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Abstract

We propose a novel method for enriching word-embeddings
without the need of a labeled corpus. Instead, we show that
relying on a regressor – trained with a small lexicon to pre-
dict pseudo-labels – significantly improves performance over
current techniques that rely on human-derived sentence-level
labels for an entire corpora. Our approach enables enrich-
ment for corpora that have no labels (such as Wikipedia).
Exploring the utility of this general approach in both senti-
ment and non-sentiment-focused tasks, we show how enrich-
ing embeddings, for both Twitter and Wikipedia-based em-
beddings, provide notable improvements in performance for:
binary sentiment classification, SemEval Tasks, embedding
analogy task, and, document classification. Importantly, our
approach is notably better and more generalizable than other
state-of-the-art approaches for enriching both labeled and un-
labeled corpora.

Introduction
Word embeddings (i.e., word vectors, distributed represen-
tations) are dense numeric sequences that represent words
and can subsequently be used as input for a wide variety of
statistical machine learning models and techniques for vari-
ous tasks. The complexity of such encodings varies from the
very simple (e.g., one-hot encoding) to the relatively com-
plex (i.e., automatically generated embeddings by newer
machine learning techniques).

While word embeddings have worked well for a variety
of NLP tasks, because of the distributional hypothesis (Firth
1957), there remains room for improvement. For example,
sentiment words with opposite emotional values are often
used in the same context, and thus have very close repre-
sentations in a language’s vector space — closer than their
antonymy implies. If we could incorporate additional infor-
mation during the creation of our embeddings, we would add
some degree of separation between words that occur in the
same context but with opposite meanings.

Incorporating additional information during embedding
creation, termed “enrichment”, is a well-studied area of
research. In sentiment-analysis, there exist many different
structures for combining the traditional context loss with a
sentiment loss, with the aim of balancing the learning of

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

sentiment and the learning of context (Tang et al. 2016;
Lan et al. 2016; Ren et al. 2016; Faruqui et al. 2015). How-
ever, the vast majority of these techniques require the en-
tire dataset to be labeled at the sentence level as either posi-
tive or negative. This requirement is limiting as many com-
monly used datasets (e.g., news corpora and Wikipedia) do
not come with sentiment labels.

In this work, we introduce a more effective and general-
izable way of incorporating sentiment during the creation of
word embeddings. Our approach, replacing sentence level
labels with pseudo-labels predicted by a regressor, can be
used: (i) to allow for the enrichment of text corpora that
originally did not have labels, and (ii) in conjunction with
a variety of different enrichment architectures.

For this work, we demonstrate the effect of our approach
on Tang et al. (2016)’s architecture, although it can be ap-
plied on other architectures (Lan et al. 2016; Ren et al.
2016). Our approach improves performance on a diverse set
of tasks and enables us to enrich unlabeled corpora, which
we show has the same positive effects. We quantitatively
evaluate our proposed techniques in comparison with pre-
vious ones on a variety of tasks, including both sentiment
and non-sentiment tasks to see whether the increase in per-
formance for sentiment-related tasks comes at a price of per-
formance in other unrelated tasks.

Previous Work
Word Embeddings
Word embeddings are dense vector representations of words
from a corpus. They range from low-rank approximations
of co-occurrence matrices (e.g., Sahlgren 2005; Bullinaria
and Levy 2012; Pennington, Socher, and Manning 2014) to
those created using shallow neural networks (e.g., Mikolov
et al. 2013a). The latter approach has been shown to be con-
nected to the former approach (Hashimoto, Alvarez-Melis,
and Jaakkola 2016), and all embeddings are heavily influ-
enced by the distributional hypothesis (Sahlgren 2008).

The specific algorithm that we improve upon is a model
that attempts to predict the current word given the con-
text (surrounding words), termed continuous bag of words
(CBOW) (Mikolov et al. 2013a), which contrasts with the
common Skip-Gram approach (Mikolov et al. 2013b) that
attempts to predict the context words given the current word.
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Figure 1: The neural network architectures used in experiments. (a) Context-Based Embeddings (CBOW). (b) Sentiment Re-
gression (ANEW). (c) Combined context, sentiment regression loss. (d) Sentiment Classification (Tweets). (e) Combined con-
text, sentiment classification loss.

Enriched Word Embeddings

Some past work has sought to improve quality or util-
ity of word embeddings by incorporating external non-
context information into the embeddings, a technique we
refer to as embedding enrichment. Previous work has en-
riched embeddings with different external information rang-
ing from semantic information (Faruqui et al. 2015) to sen-
timent information (Maas et al. 2011; Socher et al. 2011;
Tang et al. 2016; Lan et al. 2016; Ren et al. 2016).

Faruqui et al. (2015)’s approach uses semantic lexicons to
retrofit word-vectors by encouraging linked words to have
similar vector representations. In this work we included
the model which performed best on their sentiment analy-
sis tests, retrofitting the word vectors using the paraphrase
database (PPDB) (Ganitkevitch, Van Durme, and Callison-
Burch 2013), for comparison in our battery of tests.

Focused on sentiment enrichment alone, Maas et al.
(2011) make use of a probabilistic document modeling ap-
proach, constraining words that express similar sentiment
to have a more similar representation. Socher et al. (2011)
make use of manually labeled data to learn the meaning and
sentiment of phrases and sentences. The majority of enrich-
ment approaches work by combining the traditional embed-
ding model with an additional loss function, showing that
the incorporated loss function serves to improve the capabil-
ity of the embeddings to analyze sentiment (Tang et al. 2016;
Lan et al. 2016; Ren et al. 2016). Our approach of having la-

bels be predicted by a regressor can also be applied on such
a class of algorithms, opening up enrichment for many dif-
ferent corpora.

Data
Affective Norms for English Words
Affective Norms for English Words (ANEW) is a represen-
tation of human emotions in a vector space with 3 underlying
axes (Bradley and Lang 1999). The first axis, valence, ranges
from unpleasant to pleasant; the second axis, arousal, ranges
from calm to excited; the third axis, dominance, from in-
control to out-of-control. We present an example of ANEW
in Table 1. Warriner, Kuperman, and Brysbaert (2013) ex-
tended ANEW to 13,915 words from the original 1,000. We
follow Abdalla and Hirst (2017) by replacing the need for
using sentence-level sentiment labels to classify whether the
current word and its context came from a positive or neg-
ative tweet by instead using automatically calculated senti-
ment values using this fine-grained extended ANEW.

Twitter Data
In order to emulate previous work for comparison, we fol-
low the same procedure for the procurement and preprocess-
ing of data. Following Tang et al. (2016), we scrape Twitter
for positive and negative tweets, defined as those contain-
ing positive or negative emoticons respectively, as manual
labeling of a large number of sentences from other sources
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Low stimulus High stimulus
Arousal boring (2.29) lust (6.88)
Dominance rejection (2.17) leader (7.88)
Valence suicide (1.25) triumphant (8.82)

Table 1: Examples of words on differing locations on
ANEW axes. Associated ANEW value for each axis is pre-
sented in parenthesis.

is not feasible. We scraped 5 million positive and 5 million
negative tweets.

Wikipedia Data
To demonstrate that our method allows for the enrich-
ment of unlabeled datasets, we also compared our proposed
model against CBOW when trained on the more traditional
Wikipedia dataset. The dataset gathered is a collection of all
the English articles as of 2017-12-17.

Methods
Here we present the techniques used to learn sentiment-
enriched embeddings. For consistency with previous work,
we will first describe the techniques used to capture tra-
ditional context-based word embeddings, followed by the
techniques used to encode sentiment polarity. We will then
describe how we combine the two models together to en-
rich the context-based sentiment embeddings. Where possi-
ble we used the parameters described by Tang et al.. Where
such parameters were not defined, we used ones we thought
made sense given the data and models at hand, making sure
to stay consistent throughout all of the networks.

The word embeddings were initialized from a random
uniform distributionU(−0.01, 0.01). The weights of the lin-
ear layers were initialized from a random uniform distribu-
tion function U( −0.01

layer length ,
0.01

layer length ). The window size was
set to 7 (3 preceding words, and 3 following words). The em-
bedding size was set to 50. AdaGrad was used for parameter
updating, with an initial value of 0.1.

The minimum occurrence requirement (often used to filter
non-words and misspellings) was set to 10. The threshold
for down-sampling high-frequency words was set to 10−3.
64 words were negatively sampled. The batch size was set
to 200, and we did 5 iterations (epochs) over the corpus.

Context-Based Embeddings
We will focus specifically on the CBOW technique
and how it was modified and extended for this work.
The traditional CBOW approach attempts to predict a
word wi given a context hi, which is composed of
{wi−c, ..., wi−1, wi+1, ..., wi+c} where c is the context size.
That is, given the surrounding context words preceding and
following a given word, we try to automatically predict the
current word.

The lookup layer maps each word to the corresponding
continuous vector representation using a lookup table. For
our CBOW implementation, the output of the lookup layer
would be the mean of the context vectors (Equation 1), but

for the sentiment-embedding models the output is the con-
catenation of the extracted context vectors into a new vector,
in line with previous work (Equation 2).

Olookup =

2c∑
i

ei
2c

(1)

Olookup = [ei−c, ..., ei−c+1, ei+c−1, ..., ei+c] (2)
In either case, the output of the lookup layer is then passed
to a linear layer, such that:

Ol1 =W ×Olookup + b (3)

We experimented with and without the addition of an htanh
non-linearity such that:

htanh(x) =


0 if x < 0

x if 0 ≤ x ≤ 1

1 if x > 1

(4)

As with most embedding creation, we rely on noise-
contrastive estimation to speed-up the training process, in-
stead of the normal softmax.

Sentiment-Based Embeddings
Binary Classification The network used to encode senti-
ment in the case of binary classification, Figure 1 (d), is a
re-implementation of the method that is described by Tang
et al.. During training, the gold labels would be a [1, 0] if a
tweet was positive and [0, 1] if negative. The initial layers are
all equivalent to those described above, and the final layer is
a softmax layer with a cross-entropy error between the gold
and predicted distributions as the loss of this network.

ANEW Regression We wanted to replicate improvements
of previous work without having the corpus limitation that
came with the approach. Previous work (Abdalla and Hirst
2017) has shown that it is possible to predict the ANEW
values of a word given embeddings. Here we describe two
approaches tested using ANEW: (i) valence regression, (ii)
full ANEW regression. The approaches work as follows:
1. Given an un-enriched word embedding model, and the

ANEW lexicon, train a simple linear regressor that pre-
dicts the valence of a word given the vector representa-
tion of the word for the first approach, and 3 regressors
that predicts each ANEW axis for the second approach.
We used linear SVM as our regressor.

2. For each word in the vocabulary, use the trained regres-
sor(s) to predict the valence (and arousal and dominance
for the second approach) of the word. This predicted val-
ues will serve as the “gold” label during training of the
enriched embedding.

3. Approach (i): When training the embedding, treat this
as a regression problem. However, instead of predicting
the valence of wi, here we attempt to predict the average
valence of each word in context including the current
word (i.e., the average of predicted values for each word
in the set {wi and hi}). The error function used for this
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task is the mean squared error (MSE).

Approach (ii): When training the embedding, we use
the approach described above three times, one for each
ANEW dimension. The entire sentiment loss, where loss
is denoted by L, is an equal split between MSE loss for
each of the axes:

Lsenti =

(
1
3Larousal +

1
3Ldominance +

1
3Lvalence

)
Enriching Context-Based Embeddings with
Sentiment
Model names and details are defined in Table 2.

Hybrid Classification Models MODELS: All variations
of SE-HyPred

In this model, the context-based embeddings are com-
bined with the original binary classification sentiment em-
beddings. The combined loss function is:

Lcombined = αLcontext + (1− α)Lclassification (5)

Where α = 0.5 for consistency with previous work. All of
the layers except for the final predictive layers are shared as
shown in Figure 1(e).

Hybrid Regression Models MODELS: All variations of
SE-HyReg

In these models, Figure 1(c), the context-based embed-
dings are combined with the variety of regression-based sen-
timent models described above. The combined loss function
is:

Lcombined = αLcontext + (1− α)Lregression (6)
As before, α = 0.5, and all of the layers except for the final
predictive layers are shared between both the context-based
and sentiment-based embeddings.

Experiments and Results
Twitter Experiments
We conducted experiments to determine whether the
sentiment-enriched embeddings improve performance for
sentiment-related tasks (e.g., binary word sentiment classi-
fication), and what their effect is on traditional tasks that
are not explicitly sentiment-related (e.g., document clas-
sification). The experiments are split into two main cate-
gories: (1) Sentiment-related tasks: (i) binary sentiment clas-
sification, (ii) SemEval 2013 tweet classification, and (2)
Non–sentiment-related tasks (downstream) tasks: (i) anal-
ogy evaluation, (ii) document classification.

In Table 2, we define the baseline and experimental net-
work setups used for experimentation and assign each of
them a name by which they will be referred to in later sec-
tions.

Word-Level Binary Sentiment Classification In this
task, we tested whether word embeddings enriched with sen-
timent information resulted in improved performance for
predicting word-level sentiment classification. Like previ-
ous work, we trained classifiers to predict whether a word

has positive or negative sentiment. The following lexicons
were used: BL-Lexicon (Hu and Liu 2004)1, MPQA (Wil-
son, Wiebe, and Hoffmann 2005)2, and NRC-Lexicon (Mo-
hammad and Turney 2013)3.

We trained supervised classifiers (linear SVMs), and
present the averaged training accuracy in Table 3. The
classes within the data are heavily unbalanced, and therefore
we balanced the dataset before training and testing.

Our results mimic the trend observed by Tang et al. for
the corresponding models. The absolute difference in per-
formance between our results and theirs can be attributed to
several reasons. Firstly, although both methods use Twitter
data, the exact tweets used, their topic of conversation and
such, is not something we could control for and therefore
might have had an impact on the results. Additionally, Tang
et al. state only that they used a “trained supervised classi-
fier” without specifying which classifier. This could also be
a cause of the difference in performance. Last, we balanced
our testing and training dataset, but it is not clear whether
the previous authors have done the same.

However, although the specific numbers are different, the
general trend between models that appeared in the previ-
ous paper is preserved. Tang et al.’s performs better than
traditional CBOW, but when the non-linearity is removed
(SE-HyPred-S) performance increases even more (across the
board). Faruqui et al. (2015)’s CBOW+PPDB performs well
on MPQA dataset but is outperformed by our novel ap-
proaches on the other datasets. We see that SE-HyPred-S and
our two novel models (SE-HyReg-VWS and SE-HyReg-
VADWS) both outperform all other models which serve as
our baseline. Their performance is close to each other often
within a range of 1–2; however, SE-HyReg-VWS and SE-
HyReg-VADWS can be applied to any English corpus while
SE-HyPred-S requires sentence-level labeling (which is not
available for most corpora).

SemEval — Sentence-Level Sentiment Classification
Having confirmed that enrichment improves performance
when it comes to word-level sentiment, we show that the im-
provements in performance carry over to the sentence-level
sentiment tasks. To do this, we attempted the SemEval Task
2, sentiment analysis in Twitter (Nakov et al. 2013), involv-
ing the sentiment classification of sentences.

In order to do sentence-level sentiment analysis, we
used the principle of compositionality (Frege 1948) to con-
struct sentence-level features. The compositionality princi-
ple states that the meaning of a sentence, or other expression,
is determined by the smaller units from which it is composed
(words in this case). Thus we used max, average, and min-
imum pooling layers to construct sentence representations
from the individual words.

The data used was the training and test datasets provided
by SemEval 2013. We must note that not all of the individual
tweets in either of the sets could be obtained, as some of the

1https://www.cs.uic.edu/∼liub/FBS/sentiment-analysis.html
2http://mpqa.cs.pitt.edu/lexicons/subj lexicon/
3http://saifmohammad.com/WebPages/NRC-Emotion-

Lexicon.htm
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Embedding htanh Sentiment Output

Word2Vec (CBOW) − Classification
CBOW+PPDB − Vectors retrofitted using PPDB (Faruqui et al. 2015)
SE-HyPred + Classification (Tang et al. 2016)
SE-HyPred-S − Classification
SE-HyReg-VWS − Valence regression on current context window + word
SE-HyReg-VADWS − Regression with all ANEW on current context window + word

Table 2: The models used in our experiment, and the names that we use for each. The first three are baselines, and other three
are our experimental models. The htanh column uses ‘+’ to denote the inclusion of the non-linearity, and ‘−’ for exclusion.
‘SE-HyPred’ denotes ‘S’entiment ‘E’nriched embeddings where the task at hand was classification (‘PRED’diction). ‘SE-
HyReg’ denotes ‘S’entiment ‘E’nriched embeddings where the task at hand was ‘Reg’ression. ‘V’ = regression on valence, ‘A’
= regression on arousal, ‘D’ = regression on dominance, ‘W’ = window approach, ‘S’ = no htanh.

Embedding 10-fold CV
BL MPQA NRC

Word2Vec (CBOW) 68.4 66.5 65.0
CBOW+PPDB 76.1 74.4 65.8
SE-HyPred 75.1 70.4 66.6
SE-HyPred-S 77.6 73.2 69.9
SE-HyReg-VWS 75.7 74.1 68.7
SE-HyReg-VADWS 76.3 73.1 68.0

Table 3: The accuracies from the word-level binary senti-
ment classification task. The best scores are bolded, and the
second-best performing values are underlined.

Embedding Binary F1 Ternary F1

Word2Vec (CBOW) 69.2 54.2
CBOW+PPDB 65.6 52.4
SE-HyPred 74.6 52.8
SE-HyPred-S 73.3 55.3
SE-HyReg-VWS 72.5 54.2
SE-HyReg-VADWS 73.2 55.8

Table 4: Results for sentence-level SemEval tweet sentiment
classification (for both the binary and ternary setups). We
show the macro-F1 score. The best scores are bolded, and
the second-best performing values are underlined.

original tweets had either been deleted or had their access
policy changed.

We performed two different classification tasks: (i) binary
positive / negative sentiment classification and (ii) ternary
positive / neutral / negative sentiment classification. For the
results, shown in Table 4, we present Macro-F1 which is de-
fined as the average of F1-scores across all of the categories.

Here, SE-HyPred outperforms the newer models. SE-
HyReg-VWS and SE-HyReg-VADWS outperforms both
CBOW and Faruqui et al.’s CBOW+PDDB. In the ternary
case the newer models outperform all of the baselines
with our SE-HyReg-VADWS preforming the best. Once
again removal of the non-linearity results in a significant
increase in performance (SE-HyPred v.s. SE-HyPred-S).
Here, CBOW+PPDB results in decreased performance from

vanilla CBOW.

Non-Sentiment Tasks
We have shown that word embeddings enriched with senti-
ment information during creation result in more meaningful
embeddings when it comes to tasks that are directly related
to sentiment analysis. However, previous work did not study
the effect of enriching such embeddings on non–sentiment-
related tasks. It may be that the gains in sentiment-related
tasks come at a price of the general embedding quality
(given that the loss function weighs context and sentiment
equally). The following tasks study the effect of sentiment
enrichment on non-sentiment tasks to see whether the en-
riched embeddings can be used for unrelated tasks.

Embedding Analogy Evaluation The first non-sentiment
task we studied was Google’s Embedding Analogy Task.
Embeddings are tested for their ability to predict the fourth
word from the first three words, such that the first and second
word have a relationship to each other that is equivalent to
that of the third and fourth word: e.g., Athens is to Greece as
Madrid is to Spain. This can mathematically be represented
as attempting to find vector v such that:

arg max~v∈V cos(~v,~v2 − ~v1 + ~v3) (7)

Table 5 presents both the total count and the percentage
of the entire dataset to be captured. The notation P@N is
used to denote the number or percentage of times the correct
vector is within the N-closest vectors to ~v2 − ~v1 + ~v3. We
removed words that were not found in the training data and
thus had no trained embedding. The results are quite poor,
which is expected for normal embedding trained on “proper”
English text (Jastrzebski, Leśniak, and Czarnecki 2017), and
the problem is further exacerbated by the fact that Twitter
data itself does not discuss all of the topics and relationships
represented in the dataset.

The trend observed between the new models (SE-HyPred-
S, SE-HyReg-VWS, and SE-HyReg-VADWS) in relation to
the baseline models also hold for this non-sentiment task.
That is, the novel models greatly outperform all of the base-
lines for all of the three measures, even more so than the
relative difference in sentiment tasks. The difference in rel-
ative performance for these three performing models is neg-
ligible in comparison to the difference to the baseline mod-
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Embedding P@1 P@5 P@10

Word2Vec (CBOW) 362 (2.15%) 918 (5.46%) 1243 (7.40%)
CBOW+PPDB 410 (2.44%) 1087 (6.47%) 1495 (8.89%)
SE-HyPred 204 (1.21%) 611 (3.64%) 888 (5.29%)
SE-HyPred-S 693 (4.12%) 1910 (11.37%) 2707 (16.11%)
SE-HyReg-VWS 641 (3.82%) 1868 (11.12%) 2462 (15.73%)
SE-HyReg-VADWS 704 (4.19%) 2024 (12.05%) 2875 (17.11%)

Table 5: Results from the Google analogy evaluation. Both the total count, and percentage of total examples in test-set are
shown. The best scores are bolded, and the second-best performing values are underlined.

els. Faruqui et al.’s CBOW+PPDB results in modest gains in
performance over vanilla CBOW. Interestingly, SE-HyPred
results in a decrease of performance (unlike in sentiment
tasks). We believe this is caused by the non-linearity rather
than the fact that the learning scheme is classification, as
the other classification model SE-HyPred-S performs quite
well.

Document Classification Performance We wanted to
study whether the increased performance on the analogy
task (hinting at an improved embedding in the general
sense) would carry over to downstream non-sentiment re-
lated tasks. To study this, we considered the classic task
of document classification. Given N classes, and unlabeled
documents, we asked whether we could learn a classifier for
the documents.

For this problem, we used the R8 dataset (Cardoso-
Cachopo 2007), which is composed of 7674 single-labeled
Reuters news articles split into 8 topics. Cardoso-Cachopo
removed any document which could have been assigned
more than a single label. As the classes were heavily un-
balanced during both training and testing, we present both
the macro-F1 Score and the unweighted accuracy as well,
Table 6.

Once again, the trend observed between the new models
(SE-HyPred-S, SE-HyReg-VWS, and SE-HyReg-VADWS)
in relation to the baseline models also hold for this non-
sentiment task. However, unlike the previous task the dif-
ference is not quite as pronounced. Here, SE-HyPred re-
sults in increased performance, whereas Faruqui et al.’s
CBOW+PPDB results in decreased performance.

Embedding F1 (Accuracy)

Word2Vec (CBOW) 21.1 (74.5)
CBOW+PPDB 19.6 (72.6)
SE-HyPred 41.8 (79.9)
SE-HyPred-S 46.7 (81.9)
SE-HyReg-VWS 46.5 (84.4)
SE-HyReg-VADWS 45.1 (84.2)

Table 6: Results of the document classification task. Since
the dataset is not balanced, both Macro-F1 and Accuracy
are presented. The best scores are bolded, and the second-
best performing values are underlined.

Wikipedia Experiments
Having demonstrated the competitive performance of re-
gressor models (compared to models requiring human-
generated labels), we sought to show the generalizability of
our approach to corpora without labels (such as Wikipedia).
We see that the performance trends are largely consistent
(Tables 7–10). For this section, we were unable to compare
to the works of Tang et al. (2016),Lan et al. (2016), and Ren
et al. (2016) as all their approaches require labels assigned
at the sentence level.

Word-Level Binary Sentiment Classification In this sec-
tion, we study whether enriching the Wikipedia corpus re-
sults in performance improvement as was the case with the
Twitter corpus. The methodology of this section is exactly
the same as that of the Twitter experiment. Results are pre-
sented in Table 8, in which we see the general trend of im-
proved performance repeat itself. Unlike the Twitter dataset,
the improvement is not as pronounced, but this can be be-
cause of the very strong baseline. We see here that enriching
only for Valence (SE-HyReg-VWS) results in improved per-
formance than all three dimensions of ANEW (SE-HyReg-
VADWS).

SemEval — Sentence-Level Sentiment Classification In
this section, we tested the effect of enriching Wikipedia-
sourced embeddings using our techniques on the SemEval
test. As before, the experimental set-up is exactly that of the
Twitter experiment.

The results, Table 9, for the binary case mimic the im-
provement seen in the Twitter experiments, although given
the higher baseline there is a less dramatic improvement by
the newer models. In the ternary classification case, how-
ever, enrichment seems to have no real effect. The best-
performing model on the Wikipedia-trained embeddings
performs worse than the best Twitter-trained embeddings
and we think that the vocabulary of the respective datasets
plays a large role in this. The embedding trained on the Twit-
ter corpus is more likely to have the common misspellings
and acronyms required for improved performance.

Embedding Analogy Evaluation We now look at how
enriching the Wikipedia corpus affects performance on the
embedding analogy task. The experimental methodology is
exactly the same as that of Twitter experiment.

All embedding models trained on the Wikipedia Corpus
perform better than those trained on the Twitter corpus. This
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Embedding P@1 P@5 P@10

Word2Vec (CBOW) 681 (3.48%) 6119 (31.31%) 7432 (38.03%)
SE-HyReg-VWS 748 (3.83%) 5869 (30.03%) 7170 (36.69%)
SE-HyReg-VADWS 732 (3.75%) 5756 (29.45%) 7042 (36.03%)

Table 7: Results from the Google analogy evaluation. Both the total count, and percentage of total examples in test-set are
shown. The best scores are bolded, and the second-best performing values are underlined.

Embedding 10-fold CV
BL MPQA NRC

Word2Vec (CBOW) 73.41 73.88 62.27
SE-HyReg-VWS 76.06 76.75 62.97
SE-HyReg-VADWS 74.99 76.53 62.76

Table 8: The accuracies from the word-level binary senti-
ment classification task on the Wikipedia corpus. The best
scores are bolded, and the second-best performing values are
underlined.

Embedding Binary F1 Ternary F1

Word2Vec (CBOW) 69.2 51.2
SE-HyReg-VWS 73.2 51.5
SE-HyReg-VADWS 69.8 51.1

Table 9: Results for sentence-level SemEval tweet sentiment
classification (for both the binary and ternary setups). We
show the macro-F1 score. The best scores are bolded, and
the second-best performing values are underlined.

is expected given that the types of relationships tested by this
task are not likely to be the topic of discussion on Twitter.
Table 7 shows that enriching the model results in slightly
better P@1 percision, but slightly lower on P@5 and P@10.

Document Classification Performance For this exper-
iment, we used the same experimental setup described in
the Twitter variant. Table 10 shows that enrichment here
results in improved performance. Enriching for Valence
alone seems to perform better than enriching for all ANEW
dimensions.

Embedding F1 (Accuracy)

Word2Vec (CBOW) 66.32 (91.4)
SE-HyReg-VWS 72.51 (92.0)
SE-HyReg-VADWS 66.47 (91.4)

Table 10: Results of the document classification task. Since
the dataset is not balanced, both Macro-F1 and Accuracy are
presented. The best scores are bolded, and the second-best
performing values are underlined.

Conclusion
We have proposed a novel method to enrich word em-
beddings without the need for labeled corpora. Instead we
show that using a regressor to predict pseudo-labels is just
as effective an approach, and at the same time increases
the “generalizability” of past approaches. Using our work
we can modify previous approaches (Tang et al. 2016;
Lan et al. 2016; Ren et al. 2016), those which rely on sen-
tence level labels, to work on corpora without such labels.
For this work we took Tang et al. (2016), and studied the
effect of enrichment on both sentiment and non–sentiment-
related tasks. We later applied our model to the Wikipedia
corpus, something not possible with the current approaches
— an application that is both novel and impactful. We show
that there are improvements to be had both on sentiment and
non-sentiment tasks by enriching with our algorithm.

We hypothesize that having sentiment framed as regres-
sion instead of classification (as is the case with the work of
Tang et al. (2016)) would be more likely to achieve a senti-
ment gradient in the embedding space. This would also al-
low for the handling of neutral cases, which is not feasible
or practical with previous techniques, yet is crucial for an
actual model of human emotion, as not all documents have
a sentiment value. However, we have not proven this claim
and more work needs to be done to confirm our observations.

Not only does replacing the need for human-generated
labels enable enrichment of other corpora, it also suggests
that enrichment for other automatically generated informa-
tion may be possible. Future work can study expanding pre-
diction to other tasks.

Additionally, there is still much work to be done to study
the effect of enrichment on the underlying word vector
space. The reason for improved performance in the anal-
ogy task (even in non-sentiment categories, e.g., plural) is
not something we can yet explain. Our experiments on the
Wikipedia dataset are a good step in this direction but more
still needs to be done. We also hope to study whether the
positive effect of enrichment holds with other methods of
embedding creation.

More work is needed to determine whether such improve-
ments would hold for classification problems with more than
two classes, and what the limit would be before a drop-off
in performance.
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