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Abstract

(Friedkin and Johnsen 1990) modeled opinion formation
in social networks as a dynamic process which evolves in
rounds: at each round each agent updates her expressed opin-
ion to a weighted average of her innate belief and the opinions
expressed in the previous round by her social neighbors. The
stubbornness level of an agent represents the tendency of the
agent to express an opinion close to her innate belief.
Motivated by the observation that innate beliefs, stubborn-
ness levels and even social relations can co-evolve together
with the expressed opinions, we present a new model of opin-
ion formation where the dynamics runs in a co-evolving en-
vironment. We assume that agents’ stubbornness and social
relations can vary arbitrarily, while their innate beliefs slowly
change as a function of the opinions they expressed in the
past. We prove that, in our model, the opinion formation dy-
namics converges to a consensus if reasonable conditions on
the structure of the social relationships and on how the per-
sonal beliefs can change are satisfied. Moreover, we discuss
how this result applies in several simpler (but realistic) set-
tings.

Introduction
It is well known that how individuals form their opinions and
how they express them in a social context is strongly influ-
enced by their social relations. For example, social pressure
can suggest an individual to hide her personal (unpopular)
belief and publicly express an opinion that is more conform
to the opinions expressed by the majority of her neighbours.
On the other hand, she can be firmly tied to her personal be-
lief and not willing to deviate from it, whatever the opinions
expressed by her friends are.

Thus, the formation of the opinions in a social context can
be modelled as a dynamic process, where opinions publicly
expressed by individuals depend on both their personal in-
nate beliefs and on the opinions expressed by other individ-
uals they interact with. Understanding how opinions form,
how they diffuse in a social network and how the network
can influence this process is a fundamental issue both for
the Artificial Intelligence and Social Science communities.

The study of opinion diffusion in social networks dates
back to 70s, with the seminal paper on Threshold Model by
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Granovetter (Granovetter 1978) and the papers of DeGroot
(DeGroot 1974) and Lehrer-Wagner (Lehrer and Wagner
1981) on consensus. In the last decades this line of research
received great attention and several models have been pro-
posed for describing the process of opinion formation and
diffusion (see (Easley and Kleinberg 2010; Jackson 2008;
Shakarian et al. 2015) for detailed surveys). Many works
model the social influence by simply considering agents
that follow the majority (Berger 2001; Feldman et al. 2014;
Tamuz and Tessler 2013; Mossel, Neeman, and Tamuz 2014;
Auletta, Ferraioli, and Greco 2018).

A classical model that describes how opinions form in a
social context has been proposed in (DeGroot 1974) (in the
following denoted as DG model). Here, each agent has an
opinion on a specific issue of interest. The process is itera-
tive with discrete time and at each round each agent updates
her opinion to a weghted sum of all the opinions expressed
by her neighbors (including herself). The author gives nec-
essary and sufficient conditions on the structure of the graph
describing the social relationships among the agents under
which the proposed dynamics converges to a consensus.

A different model, that takes into account both the in-
nate beliefs and the public opinions of the agents, has been
proposed in (Friedkin and Johnsen 1990) (in the follow-
ing denoted as FJ model). They assume that each agent
has a (innate) belief and a publicly expressed opinion and
these two elements are not necessarily the same. The pro-
cess of formation and expression of the opinions proceeds
in rounds: at each round all the agents make an averaging
between their personal beliefs and the opinions expressed
by agents with whom they have social relationships. The
trade-off between the innate belief and the social pressure
of the opinions expressed by her neighbours is weighted by
the agent’s stubbornness level, that is, the scaling factor used
to counterbalance the cost that the agent incurs for disagree-
ing with the society and the cost she incurs for disagreeing
with her innate belief. (Bindel, Kleinberg, and Oren 2011)
prove that this repeated averaging process can be interpreted
as a best-response play in a naturally defined game that leads
to a unique equilibrium. (Ghaderi and Srikant 2014) deter-
mine the convergence time of this process to a stable state.
Variations of the FJ model have been studied by (Fotakis,
Palyvos-Giannas, and Skoulakis 2016), that assume agents
update their opinions by consulting only a small (possibly
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random) subset of their neighbours, and by (Mossel, Sly, and
Tamuz 2014), that assume agents update their opinions ac-
cording to a Bayes rule that takes into account both their
beliefs and the neighbours opinions.

A discrete version of the FJ model with binary opinions
has been proposed in (Chierichetti, Kleinberg, and Oren
2018) in the setting of Discrete Preference Games (see also
(Ferraioli, Goldberg, and Ventre 2016)). These games have
also been considered to characterize the social graphs where
the opinion hold by a minority of agents in the initial profile
may become a majority in a stable state (Auletta et al. 2015;
2017b; 2017a). (Yildiz et al. 2013), instead, discuss a dis-
crete model where there are some stubborn agents, that never
deflect from their innate beliefs but they can influence other
agents. Recently, there models have been also generalized in
order to represent through propositional logic more complex
relationships among agents (Grandi, Lorini, and Perrussel
2015; Auletta et al. 2016; Acar, Greco, and Manna 2017).

We observe that, although the opinion formation process
in the DG and FJ models and their discrete versions is dy-
namic and evolves over time, the environment where dynam-
ics runs is essentially static and decisions that agents take in
each round are based on three fundamental ingredients that
are assumed to be fixed: their personal innate beliefs; their
stubbornness levels; their social relations, including both the
set of the neighbours and the weights they put on the opin-
ions of their neighbours.

However, our real-life experience shows that the environ-
ment is not fixed but it co-evolves together with the opinions.
Indeed, we can modify our social relationships, getting to
know new people, reinforcing or reducing interactions with
people, changing our trust on them; our stubbornness levels
may also change over time, for example for the social pres-
sure on reaching an equilibrium; even our more consolidated
beliefs may change due to the prolonged interactions with
other social neighbours. We remark that all these processes
run simultaneously and can interwind in very complex ways.

In the last years several works were presented that study
the opinion formation process in settings where opinions and
the social graph co-evolve under the effects of the mutual
influence between the agents. (Bhawalkar, Gollapudi, and
Munagala 2013) introduce game-theoretic models of opin-
ion formation in social networks and they investigate the ex-
istence and the efficiency of stable states both for the discrete
and the continuous process in these models. (Bilò, Fanelli,
and Moscardelli 2016) consider opinion formation games in
a setting where opinions and social relationships co-evolve
in a cross-influencing manner and give bounds on the price
of anarchy and price of stability which depend only on the
individuals’ stubbornness. (Ferraioli and Ventre 2017) study
opinion formation games in a setting where the social pres-
sure to reach an agreement makes the agents’ stubbornness
decrease with time. They characterize the graphs for which
consensus is guaranteed and study the complexity of check-
ing whether a graph satisfies such a condition.

A different but related approach to describe the coevo-
lution of the opinions and the social graph is given by the
Bounded Confidence Model of (Hegselmann and Krause
2002), where the structure of the social graph reflects the

affinity of the agents’ opinions.
All the discussed papers consider environments where

only some of the ingredients we are considering can evolve.
In this paper, instead, we want to study how opinions form
and are publicly expressed in a social context when the en-
vironment fully evolves and both the structure of the social
graph, the agents’ stubbornness levels and even their innate
beliefs can change over time. We remark that, at the best
of our knowledge, this is the first work that considers fully
evolving environments, in particular with respect to the evo-
lution of the innate beliefs.

As in (Friedkin and Johnsen 1990) we assume that the
process works in rounds and at each round agents take an
average between her innate beliefs and the opinions ex-
pressed by her neighbours. However, the dynamics is di-
vided in epochs of finite (maybe different) length: for the
whole length of an epoch the belief, the stubbornness level
and the set of social relations of each agent are fixed; at the
beginning of each epoch agents can change her stubbornness
level, belief and social relations.

Our main contribution is the proof that in the general
model, where the environment fully evolves with opinions,
under reasonable conditions on the structure of the social
graphs used in each epoch and on the recall of the agents in
updating their beliefs, the opinion formation dynamics is er-
godic and converges to a consensus. We also show that if we
assume the social graph fixed, then, just as in the simpler DG
model, it is sufficient that the graph is strongly connected
and aperiodic to guarantee the convergence of the dynamics
to a consensus.

In order to show the versatility of our model, we present
several simple but realistic settings that are only partially
evolving, and discuss how they can be casted in our model
by conveniently setting the length of the epochs, the belief
update rule or how the stubbornness levels may change. We
show how results on the convergence to consensus for these
settings can be derived from our general result.

The Model
In this section we present a model of opinion formation in a
social context where the environment fully co-evolves with
the expressed opinions, i.e., the innate beliefs and the stub-
bornness levels of the agents as well as their social relations
change over time.

For every integer k ≥ 1, we denote by [k] the set
{1, . . . , k}. We say that a matrix has dimension k, for any
k ≥ 1, if it is made of k rows and k columns. For a matrix
A of dimension k, we denote by Aij the entry of A at the
i-th row and the j-th column and by 〈A〉i the sum of the en-
tries in the i-th row, i.e., 〈A〉i =

∑k
j=1Aij . We say that A

is stochastic if 〈A〉i = 1, for every i ∈ [k]. We say that A is
positive if Aij > 0, for every i, j ∈ [k]. We denote by Ik the
identity matrix of dimension k.

We are given a set of n ≥ 2 agents [n], each one holding
an opinion in [0, 1]. The opinion formation process evolves
in rounds and at every round t ≥ 0, every agent i holds
an innate belief gi(t) ∈ [0, 1] and an expressed opinion
zi(t) ∈ [0, 1]. The innate belief represents a memory of
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the opinions expressed by the agent in former times. For-
mally, for every agent i, gi(0) is given by the instance,
whereas gi(t) at round t ≥ 1 is a function of the opin-
ions expressed by agent i during the previous rounds, i.e.,
zi(0), zi(1), . . . , zi(t−1). For the initial round t = 0 we as-
sume zi(0) = gi(0), whereas the opinion zi(t) expressed by
agent i at time t ≥ 1 is a convex combination of her innate
belief gi(t− 1) and the opinions zj(t− 1) expressed by her
neighbours at round t − 1. The weight assigned in the con-
vex combination to gi(t − 1) quantifies i’s self-confidence
at time t, while the weight given to each zj(t− 1) quantifies
how much the opinion expressed by agent j at time t − 1
influences i at time t. We next provide a more detailed de-
scription of how zi(t) and gi(t) are updated at each round.

We assume that our formation process works in a fully
dynamic environment, where the structure of the social re-
lationships evolves over time. However, we assume that
it changes less frequently than the expressed opinions. To
model this, we divide the process into time intervals called
epochs. More specifically, an epoch is a sequence of consec-
utive rounds, in which the weights assigned to gi(t− 1) and
zj(t − 1) remain unchanged. Every epoch ` ≥ 0 starts at
round ρ`+1 and consists of a number, denoted by h(`) ≥ 1,
of consecutive rounds. Let R(`) be the set of rounds belong-
ing to epoch `, i.e., R(`) = {ρ` + 1, · · · , ρ` + h(l)}. We set
ρ0 = 0 and, by definition, we have ρ`+1 = ρ`+h(`). Notice
that round 0 does not belong to any epoch. For every epoch
` and for every agent i, we denote by w(`)

ii ≥ 0 the stubborn-
ness of i in this epoch, that is the weight the agent puts on
her innate belief. Moreover, for every pair of agents (i, j),
with i 6= j, we denote by w(`)

ij ≥ 0 the strength by which
the opinion of i is influenced by j during the epoch ` (set
w

(`)
ij = 0 if i is not influenced by j). We write W (`)

i to de-

note the summation
∑n
j=1 w

(`)
ij and assume that W (`)

i > 0.
We are ready to formally define how the expressed opin-

ions are updated at each round. For the initial round t = 0,
we assume zi(0) = gi(0), whereas the opinion zi(t) ex-
pressed by agent i at time t ∈ R(`) (notice that t ≥ 1) is
updated according to the following rule

zi(t) =
1

W
(`)
i

(
w

(`)
ii gi(t− 1) +

∑
j 6=i

w
(`)
ij zj(t− 1)

)
.

Let us rewrite the updating rule in a more compact way.
Let z(t) and g(t) denote respectively the vectors of the ex-
pressed opinions and the innate beliefs of all the agents at
time t, i.e., z(t) = (z1(t), z2(t), . . . , zn(t)) and g(t) =
(g1(t), g2(t), . . . , gn(t)). For every epoch `, let E(`) be the

matrix of dimension n such that E(`)
ij =

w
(`)
ij

W
(`)
i

for every

i 6= j, and E(`)
ii = 0 for every i ∈ [n]. Moreover, let S(`)

be the matrix of dimension n such that S(`)
ij = 0 for every

i 6= j, and S(`)
ii =

w
(`)
ii

W
(`)
i

for every i ∈ [n]. Then, for each

round t we have

z(t) =

{
g(0) if t = 0,

S(`)g(t− 1) + E(`)z(t− 1) if t ∈ R(`).
(1)

Notice that, S(`) + E(`) is clearly a stochastic matrix, for
every epoch `.

We assume that the innate beliefs also may be updated
at the beginning of each epoch, but they remain unchanged
during an epoch. We next describe how they are updated.
Formally, for every epoch ` and agent i, we have gi(ρ`+1) =
gi(ρ` + 2) = · · · = gi(ρ` + h(l)). We denote by bi(`) the
innate belief hold by agent i during the epoch ` and by b(`)
the vector of innate beliefs of all agents during the epoch `,
i.e., b(`) = (b1(`), b2(`), . . . , bn(`)). Therefore, in (1) we
can set g(t− 1) equal to b(`), thus obtaining that, for every
t ∈ R(`),

z(t) = S(`)b(`) + E(`)z(t− 1). (2)
We look at a particular form of evolution of the profile of

innate beliefs b(`). For the initial epoch ` = 0 we assume
bi(0) = zi(0) (equivalently bi(0) = gi(0)), whereas, for ev-
ery epoch ` ≥ 1, we define bi(`) as a convex combination
of all the opinions expressed by i in former times. In partic-
ular, for every epoch ` ≥ 1 and for every round t ∈ [0, ρ`],
let c(`)it ≥ 0 be the weight that agent i assigns, during the
epoch `, to the opinion she expressed at time t and assume∑ρ`
t=0 c

(`)
it = 1. Then we have that bi(`) =

∑ρ`
t=0 c

(`)
it zi(t),

for every epoch ` ≥ 1. Let us rewrite compactly the updating
rule for b(`). For every epoch ` ≥ 1 and round t ∈ [0, ρ`],
let C(`,t) be a matrix of dimension n such that C(`,t)

ii = c`it
for every i ∈ [n] and C(`,t)

ij = 0 for every j 6= i. Notice that,
for every epoch ` ≥ 1,

∑ρ`
t=0 C

(`,t) = In. Then we have

b(`) =

{
z(0) if ` = 0,∑ρ`
t=0 C

(`,t)z(t) if ` ≥ 1.
(3)

DG and FJ Models. Let us conclude this section by look-
ing more closely to the relations between our model and the
well-known FJ (Friedkin and Johnsen 1990) and DG (De-
Groot 1974) models. The FJ model corresponds to the lim-
iting case in which epochs have infinite length. Indeed, in
this case our model never updates the social relationship
among agents and their innate beliefs, and thus our update
rule turns out to be equivalent to the one described in (Fried-
kin and Johnsen 1990). Specifically, by using the notation
introduced above, the latter can be expressed as

z(t) =

{
g(0) if t = 0,

S(0)g(0) + E(0)z(t− 1) if t ≥ 1.

Since the FJ model is well-studied, we henceforth do not
consider this limiting case of our model and we assume that
epochs have finite length.

The DG model also can easily casted in our framework.
Indeed, in this model the social relationships are never up-
dated, but the innate beliefs are updated at every round and
are set equal to the opinions expressed in the previous round.
This can be easily achieved by assuming that epochs consist
of a single round, i.e., h(`) = 1 for every `, and assuming
that C(`,t) = In if t = ρ` and C(`,t) = 0 otherwise, from
which we aobtain the desired belief update rule:

b(`) =

{
z(0) if ` = 0,

z(ρ`) if ` ≥ 1.
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Preliminaries
The main contribution of this section is stated by Theorem 1,
which, for every epoch ` and j ∈ [h(`)], expresses z(ρ`+ j)
as the product of a stochastic matrix depending of the pair
(`, j), which we denote by T (`,j), and z(0).

Before to formally define T (`,j) and state the theorem, we
start with a reworking of the equations (2) and (3).
For every epoch ` and j ∈ [h(`)], by recursively applying
(2), we obtain

z(ρ` + j) = S(`)b(`) + E(`)z(ρ` + j − 1)

= S(`)b(`) + E(`)[S(`)b(`) + E(`)z(ρ` + j − 2)]

=
(
S(`) + E(`)S(`)

)
b(`)

+
(
E(`)

)2

[S(`)b(`) + E(`)z(ρ` + j − 3)]

= · · ·

=

[
S(`) +

(
j−1∑
i=1

(
E(`)

)i)
S(`)

]
b(`) +

(
E(`)

)j
z(ρ`).

If we define A(`,j) =
[
S(`) +

(∑j−1
i=1

(
E(`)

)i)
S(`)

]
and

B(`,j) =
(
E(`)

)j
then the previous equality becomes

z(ρ` + j) = A(`,j)b(`) +B(`,j)z(ρ`). (4)

Moreover, for every epoch ` and j ∈ [h(`)], (3) can be ex-
plicitly rewritten as

b(`) = C(`,0)z(0) +

`−1∑
r=0

h(r)∑
k=1

C(`,ρr+k)z(ρr + k). (5)

We now give a formal definition of T (`,j) and state the
theorem.
Definition 1. For every epoch ` and j ∈ [h(`)], let T (`,j) be
a matrix of dimension n recursively defined as follows
• if ` = 0 then

T (0,j) = A(0,j) +B(0,j),

• if ` ≥ 1 then

T (`,j) = A(`,j)

C(`,0) +

`−1∑
r=0

h(r)∑
k=1

C(`,ρr+k)T (r,k)


+B(`,j)T (`−1,h(`−1)).

Theorem 1. For every epoch ` and j ∈ [h(`)], the profile of
opinions at time ρ` + j can be expressed as

z(ρ` + j) = T (`,j)z(0),

and T (`,j) is a stochastic matrix.
In order to prove the theorem we employ the following

lemma.
Lemma 1. For every epoch ` ≥ 0 and j ∈ [h(`)], the matrix
A(`,j) +B(`,j) is stochastic.

Proof Sketch. If j = 1, then A(`,j) + B(`,j) = S(`) + E(`),
that is stochastic by construction. For larger values of j, the
claim follows by a simple inductive argument.

We also need the following technical proposition, that im-
mediately follows by the definition of stochastic matrix.
Proposition 1. For every pair of matrices F and G of di-
mension k ≥ 1, if G is stochastic then 〈FG〉i = 〈F 〉i, for
every i ∈ [k].

We are now ready to prove Theorem 1.

Proof of Theorem 1. The proof is by induction on `.
Let us prove the claim for ` = 0. Since b(`) = z(0) and

z(ρ`) = z(0), from (4) and Definition 1, we obtain

z(ρ0 + j) =A(0,j)b(0) +B(0,j)z(ρ0)

=
(
A(0,j) +B(0,j)

)
z(0) = T (0,j)z(0).

Moreover, by Lemma 1, it follows that T (0,j) is a stochastic
matrix, as desired.

Consider now the case ` ≥ 1 and suppose, by inductive
hypothesis, that z(ρr+k) = T (r,k)z(0) for every r ∈ [0, `−
1] and k ∈ [h(r)]. Then we have

z(ρ` + j) = A(`,j)b(`) +B(`,j)z(ρ`) (6)

= A(`,j)

(
C(`,0)z(0) +

`−1∑
r=0

h(r)∑
k=1

C(`,ρr+k)z(ρr + k)

)
+B(`,j)z(ρ`−1 + h(`− 1)) (7)

=

[
A(`,j)

(
C(`,0) +

`−1∑
r=0

h(r)∑
k=1

C(`,ρr+k)T (r,k)

)
+B(`,j)T (`−1,h(`−1))

]
z(0) = T (`,j)z(0). (8)

where (6) follows (4), (7) from (5) and the fact that ρ` =
ρ`−1 + h(`− 1), and (8) from the inductive hypothesis and
Definition 1. It remains to show that, for every epoch ` ≥ 1
and every j ∈ h[`], we have that T (`,j) is stochastic, i.e.,〈
T (`,j)

〉
i

= 1 for every i ∈ [n]. For every epoch ` ≥ 1, let

D(`) = C(`,0) +
∑`−1
r=0

∑h(r)
k=1

(
C(`,ρr+k)T (r,k)

)
. We first

show that D(`) is stochastic. For every i ∈ [n], we have

〈
D(`)

〉
i

=
〈
C(`,0)

〉
i
+

`−1∑
r=0

h(r)∑
k=1

〈
C(`,ρr+k)T (r,k)

〉
i

=
〈
C(`,0)

〉
i
+

`−1∑
r=0

h(r)∑
k=1

〈
C(`,ρr+k)

〉
i

(9)

=
〈
C(`,0)

〉
i
+

ρ∑̀
t=1

〈
C(`,t)

〉
i

=

ρ∑̀
t=0

〈
C(`,t)

〉
i

= 〈In〉i = 1, (10)
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where (9) follows from Proposition 1 and the fact that T (r,k)

is stochastic by inductive hypothesis, and (10) from the defi-
nition of the set of matricesC(`,t) for t ∈ [0, ρ`]. We are now
ready to prove that T (`,j) is stochastic. For every i ∈ [n], we
have〈
T (`,j)

〉
i

=

n∑
k=1

[(
A(`,j)D(`)

)
ik

+
(
B(`,j)T (`−1,h(`−1))

)
ik

]
=

n∑
k=1

n∑
h=1

(
A

(`,j)
ih D

(`)
hk +B

(`,j)
ih T

(`−1,h(`−1))
hk

)
=

n∑
h=1

(
A

(`,j)
ih

n∑
k=1

D
(`)
hk +B

(`,j)
ih

n∑
k=1

T
(`−1,h(`−1))
hk

)
=

n∑
h=1

(
A

(`,j)
ih

〈
D(`)

〉
h

+B
(`,j)
ih

〈
T (`−1,h(`−1))

〉
h

)
=

n∑
h=1

(
A

(`,j)
ih +B

(`,j)
ih

)
= (11)〈

A(`,j) +B(`,j)
〉
i

= 1,

where (11) follows from the fact that are stochastic both
D(`), as proved above, and T (`−1,h(`−1)), by inductive hy-
pothesis, while the last equality follows from Lemma 1.

Convergence to Consensus
In this section we present the main contribution of this work,
claimed by Theorem 2. Informally, this theorem states that
under reasonable conditions related to structural properties
of the social graphs and to the recall of the agents, the opin-
ion formation process, described by z(t), converges to a con-
sensus. We will also show that these conditions are in some
way necessary for consensus, and we will discuss what hap-
pens whenever they do not hold. Before to formally state the
theorem, let us introduce some useful concepts.

For every round t, let G(t) denote the social influence
graph at t, which characterizes the interpersonal influences
among the agents. The influence graph associated to round
t ∈ R(`) is formally defined as a directed graph having as
nodes the set of agents [n] and as edges the set of ordered
pairs

{
(i, j) : i 6= j ∈ [n], w

(`)
ij > 0

}
. Notice that all the in-

fluence graphs associated to the rounds in the same epoch
are the same. Now, let us consider the sequence of social
influence graphs G = {G(t)}t≥0. Given any pair of agents
x 6= y, an influence path of length k ≥ 1 from x to y in
G is a sequence of agents (x = ω0, . . . , ωk = y) such that
(ωj , ωj−1) is an arc of G(j), for every j ∈ [k]. Intuitively,
this means that the influence of x on y goes through the first
k rounds of the dynamics; therefore the opinion expressed
by y at round k is positively influenced by the initial opinion
of x expressed at round 0, i.e., gi(0). For every integer k ≥ 1
and pair of agents x, y ∈ [n], we denote by Pxy the set of all
the influence paths from x to y (of any length) in G.

Definition 2. We say that G is ergodic if there is a round
t∗ such that, for every round t ≥ t∗ + 1 and pair of agents
x, y ∈ [n], there is a path in Pxy of length t.

Finally, let M (`)
i = {t ∈ [0, ρ`] : c

(`)
it > 0} for every

agent i and epoch `. We define the recall of i in ` as µ(`)
i =

max
t∈M(`)

i
|ρ`−t|. Informally, µ(`)

i measures how far agent i
is looking back in the past in order to shape her innate belief
in epoch `. We define the recall of i as µi = max`≥0 µ

(`)
i .

Observe that, if µi is finite then the opinion expressed by i
at any round has a direct influence on the innate beliefs of i
during only a finite number of future epochs and its influence
vanishes in the long run.

We are now ready to state our main contribution.
Theorem 2. If G is ergodic and every agent has finite recall
then the profile of opinions z(t) converges to a consensus as
t goes to infinity.

To prove the theorem we need two technical lemmas. The
first lemma states that the ergodicity of G implies that T (`,j)

becomes positive in the long run.
Lemma 2. If G is ergodic then there exists an epoch `0 such
that T (`,j) is positive, for every ` ≥ `0 and j ∈ [h(`)].

The second lemma states that if the agents form their in-
nate beliefs by looking at only a finite number of previous
epochs and if T (`,j) becomes positive in the long run then
T (`,j) tends to a matrix where all the elements of every col-
umn y ∈ [n] are equal to a constant in [0, 1]; we denote this
constant by πy . Notice that, by Theorem 1, all these elements
sum up to 1, i.e.,

∑
y∈[n] πy = 1.

Lemma 3. If every agent has finite recall and there exists
an epoch `0 such that T (`,j) is positive, for every ` ≥ `0
and j ∈ [h(`)], then lim`→+∞ T

(`,j)
xy = πy, for every pair

x, y ∈ [n] and j ∈ [h(`)].

Proof Sketch. Let `0 be such that for every ` ≥ `0 and every
j ∈ [h(`)] we have that T (`,j) is positive and C(`,0) = 0.
The existence of `0 is guaranteed by Lemma 2 and the hy-
pothesis of finite recall. We define L(`) as the set containing
all time steps t such that the beliefs at epoch ` depend on the
opinions at step t, i.e., L(`) = {(r, k) : C(`,ρr+k) 6= 0}. We
also define L+(`) = L(`) ∪ {(`− 1, h(`− 1)}.

First, observe that if there is πy such that T (r,k)
wy = πy for

every (r, k) ∈ L+(`) and every w ∈ [n] then we can state
that T (`,j)

xy = πy for every x ∈ [n].
Suppose now that such a πy does not exist. Hence there

is (r̂, k̂) ∈ L+(`) and ŵ ∈ [n] such that T (r̂,k̂))
ŵy <

max(r,k)∈L+(`) maxw

{
T

(r,k)
wy

}
. Similarly, by Lemma 2,

there must be (ř, ǩ) ∈ L+(`) and w̌ ∈ [n] such that
T

(ř,ǩ)
w̌y > min(r,k)∈L+(`) minw

{
T

(r,k)
wy

}
≥ 0. Then, we can

prove that 0 ≤ min(r,k)∈L+(`) minw

{
T

(r,k)
wy

}
< T

(`,j)
xy <

max(r,k)∈L+(`) maxw

{
T

(r,k)
wy

}
. That is, rows in the T (`,j)

matrices become closer each other as ` increases. Hence,
their difference will eventually be 0, as desired.
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Armed with the previous two lemmas, we are ready to
formally prove Theorem 2.

Proof of Theorem 2. By combining Lemma 2 and Lemma 3
we obtain that lim`→∞ T

(`,j)
xy = πy, for every pair x, y ∈

[n] and j ∈ [h(`)]. Finally, by combining this latter fact
with Theorem 1, we obtain that for every agent i, it holds
that lim`→∞ zi(ρ` + j) = lim`→∞

∑[n]
k=1 T

(`,j)
ik zk(0) =∑[n]

k=1 πkzk(0) = z∗, where z∗ ∈ [0, 1] denotes the value
of the consensus.

We next focus on the conditions of Theorem 2: we show
they are essentially tight, and we briefly discuss the behavior
of the dynamics when they do not hold.
Finite Recall. The assumption of finite recall essentially
states that the agents tend to forget opinions expressed too
far in the past. Hence, it turns out to be a quite realistic as-
sumption. On the other hand, suppose that there is an agent
with infinite recall. Then there must be a round t such that
the opinion expressed at that round influences the belief of
that agent in infinitely many epochs. Hence, even if a con-
sensus would be reached at round t′ > t such that t ∈ R(`),
there could be an epoch `′ > ` such that the belief update at
the beginning of this epoch breaks the consensus.

It remains open to understand whether and when, under
the assumption of infinite recall, the process converges to a
(non-consensus) fixed profile.
Ergodic Sequence of Graphs. The assumption that the se-
quence of social influence graphs is ergodic concerns the
structure of the social relationships among agents. It implies,
indeed, that, after a sufficently large number of rounds, the
opinion of each agent is influenced by the initial opinions of
all the other agents, i.e., g(0).

Note that our definition of ergodicity does not imply that
agents remains connected to each other at every round t. In
particular, G can be ergodic even if the evolution of the social
relationships leads to the formation of distinct communities;
ergodicity only requires that there has been a sufficiently
large amount of time in which these different communities
influenced each other. Hence, ergodicity, as defined above,
turns out to be a milder requirement than just connected-
ness, often required for convergence to consensus (e.g., for
the DG model). However, as we will discuss below, our def-
inition relaxes to connectivity whenever the social relation-
ships are assumed to be fixed.

Actually, as illustrated by the proof of Theorem 2, the
ergodicity of G can be replaced with the weaker notion of
positiveness of T (`,j). However, in the claim of the theorem
we use the former condition because it explicitly reveals the
structural properties of evolving social relationships suffi-
cient to converge to consensus.

The positiveness of T (`,j) turns out to be necessary for
the convergence to consensus. Indeed, the lack of positive-
ness leads the dynamics to two possible different outcomes:
either the dynamics converges to a non-consensus stable out-
come, or it does not converge at all.

The convergence to a stable outcome which is not a con-
sensus occurs if there is a pair of nodes x, y such that

T
(`,j)
xy = 0 for every ` sufficiently large. In this case, we can

partition the agents into communities N1, . . . , Nk such that
all the members of the same community Ni will eventually
influence each other, i.e., T (`,j)

xy > 0, for every x, y ∈ Ni,
j ∈ [h(`)] and ` sufficiently large. Each community Ni will
be classified as recurrent if T (`,j)

xy = 0 for every ` suffi-
ciently large and every x ∈ Ni and y /∈ Ni, and tran-
sient otherwise. That is, recurrent communities are the one
that will eventually become disconnected by the rest of so-
ciety. Then, we can apply Theorem 2 to every recurrent
community and conclude that the opinion of its members
will converge to a consensus (even if different consensi can
be reached in different recurrent communities). Instead the
opinion of an agent belonging to a transient community con-
verges to a combination of the consensi of the recurrent com-
munities.
The process does not convergence instead when T (`,j) is not
positive and the condition in the previous paragraph does
not hold. Formally, we have no convergence when, for ev-
ery epoch `0, there are two epochs `, `′ ≥ `0 such that
T

(`,j)
xy > 0 but T (`′,j′)

xy = 0, for every x, y ∈ [n], j ∈ [h(`)]
and j′ ∈ [h(`′)]. This implies that the opinion of x changes
infinitely often, therefore the convergence is unattainable.

Partially Evolving Environments
In this section, we analyze the opinion formation dynamics
in some simpler (but realistic) settings where the environ-
ment only partially evolves.
Fixed Social Influence Graphs. Here we assume that the
structure of the social relationships among the users never
change. This implies that G = {G(t)}t≥0 is such that
G(t) = H , for every t ≥ 0. Interestingly, in this case, the
property of ergodicity of G reduces to simple and more intu-
itive properties on H . In fact, as argued in (Levin and Peres
2017, Lemma 1.7), it is not hard to see that if H is strongly
connected and aperiodic then G is ergodic. We say that H
is strongly connected if for every pair of nodes x, y ∈ [n],
there is at least a directed path from x to y in G. We say
that H is aperiodic if the maximum common divisor of the
lengths of the cycles in the graph is 1 (i.e., it does not occur
that all the cycles have a length that is a multiple of c for
some c > 1). Therefore, we have the following theorem.
Theorem 3. Let H be a strongly connected and aperiodic
directed graph. If G(t) = H , for every t ≥ 0, and every
agent has finite recall then the profile of opinions z(t) con-
verges to a consensus as t goes to infinity.

For sake of presentation, we henceforth assume that the
social influence graphs are fixed and they are all equal to H .
Belief as the Last Opinion of the Previous Epoch. Con-
sider a setting where agents’ stubborness levels are fixed
and, at the beginning of each epoch, agents set their beliefs
equal to the last opinion expressed in the previous epoch.
Formally, for each epoch `, we define C(`,t) = 1 if t = ρ`
and 0 otherwise.

By Theorem 3 the opinion formation dynamics converges
to a consensus if the social influence graph H is strongly
connected and aperiodic. Actually, it turns out that in this
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specific setting we can prove that the dynamics converges to
a consensus even if H is strongly connected (but not neces-
sarily aperiodic) and there is at least one agent with non-zero
stubborness level. Moreover, the proof is much simpler than
the general case.

Observe that the opinions announced in round t ∈ R(`)
are z(ρ` + t) = Ez(ρ` + t − 1) + Sz(ρ`) where, since the
social influence graph and the stubborness levels are fixed,
E = E(0) = E(`) and S = S(0) = S(`) for each ` > 0.
Iterating, we have z(ρ` + t) = Etz(ρ`) +

∑t−1
r=0E

rSz(ρ`)

and z(ρ`+1) = Eh(`)z(ρ`) +
∑h(`)−1
r=0 ErSz(ρ`). For every

integer k ≥ 1, let T {k} = Ek +
∑k−1
r=0 E

rS. Then, we
achieve that z(ρ`+1) = T {h(`)}z(ρ`). By iterating on all the
previous epochs and using ρ0 = 0, we obtain that for every
epoch ` ≥ 0

z(ρ`+1) =

(
0∏
i=`

T {h(i)}

)
z(0). (12)

Now observe that, by Lemma 1, T {k} is a stochastic ma-
trix for every k ≥ 1. Moreover, it is immediate to see that
since the graph H is strongly connected, then the matrix E
is irreducible, i.e., for every x, y there is an integer t such
that Et(x, y) > 0. Hence, it immediately follows that also
Ek and T {k} are irreducible, for every k ≥ 1. Moreover,
it is immediate to see that if there is at least one agent x
with non-zero stubborness level, then, for every k the ma-
trix P = Ek + S is aperiodic, i.e., the greatest common
divisor of the element in the set {t ≥ 1: P t(x, x) > 0}
is 1. Consequently, T {k} is aperiodic, too. Finally, observe
that since all the epochs have finite length, there are always
finitely many different matrices T {k} involved in the prod-
uct of (12). These conditions (finiteness of the number of
matrices involved in the product, and the fact that all these
matrices are stochastic, irreducibile and aperiodic) are suf-
ficient to imply that z(ρ`) tends to a consensus as ` goes to
infinity (see, e.g., (Coppersmith and Wu 2008, Theorem 5)).

We conclude the analysis of this setting, by observing that
when all epochs have the same length, i.e. h(`) = h for
every `, then (12) gives that z(ρ`) =

(
T {h}

)`
z(0). Thus, the

evolution of opinions can be described through the evolution
of a Markov chain with transition matrix T {h}.

By similar arguments, but with different technicalities,
we can also prove the convergence to consensus in settings
where the agent belief in epoch ` depends only on the opin-
ions expressed by the same agent in the epoch ` − 1 (e.g.,
one could assume that the belief at epoch ` is a (discounted)
average of opinions expressed in the epoch `− 1.
Social Pressure to Consensus. In (Ferraioli and Ventre
2017) a generalization of the FJ model is presented to model
settings where there is a pressure on the agents on reaching
a consensus within an upcoming deadline. In this model, the
agents’ stubborness proportionally reduces over time.

Even if this model is quite different from ours (e.g., they
assume opinions are discrete), we can import some of their
ideas in our framework. Assume that the stubborness level
w

(`)
ii decreases as ` increases, while the beliefs remain fixed,

i.e. C(`,t) = 0 for every t 6= 0, and C(`,0) = 1. Notice that
in this setting µ(0) = ∞, and we cannot use Theorem 2.
However, if for ` going to infinity, the stubborness levels go
to 0, then, at the limit, the model turns out to be equivalent
to the DG model, and hence convergence to consensus is
guaranteed under the same hypothesis as the DG model.
Agents with Heterogeneous Epochs. In all previous set-
tings we assumed that epochs are homogeneous among
agents and at the beginning of each epoch all the agents
update their beliefs and stubborness levels. However, our
framework is powerful enough to allow also agents with het-
erogeneous epochs. We assume that for every agent i there
is an infinite list of time steps

(
t
(1)
i , t

(2)
i , . . .

)
at which i is

allowed to update her belief and, possibly, her stubborness
level. Assume, for sake of simplicity, that at these time steps
i sets her belief to the last opinion expressed in the previ-
ous epoch. In order to model the dynamics in this setting,
we define epochs as follows: let ρ0 = mini t

(1)
i , and for

each ` > 0, let ρ` = mini min
r : t

(r)
i >ρ`−1

{
t
(r)
i

}
. Hence,

each epoch ends as soon as there is an agent that would like
to update her belief. Moreover, for every epoch `, we set
C

(`,ρ`)
ii = 1 if there is r such that t(r)i = ρ`, and C(`,t∗)

ii = 1
otherwise, where z(t∗) is the last opinion assumed as belief
by i, i.e., t∗ = max

r : t
(r)
i <ρ`

{
t
(r)
i

}
− 1. That is, if i is one

of the agents that is supposed to change her belief at time
step ρ`, then it sets the belief exactly as the last expressed
opinion, otherwise it simply copies the last assumed belief.

Note that h(`) and µ(`) are finite as long as each agent up-
dates her belief at infinitely many time steps. We can prove
that, in this setting, even if agents update their beliefs at dif-
ferent time steps, the dynamics still reaches a consensus if
the social graph is strongly connected and aperiodic, and
each agent updates her belief infinitely often.

Conclusions
In this paper we presented a new model of opinion forma-
tion in a fully evolving social environment when both the
structure of the social relationships among the agents and
their innate beliefs co-evolve with the expressed opinions.
We proved that, under reasonable conditions on the struc-
ture of the sequence of influence graphs and on the recall
of the agents in forming their beliefs, the opinion formation
dynamics converges to a consensus.

Our results raise several interesting questions and suggest
different research lines.

First of all, it would be interesting to study how much
time the dynamics needs to reach a consensus. We run some
preliminary experiments on very simple settings that give
interesting results but a much more extended experimental
activity is necessary to understand how the dynamics con-
vergence time depends on the different parameters of the
problem.

Another interesting question is to study the quality of the
consensus reached by the dynamics with respect to the best
agreement that could be reached by a central authority (e.g.,
a weighted average of the initial opinions).
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We can also study our dynamics in a setting of informa-
tion aggregation in social learning. Here, we assume that
agents have noisy signals (their initial beliefs) with respect
to a issue of interest and these signals are biased toward a
groun truth. Through their social interactions, the agents can
reach an agreement on this issue. It is well known that, due
to information cascades, they can reach an agreement on a
wrong value and conditions were given under which the con-
sensus is reached on the right value in a static environment
(Feldman et al. 2014; Mossel, Neeman, and Tamuz 2014;
Mossel, Sly, and Tamuz 2014), It would be interesting to
study this problem in an evolving enviroment to give con-
ditions on the structure of the social influence graphs and
on the evolution of the beliefs under which the dynamics
reaches a consensus on the correct value or to bound how
the learned value is far from the ground truth.
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