algorithm first gener-
ates a stream of artificial “sentences” by performing a se-
ries of random walks over G. Each such “sentence” con-
tains a sequence of “words” (i.e, vertices) such that con-
secutive words correspond to neighbouring vertices in G.
Analogously to the natural language text in which seman-
tically similar words are expected to appear in similar con-
texts, an artificial sentence encodes local information for
a node from the graph by placing topologically close ver-
tices in similar contexts. Representations are then computed
for individual vertices by taking a similar objective to the
Skip-gram model (Mikolov et al. 2013), i.e., by maximizing∏i+z

j=i−z,j 6=i Pr(wj |wi) which is the probability of a word
wi given its context, where z is the window size or the length
of the random walk. The only difference from the original
Skip-gram model lies in the way input “sentences” are con-
structed.

In our experiments, we set the parameters of node2vec as
follows: walk length to 100, window size to 10, and embed-

3https://github.com/snap-stanford/snap/tree/master/examples/
node2vec

6901



ding dimensionality to 100. To decide on these parameters,
we carried out experiments on the MTURK-771 dataset (Ha-
lawi et al. 2012). Also, note that nodes in the semantic graph
of WordNet represent synsets. Hence, a polysemous word
would correspond to multiple nodes. In our word similarity
experiments (Sections 3.1 and 3.2) we use the MaxSim as-
sumption of Reisinger and Mooney (2010) in order to map
words to synsets: the similarity of two words is computed as
that of their closest associated meanings. In the downstream
experiment (Section 3.3), we compute a single word vector
as the average of its corresponding synsets’ vectors.

2.3 Vector Space Alignment
Once the lexical resource K is represented as a vector space
SK, we project it to SC in order to improve the word cov-
erage of this space with additional words from SK. In this
procedure we make two assumptions. Firstly, the two spaces
provide reliable models of word semantics; hence, the rela-
tive within-space distances between words in the two spaces
are comparable. Secondly, there exists a set of shared words
between the two spaces (also mentioned in Section 2.1); we
refer to these words as semantic bridges.

For this transformation we opted for Canonical Corre-
lation Analysis (Faruqui and Dyer 2014; Upadhyay et al.
2016, CCA), which is widely used for the projection of
spaces belonging to different languages with the purpose of
learning multilingual semantic spaces.4 The model receives
as input two vector spaces for two different languages and a
seed lexicon for that language pair, and learns a linear map-
ping between the two spaces. Ideally, words that are seman-
tically similar across the two languages will be placed in
close proximity to each other in the projected space.

Specifically, let S ′C ⊂ SC and S ′K ⊂ SK be the corre-
sponding subsets of semantic bridges, i.e., words that are
monosemous according to the WordNet sense inventory, for
corpus and KB spaces, respectively. Note that S ′C and S ′K
form matrices that contain representations for the same set
of words, i.e., |S ′C | = |S ′K|. CCA finds a linear combination
of dimensions in SC and SK which have maximum correla-
tion with each other. Given two column vectors S ′C and S ′K
of embeddings in the two spaces, CCA computes vectors
wC and wK such that the random variables wCS ′C and wKS ′K
maximize the correlation ρ(wCS ′C , wKS ′K):

w∗C , w
∗
K = CCA(S ′K,S ′C)

= arg max
wC,wK

ρ(wCS ′C , wKS ′K)

= arg max
wC,wK

wCΣCKwK√
wCΣCwT

C

√
wKΣKwT

K

where ΣX and ΣX,Y denote covariance and cross-
covariance, respectively. Note that the maximization is in-
variant to scaling of wC and wK. Hence, we can have a con-
straint for unit variance:

4We also performed experiments with least squares regression
(Mikolov, Le, and Sutskever 2013; Dinu and Baroni 2014). How-
ever, CCA proved to be consistently better. We do not report LS
results due to lack of space.

w∗C , w
∗
K = arg max

wCΣCwT
C =wKΣKwT

K=1

wCΣCKwK

The dimensionality of the resultant space in our exper-
iments is min(dC , dK) = dK = 100, where dC and dK
are the dimensionalities of the corpus and KB spaces, re-
spectively. An additional constraint forces these projections
to be uncorrelated. The enhanced space S∗ is obtained as
the union of wCSC and wKSK. Note that this procedure is
slightly different from the one illustrated in Figure 1. The
enriched space is a third space which is independent from
the two initial spaces SK and SC .

As for the seed lexicon (the set of semantic bridges S ′C and
S ′K), we used the set of monosemous words in the Word-
Net’s vocabulary which are deemed to have the most reli-
able semantic representations in the corpus vector space. Of
the 155K words in WordNet’s vocabulary, around 128K are
monosemous, which provides us with a large set of semantic
bridges to use for the alignment step. However, in our exper-
iments we found that a small subset of 5K semantic bridges
is enough for achieving reliable transformations.

Graph embedding and space alignment. For this work
we experimented with node2vec. We note that there is a
rich literature for graph embeddings (Cai, Zheng, and Chang
2017). A series of algorithms first construct an adjacency
matrix of the graph and obtain embeddings by directly fac-
torising this matrix (Cao, Lu, and Xu 2015; Roweis and Saul
2000), whereas others employ deep learning techniques,
such as autoencoders (Wang, Cui, and Zhu 2016). Relation
embedding techniques such as TransE (Bordes et al. 2013)
and HOLE (Nickel, Rosasco, and Poggio 2016) are not suit-
able candidates for our purpose since their focus is rather
on the embedding of edges (as opposed to nodes). As noted
before, for the space alignment we experimented with CCA
which is a linear model of projection. We leave the evalua-
tion of non-linear transformation techniques, such as Kernel
CCA (Akaho 2006) and Deep CCA (Andrew et al. 2013),
and other graph embedding techniques, to future work.

3 Experiments
In this section we provide three different sets of experiments
that were carried out to evaluate the reliability of our rare
word embedding induction technique (which we will refer
to as ALIGN). First, we report results for in-vitro evalua-
tions on the Stanford Rare Word similarity dataset (Section
3.1) and in a simulated rare word similarity setting (Section
3.2). We then verify the reliability of our induced embed-
dings in two downstream NLP tasks, sentiment analysis and
topic categorization. This experiment is detailed in Section
3.3. The code used in our experiments will be released to
allow future experimentation and comparison.5

3.1 Rare Word Similarity
The Stanford Rare Word (RW) Similarity dataset (Luong,
Socher, and Manning 2013) has been regarded as a standard
benchmark for evaluating embedding induction techniques.

5https://github.com/VictorProkhorov/AAAI2019
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Embedding W2V-GN W2V-WP

r ρ r ρ

W2V-GN 0.44 0.45 0.41 0.43
+ Additive 0.46 0.48 0.41 0.43
+ SemLand 0.48 0.51 0.39 0.40
+ LSTM 0.48 0.50 0.40 0.40
+ ALIGN 0.48 0.48 0.42 0.42

Table 1: Pearson (r) and Spearman (ρ) correlation for our ap-
proach (ALIGN) on the RW dataset with two pre-trained sets
of word embeddings, before and after enhancement with var-
ious methods. FastText-WP (trained on the Wikipedia cor-
pus): r = 0.44, ρ = 0.44 and node2vec (without any align-
ment and independent from corpus embeddings): r = 0.16,
ρ = 0.16.

The dataset comprises 2034 pairs of infrequent words, such
as ulcerate-change and nurturance-care. In the first evalua-
tion, we use this benchmark to compare our model against
recent rare word representation techniques.

Experimental setup. We experimented with two sets of
word2vec (Mikolov et al. 2013) embeddings trained on two
different corpora: (1) W2V-GN, the Google News (vocab:
3M, dim: 300)6, and (2) W2V-WP, the Wikipedia corpus
(Shaoul and Westbury 2010) (vocab: 2.4M, dim: 300). As
for comparison systems, we benchmark our results against
four other approaches: (1) SemLand (Pilehvar and Collier
2017) which extracts for an unseen word the set of its se-
mantically related words from WordNet and induces an em-
bedding by combining their embeddings; (2) the Additive
model of Lazaridou, Marelli, and Baroni (2017) which takes
the unseen word’s definition as semantic clue and induces an
embedding by adding (averaging) the embeddings of content
words in the defintion; (3) LSTM-based strategy of Bah-
danau et al. (2017) which is a more complex version of
the additive model that relies on an LSTM network which
receives as its input the WordNet definition of the unseen
word; and (4) FastText (Bojanowski et al. 2017) which com-
putes a word embedding by combining the embeddings of its
sub-word character n-grams (see Section 4 for more details).

Results. Table 1 shows correlation performance on the
dataset for the two pre-trained word embeddings, in their ini-
tial form and when enhanced with additional induced word
embeddings. Among the two initial embeddings, W2V-GN
provides a lower coverage (173 out-of-vocabulary words
vs. 88 for W2V-WP) despite its larger vocabulary (3M vs.
2.4M). All enhanced embeddings attain near full coverage
(over 99%), thanks to the vocabulary expansion offered by
WordNet. Our approach (ALIGN) produces competitive per-
formance across the two settings and according to both
Pearson and Spearman correlation metrics. The performance

6code.google.com/archive/p/word2vec/

(r = 0.16, ρ = 0.16) of node2vec, when independently ap-
plied to this dataset, is notably lower than that of the initial
corpus embeddings. However, it is interesting to note that
these non-optimal embeddings can better the performance
of corpus embeddings when combined with them, showing
the complementarity of the two sources of information.

Comparison with FastText. FastText proves competitive
on the dataset (r = 0.44, ρ = 0.44), highlighting the effec-
tiveness of induced word embeddings from sub-word (char-
acter) information. This is not a surprise given that around
a third of the rare words in the RW dataset are plural or -
ed forms which can be easily handled by resorting to the
embedding of their singular or uninflected forms. For in-
stance, kindergarteners and postponements are highly sim-
ilar to their singular forms and the semantics of encrusted
and entrapped can be estimated to a good extent from en-
crust and entrap which are relatively more frequent terms.
None of the other models in the table have access to this
information. However, as mentioned earlier, the sub-word
backoff strategy might not be effective for single-morpheme
words and exocentric compounds, which in a real-world sce-
nario account for the most frequent cases of unseen words
and can be effectively handled by our model.

Reliability of the RW dataset. The Stanford Rare Word
Similarity dataset has been regarded as a standard evalua-
tion benchmark for rare word representation and similarity,
and as such it is included in the experiments of this paper.
However, the variance across the scores provided by dif-
ferent annotators for the same pair is generally high in this
dataset. This is mainly due to the reliance of the dataset on
crowdsourcing without having rigorous checkpoint on the
raters. As also highlighted by Pilehvar et al. (2018), the low-
confidence annotations are also reflected by contradictory
instances, such as the two (almost) identical pairs tricolour-
flag and tricolor-flag which have received the two very dif-
ferent scores of 5.80 and 0.71. Hence, further improvements
on the dataset (over the W2V-GN baseline), provided by dif-
ferent techniques, cannot be meaningfully interpreted. Given
the unreliability of the benchmark, in the following sec-
tion, we provide an alternative evaluation based on standard
(common) word similarity benchmarks.

3.2 Simulated Rare Word Similarity

For a word similarity dataset to be suitable for this evalua-
tion, it has to contain words that are infrequent in generic
texts. However, most of the existing standard word simi-
larity datasets contain only high frequency words, which
makes them unsuitable for evaluating rare word represen-
tation techniques. To work around this limitation, we follow
Sergienya and Schütze (2015) and leverage corpus down-
sampling in order to artificially transform standard word
similarity datasets to rare word similarity benchmarks. This
enables us to evaluate our embedding induction technique
on a variety of standard datasets.
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Embedding Setting RG-65 SimLex-999 MEN-3000 SimVerb-3500 WS-353 Sim
r ρ r ρ r ρ r ρ r ρ

Initial word2vec

T = 10 0.40 0.42 0.15 0.12 0.46 0.45 0.07 0.08 0.53 0.54
T = 20 0.54 0.56 0.22 0.21 0.53 0.52 0.12 0.11 0.63 0.62
T = 50 0.63 0.63 0.26 0.24 0.63 0.62 0.15 0.15 0.68 0.69
T = 100 0.68 0.69 0.30 0.28 0.65 0.64 0.19 0.18 0.73 0.73

ALIGN T = 0 0.86 0.88 0.40 0.37 0.65 0.66 0.42 0.39 0.71 0.69
LSTM T = 0 0.52 0.57 0.19 0.19 0.19 0.20 0.28 0.29 0.18 0.21
Additive T = 0 0.56 0.59 0.17 0.13 0.24 0.23 0.21 0.20 0.31 0.32
SemLand T = 0 0.52 0.53 0.22 0.20 0.38 0.38 0.23 0.22 0.43 0.40

FastText T = 0 0.77 0.80 0.32 0.32 0.76 0.76 0.22 0.21 0.74 0.73

Table 2: Results of corpus-based and enhanced embeddings in the simulated rare word similarity setting.

Experimental setup. Let T be the rarity threshold, i.e.,
the expected occurrence frequency of an artificial rare word
in the training text corpus. We process the original text cor-
pus in order to guarantee that each word in the similarity
dataset appears at most T times in the training corpus. This
can be achieved by replacing all but T occurrences of the
word with another unique token (e.g., the word concatenated
by some unique character). As a result of this procedure,
we obtain a corpus for each T value and for each dataset.
Training word embeddings on these corpora simulates a set-
ting in which all the words in the word similarity dataset are
rare as they occur infrequently in the training corpus. Except
from the corpus downsampling step, the experimental setup
is similar to that of the previous experiment.

Datasets. For this experiment, we opted for five standard
word similarity datasets: RG-65 (Rubenstein and Goode-
nough 1965), SimLex-999 (Hill, Reichart, and Korhonen
2015), MEN (Bruni, Tran, and Baroni 2014), WordSim-353
similarity subset (Agirre et al. 2009), and SimVerb-3500
(Gerz et al. 2016) which contains verbs only.

Results. Table 2 lists correlation performance results on
the five datasets and for four different values of T (10, 20,
50, and 100) for the initial downsampled W2V-WP embed-
dings7 as well as for enhanced embeddings using different
techniques for T = 0 (unseen word setting). As expected,
there is a steady improvement for the corpus-based embed-
dings with increasing values of T . On all the datasets and
according to both evaluation measures, ALIGN significantly
improves over the three other WordNet-based approaches.
Interestingly, our induced embeddings consistently outper-
form corpus embeddings which are constructed with T =
10, 20, and 50 on all the datasets and are often better or
on par with T = 100. This means that our approach can
produce embeddings that are as reliable as those corpus em-
beddings that are computed based on 100 occurrences. This
is important as around 80% of the words in the vocabulary

7Obviously, for T = 0, word2vec would be unable to learn any
embeddings, hence we do not show that setting.

of the Wikipedia corpus appear fewer than 50 times in the
whole corpus (see Footnote 1). Moreover, surprisingly, on
the SimVerb dataset the induced embeddings perform sig-
nificantly better than the corpus-based embeddings, even at
T = 100. This shows the superior quality of the induced
verb embeddings, thanks to the hand-crafted part-of-speech-
specific knowledge encoded for them in WordNet.

Similarly to the previous experiment, FastText proves to
be a competitive baseline, outperforming our induced em-
beddings on two datasets. However, again, we note that
FastText benefits from the advantage of having access to
all plural forms of these (originally frequent) downsampled
words in the training dataset, which might not establish a
fair comparison. The simulated rare word similarity datasets
address the unreliability issue of Stanford RW but still do
not represent a real-world rare word scenario. Ideally, such a
dataset would contain named entities, domain-specific terms
or other uncommon words that tend to appear infrequently
in generic text corpora (which are often used for training
word embeddings). We believe that rare word representation
research requires such a high quality benchmark for more
rigorous evaluations. We leave the possibility of the creation
of such datasets to future work.

3.3 Evaluation in Downstream Tasks
We were also interested in having an in-vivo evaluation of
the reliability of our induced embeddings in a real-world
NLP system. Given that currently the most important ap-
plication of word embeddings is in the initialization of the
input layer in neural networks, we opted for a standard neu-
ral system as our evaluation benchmark.

Experimental setup. We experimented with a neural text
classification system applied to two tasks: sentiment analysis
(binary classification) and topic categorization (multi-class
classification). The embedding layer of this system is initial-
ized with pre-trained word2vec embeddings. Let L be the
vocabulary of a given dataset. We dropped the pre-trained
corpus embeddings for X% of the words in L and replaced
them with our induced embeddings. We experimented with
three X values: 0 (in which we used all the corpus embed-
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Initialization Setting Sentiment Analysis Topic Categorization
PL04 PL05 RTC IMDB Stanford BBC NG OH

X = 0%
Initial 66.2 75.4 79.7 85.4 80.4 96.7 86.5 27.8
+ALIGN 63.7 75.6 79.4 86.8 80.5 96.5 87.0 29.3

X = 20% Initial 59.1 67.2 63.8 71.1 70.1 93.1 67.4 16.4
+ALIGN 58.9 69.9 74.5 79.3 77.6 95.1 80.3 25.7

X = 40%
Initial 56.2 63.5 62.7 70.3 66.1 91.0 62.8 15.7
+ALIGN 55.6 68.0 74.5 81.8 76.2 94.5 79.7 28.5

Table 3: Accuracy performance on eight datasets for sentiment analysis and topic categorization. The best results for each
setting are shown in bold. NG and OH stand for Newsgroups and Ohsumed, respectively.

dings to initialize the layer; new embeddings were induced
to further improve coverage for those words missing in cor-
pus embeddings’ vocabulary), 20 and 40 (in which, respec-
tively, 20% and 40% of corpus embeddings were dropped,
i.e., their corresponding words were treated as out of vo-
cabulary). We were mainly interested in observing if the in-
duced embeddings, first, could improve over corpus embed-
dings and, second, were able to re-gain system performance
lost when dropping a part of the corpus embeddings. In all
settings the embedding layer was not updated during train-
ing (static). This allows us to have a direct evaluation on the
reliability of embeddings, independently from any updates
and alteration they can undergo during training. In each con-
figuration we repeat the experiment three times and report
the average performance.

Text classification system. In our experiments, we used a
CNN text classifier which is similar to that of Kim (2014).
The only difference is that in our model, instead of directly
inputting the pooled features from the convolutional layer to
a fully connected softmax layer, they are first passed through
a recurrent layer in order to enable a better capturing of long-
distance dependencies. Specifically, as our recurrent layer
we used LSTM (Hochreiter and Schmidhuber 1997).

Datasets. For sentiment analysis we used five standard
datasets, including PL04 (Pang and Lee 2004), PL05 (Pang
and Lee 2005),8 RTC9, and IMDB (Maas et al. 2011) which
are all binary datasets (with positive and negative labels)
containing snippets of or full movie reviews. We also experi-
mented with Stanford Sentiment dataset (Socher et al. 2013)
which associates phrases with values that denotes their sen-
timents. To be consistent with the other four datasets’ bi-
nary classification setting, we removed the neutral phrases
with scores 0.4 to 0.6 and considered the reviews with val-
ues below 0.4 as negative and above 0.6 as positive. For the
topic categorization task we used two newswire datasets:
The BBC news dataset CR 10 (Greene and Cunningham

8Both PL04 and PL05 are obtained from http://www.cs.cornell.
edu/people/pabo/movie-review-data/

9http://www.rottentomatoes.com
10http://mlg.ucd.ie/datasets/bbc.html

2006) and Newsgroups (Lang 1995) with 5 and 20 classes,
respectively. We also experimented with a domain-specific
categorization dataset: Ohsumed11, which contains medical
texts categorized into 23 classes.

Results. Table 3 shows the results. We report classification
accuracy for the baseline system (“Initial”) which is initial-
ized by full (X = 0%) or partial (X > 0%) corpus-based
embeddings, and for the enhanced systems with additional
induced embeddings (“+ALIGN”). Generally, the enhance-
ment proves to be beneficial as it provides improvements
in most of the configurations across the eight datasets. In
the X = 0% setting, the improvement is particularly no-
ticeable for the IMDB, Newsgroup and Ohsumed datasets
which have a fair portion of their vocabularies not cov-
ered by word2vec embeddings. However, lower or no im-
provement is observed for other datasets (particularly, PL04)
whose vocabularies are largely covered by the corpus em-
beddings. In the X > 0% settings, the performance of the
baseline system drops significantly on most datasets. In the
20% setting, which is the closest to a real-world scenario, the
enhanced system can recover a large part of the lost perfor-
mance on most of the datasets. The same trend is observed
for X = 40%. Interestingly, on the Ohsumed dataset, which
belongs to the medical domain, the enhanced system gets
close to the initial system initialized by corpus embeddings.
This is a strong indication of the effectiveness of our ap-
proach in filling lexical gaps for specific domains. Overall,
the results show that our induced embeddings, though not
sufficient to replace corpus embeddings for frequent words,
can significantly improve over infrequent or unkown embed-
dings, particularly for specific domains.

4 Related Work
Given its importance, unseen word representation has at-
tracted considerable research attention for the past few
years. Earlier techniques have mainly focused on improving
distributional models for better handling of infrequent words
(Sergienya and Schütze 2015), or on inducing embeddings
for morphological variations (Alexandrescu and Kirchhoff
2006; Luong, Socher, and Manning 2013; Lazaridou et al.

11ftp://medir.ohsu.edu/pub/ohsumed
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2013; Botha and Blunsom 2014; Soricut and Och 2015). The
latter branch often utilizes a morphological segmenter, such
as Morfessor (Creutz and Lagus 2007), in order to break in-
flected words into their components and to compute repre-
sentations by extending the semantics of an unseen word’s
morphological variations.

More recently, character-based models have garnered a lot
of attention. In these models words are broken down into
subword units and characters (Bojanowski et al. 2017), usu-
ally irrespective of their morphological structure. An unseen
word’s representation is induced by combining the informa-
tion for its subword units; for instance, by averaging the
vector representations of its constituent character n-grams as
done by FastText (Bojanowski et al. 2017). Character-based
models have been successfully tested in different NLP tasks,
including language modeling (Sutskever, Martens, and Hin-
ton 2011; Graves 2013), part-of-speech tagging (Dos Santos
and Zadrozny 2014; Ling et al. 2015) and syntactic pars-
ing (Ballesteros, Dyer, and Smith 2015). However, all these
techniques fall short of inducing representations for single-
morpheme words that are not seen frequently during training
as they base their modeling on information available from
sub-word units. In contrast, our alignment-based model can
also induce embeddings for single-morpheme words that are
infrequent or unseen in the training data, such as domain-
specific entities.

Most related to our work are the WordNet-based ap-
proaches of Pilehvar and Collier (2017) and Bahdanau et
al. (2017). The former computes an unseen word’s embed-
ding by extracting the set of its semantically similar words
(“semantic landmarks”) from WordNet and combining their
embeddings, whereas the latter trains a recurrent neural net-
work, specifically, an LSTM, to estimate a word’s embed-
ding given its definition from WordNet. Moreover, the ad-
ditive model of Lazaridou, Marelli, and Baroni (2017) is
analoguous to the LSTM model (though less complex) and
computes an embedding as the centroid of the embedding
of the words in its definition. Despite addressing the single-
morpheme word representation limitation of morphological
models, these approaches ignore the information encoded
in WordNet’s lexical-semantic relations. We improve over
these by proposing a model that effectively leverages the se-
mantic network of WordNet. Our experimental results show
that, for the task of embedding induction, structural informa-
tion can result in a more consistent performance than glosses
or similar words.

5 Conclusions and Future Work
We presented a methodology for marrying distributional se-
mantic spaces with lexical knowledge bases and applied it to
the task of extending the vocabulary of the former with the
help of information extracted from the latter. We showed the
reliability of our approach by evaluating the induced em-
beddings on multiple word similarity benchmarks as well
as on a downstream NLP evaluation framework. In future
work, we plan to experiment with domain-specific lexical
resources, such as medical ontologies, and study the efficacy
of our methodology on adapting downstream NLP systems
to new domains.
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