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Abstract

We consider the problem of performing an association test
between functional data and scalar variables in a varying co-
efficient model setting. We propose a functional projection
regression model and an associated global test statistic to ag-
gregate relatively weak signals across the domain of functional
data, while reducing the dimension. An optimal functional pro-
jection direction is selected to maximize signal-to-noise ratio
with ridge penalty. Theoretically, we systematically study the
asymptotic distribution of the global test statistic and provide
a strategy to adaptively select the optimal tuning parameter.
We use simulations to show that the proposed test outperforms
all existing state-of-the-art methods in functional statistical
inference. Finally, we apply the proposed testing method to
the genome-wide association analysis of imaging genetic data
in UK Biobank dataset.

Introduction
Functional regression modeling with a functional response
y(s), s ∈ S and multivariate covariates x ∈ Rp is a
powerful statistical tool in modern high-dimensional infer-
ence, with wide applications in various biomedical stud-
ies. Specifically, functional responses frequently arise in
medical imaging, computational biology and computer vi-
sion, and have been widely used to characterize brain
structure and function, such as cortical complexity and
white matter microstructure (Grenander and Miller 2007;
Miller and Qiu 2009; Kendall et al. 2009; Srivastava and
Klassen 2016; Smith et al. 2006; Smith and Nichols 2009;
Huang et al. 2017). In imaging genetic studies, our primary
problem of interest is to identify genetic variants (x) associ-
ated with functional phenotypic variation (y(s)), which may
ultimately lead to discoveries of risk genes contributing to
neuropsychiatric and neurological disorders.

Suppose that we observe a functional response yi(s) and
a set of clinical variables (e.g., age, genetic markers, and
gender) xi ∈ Rp for n unrelated subjects. Without loss of
generality, we assume S = [0, S] for a positive scalar S.
Throughout this paper, we consider n independent observa-
tions (yi(s),xi) and a varying coefficient model given by

yi(s) = xTi β(s) + ηi(s) + ei(s), (1)
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where β(s) is a p× 1 vector of functional coefficients, ηi(s)
is a function of random effect that characterizes subject-
specific spatial variation, and ei(s) represents measure-
ment error. It is assumed that ηi(s) and ei(s) are mutually
independent and identical copies of SP{0,Ση(s, s′)} and
SP{0, σ2

e(s)I(s = s′)}, respectively, where SP(µ,Σ) de-
notes a stochastic process with mean function µ(s) and co-
variance function Σ(s, s′), and I(·) is the indicator function
of an event. Many hypothesis testing problems of interest,
such as comparison across groups, can often be formulated
as a global testing problem across S, which is given by,

H0 : Cβ(s) = b0(s) ∀s ∈ S,
H1 : Cβ(s) 6= b0(s) ∃s ∈ S, (2)

in which C is an r × p matrix and b0(s) is an r × 1 matrix.
Without loss of generality, we center the covariates, stan-
dardize the responses, and assume rank(C) = r = 1 and
b0(s) = 0.

The key problem is how to design a powerful global test
statistic that can efficiently aggregate weak signals across
S, while achieving high statistical power for testing prob-
lem (2). To the best of our knowledge, such problem has
not been fully solved yet. We focus on a specific setting
that all components in β(s) lie in an infinite-dimensional
functional space, but p is relatively small. Existing testing
methods are not powerful enough to detect moderate or weak
signals due to two major challenges, (i) infinite-dimensional
functional parameters and (ii) complicated covariance struc-
ture Ση(s, s′). Popular pooled global test statistics are to
conduct univariate analysis at each sample grid point of S
and then combine their results (Zhu, Li, and Kong 2012;
Huang et al. 2017). However, since most of such tests ig-
nore the correlation structure of yi(s), they may suffer from
severe power loss in the presence of high correlation. More-
over, testing at each grid point individually in the mass uni-
variate analysis requires a substantial penalty of control-
ling for multiplicity. The Hotelling’s T 2 type test is also
not well-defined for our problem of interest, since the sam-
ple estimate of Ση is usually non-invertible. Although di-
mension reduction techniques, such as principal compo-
nent analysis (PCA), can be applied to reduce the dimen-
sion of functional response, most of the methods ignore
the variation of covariates and their associations with re-
sponses. Thus, such methods are sub-optimal for our prob-
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lem. Finally, some recent developments in regularization
methods, such as multiple task learning, do not provide a
post-inference tool, e.g., p-values, (Sun, Ji, and Ye 2016;
Trevor, Tibshirani, and Friedman 2009).

The proposed method has three major contributions given
as follows:
• A novel functional projection regression model and its

associated global test statistic are introduced to aggregate
relatively weak signals across S , while reducing the dimen-
sion of functional data. An optimal functional projection
direction is calculated by maximizing statistical power
with ridge penalty.
• The asymptotic distribution of the global test statistic is

studied systematically under both null and alternative hy-
potheses and a data-driven strategy is provided to adap-
tively select the optimal tuning parameter.

• Numerical simulations show that the proposed test outper-
forms all existing state-of-the-art methods in functional
statistical inference.
The rest of the paper is organized as follows. We first

introduce a functional projection model and the associated
global test statistic for testing problem (2). Next, we derive
the asymptotic distribution of the test statistic under both
null and alternative hypotheses. Finally we use numerical
simulations and a real data example to examine the finite
sample performance of the global test statistic and conclude
with some remarks.

Method
Functional Projection Regression Model
We propose a functional projection regression model as fol-
lows. Specifically, let ω(s) be a weight function in L2(S),
we define the following pseudo response yw,i, which is a
projected variable onto the functional direction ω(s) given as

yw,i
∆
= xTi βw + ηw,i(s), (3)

where βw =

∫
S
β(s)ω(s)ds, and ηw,i =

∫
S
ηi(s)ω(s)ds.

The term associated with ei(s) in (3) would converges to 0 in
probability through local kernel smoothing and therefore is
asymptotically ignorable. The projected model (3) transforms
the functional data into a univariate variable yw,i. Let β̂w and
Σ̂η(s, s′) be the estimates of βw and Ση(s, s′) respectively,
then a standard Wald-type statistic for testing problem (2)
can be given by

Tn(ω) =
β̂
T

wCT [C(XTX)−1CT ]−1Cβ̂w∫∫
Σ̂η(s, s′)ω(s)ω(s′)dsds′

. (4)

For a given projection direction of ω(s), we need to esti-
mate β̂(s) and Σ̂η(s, s′) in order to calculate Tn(ω). In real
data, functional responses {yi(s)}ni=1 are usually observed
on a set of M discrete sample points on S , which is denoted
as Ŝ = {s1, · · · , sm, · · · , sM}. To estimate β(s), we use a
weighted least square (WLS) method based on the local poly-
nomial kernel (LPK) smoothing technique (Fan and Gijbels

2018; Zhu, Li, and Kong 2012). LetK(s) be a predetermined
smoothing kernel on [−1, 1] and let Kh(s) = h−1K(s/h)
for bandwidth h. A smooth estimate of β(s) can be given
as the minimizers of the following weighted least square
function given by

β̂h1
(s) = argmin

β(s)

n∑
i=1

Kh1
[yi(s),x

T
i β(s)|Ŝ], (5)

where Kh1
[yi(s),x

T
i β(s)|Ŝ] is defined as

M∑
m=1

[yi(sm)− xTi β(s)]2Kh1
(sm − s). (6)

Similarly, each random function ηi(s) can also be estimated
by

η̂i,h2(s) = argmin
ηi(s)

Kh2 [yi(s)− xTi β̂h1
(s), ηi(s)|Ŝ], (7)

where Kh2 [yi(s)− xTi β̂h1
(s), ηi(s)|Ŝ] is defined as

M∑
m=1

[yi(sm)− xTi β̂h1
(sm)− ηi(s)]2Kh2

(sm − s). (8)

With {η̂i,h2
(s)}ni=1, we can obtain a consistent estimate of

Ση(s, s′) as

Σ̂η(s, s′) =
1

n

n∑
i=1

η̂i,h2
(s)η̂i,h2

(s′). (9)

Finally, we address the problem of determining ω(s) in
order to achieve optimal power. Specifically, we consider the
signal-to-noise ratio of test statistics Tn(ω), which dominates
the asymptotic power, as follows:

L1(ω) =
βTwCT [C(XTX)−1CT ]−1Cβw∫∫

Ση(s, s′)ω(s)ω(s′)dsds′
. (10)

An optimal projection direction would be the maximizer of
L1(ω). However, when plugging in the estimates of β(s)
and Ση(s, s′), directly maximizing L1(ω) can be an ill-
conditioned problem. The eigenvalues of Σ̂η(s, s′) usually
decrease to zero very fast and the maximum value of L1(w)
tend to be∞. To solve this issue, we add a ridge penalty term
to the denominator in (10). Given a positive tuning parameter
λ, the optimal projection direction ω̂λ(s) can be estimated as

argmax
ω(s)

β̂
T

w,h1
CT [C(XTX)−1CT ]−1Cβ̂w,h1∫∫

Σ̂η(s, s′)ω(s)ω(s′)dsds′ + λ‖ω(s)‖22
, (11)

where ‖ω(s)‖22 =
∫
S ω

2(s)ds is the L2-norm.
For a given λ, we calculate ω̂λ(·) as follows. Let {τ̂k}+∞k=1

be the eigenvalues of Σ̂η(s, s′) in a decreasing order and
let {φ̂k(s)}+∞k=1 be the corresponding eigenfunctions. We
further assume that ω(s) ∈ span{φk(s)}+∞k=1 such that
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ω(s) =
∑+∞
k=1 wkφk(s). In that case, we can seek solution

ω̂λ(s) in the space spanned by {φ̂k(s)}+∞k=1, which is given
by

ŵλ = (ŵ1,λ, · · · , ŵk,λ, · · · )

= argmax
w1,··· ,wk,···

[
∑+∞
k=1 d̂k,h1wk]2∑+∞
k=1 w

2
k(τ̂k + λ)

, (12)

where

ŵk,λ =

∫ S

0

ω̂λ(s)φ̂k(s)ds and

d̂k,h1 =

∫ S

0

Cβ̂h1
(s)φ̂k(s)ds

are the projections of functional direction ω̂λ(s) and es-
timated signal Cβ̂h1

(s) on the estimated eigenfunctions
{φ̂k(s)}∞k=1 respectively. The solutions to (12) can be ex-
plicitly expressed as,

ŵk,λ = d̂k,h1/(τ̂k + λ). (13)

Finally, we obtain a global test statistic based on the optimal
projection direction ω̂λ(s) =

∑+∞
k=1 ŵk,λφ̂k(s) as follows:

Tn(ω̂λ) =
(
∑+∞
k=1 d̂k,h1

ŵk,λ)2

[C(XTX)−1CT ]
∑+∞
k=1 τ̂kŵ

2
k,λ

. (14)

An unsolved question is how to choose the tuning parameter
λ, which will be answered in Section 3. To approximate the
distribution of Tn(ω̂λ) under H0, we adopt a wild-boostrap
procedure described as follows.
Algorithm 1.
(a) Fit the varying coefficient model under the null hypothesis
and get the estimate of β̂0(s) and {η̂i,0(s), êi,0(s)}ni=1.
(b) For g = 1, · · · , G, generate independent random num-
bers ν(g)

i and ν(g)
i (sm) from N(0, 1), and the wild bootstrap

sample on each grid point can be calculated as

ŷ
(g)
i (sm) = β̂0(sm)Txi+ν

(g)
i η̂i,0(sm)+ν

(g)
i (sm)êi,0(sm).

(c) Repeat the testing procedure and obtain G samples of
Tn(ω̂

(g)
λ ) under the null hypothesis.

(d) The p-value is approximated by

p = G−1
G∑
g=1

I{Tn(ŵλ) ≥ Tn(ω̂
(g)
λ )}.

Approximation of the null distribution requires repeated
calculation of the estimation-test procedure by G times, and
G should be large enough to guarantee accuracy.

Theoretical Result
In this section, we study the asymptotic distribution of the
proposed test statistic Tn(ω̂λ) for fixed λ and consider the
problem of determining the tuning parameter λ for optimally
testing (2).

Assumptions
Throughout the paper, the following assumptions are used
to facilitate the technical details. Some of the assumptions
might be weakened but the current version simplifies the
proof.
Assumption 1. Smoothing kernel K(u) is a symmetric posi-
tive function with compact support [−1, 1] and upper bound
c1. Moreover, K(u) has continuous first order derivative
satisfying supu |K̇(u)| < c2 < +∞.

Assumption 2. Variable of interest xi are identically and in-
dependently distributed variables with mean µx and positive
definite covariance Σx. And ‖xi‖∞ < c3 < +∞.

Assumption 3. Sample grid point set Ŝ is composed of M
equidistant points on [0, S].

Assumption 4. Fixed effects β(s) are continuous functions
in C1[0, S] with universally bounded first order derivatives,
i.e., sups ‖β̇(s)‖∞ < c4 < +∞.

Assumption 5. Random functions {ηi(s)}ni=1 are identically
and independently distributed copies from gaussian process
and the sample path has continuous first-order derivative on
[0, S]. Additionally, it is assumed that η̇i(s) is from gaussian
process and its covariance function has continuous first-order
derivatives, i.e., Ση̇(s, t) ∈ C1[0, S]2.

Assumption 6. Error terms {ei(s)}ni=1 are from a univer-
sally upper bounded process, that is, sups |ei(s)| < c7 <
+∞.

Assumption 7. Let Ση(s, s′) =
∑+∞
k=1 τkφk(s)φk(s′) be

the spectral expansion of Ση(s, s′), in which τ1 > · · · >
τk > · · · ≥ 0 are eigenvalues in decreasing order. It is
assumed that all eigenvalues have simple multiplicity that
satisfy

min
k

min
j 6=k
|τj − τk|/τk > ε0 > 0.

Let {λn} be a sequence of tuning parameters that satisfy
λn → 0 as n→ +∞, we further assume that one of the two
conditions holds,
(i) {τk}+∞k=1 follows polynomial decay rate, i.e. τk � k−r

with r > 1, it is assumed that λ1− 1
r

n Mh1 → +∞ and
λ

3− 1
r

n min{h−2
1 , h−2

2 ,Mh2, n/ log n} → +∞.
(ii) {τk}+∞k=1 follows exponential decay rate, i.e. τk � α−k

with α > 1, it is assumed that Mh1λn log λ−1
n → +∞ and

λ3
n log λ−1

n min{h−2
1 , h−2

2 ,Mh2, n/ log n} → +∞.

Assumption 8 (Local Alternative Hypothesis). A sequence
of local alternative hypotheses H1n : Cβ(s) = n−1/2d0(s)
is satisfied as n → +∞, where d0(s) ∈ C1[0, S] ∩
span{φk(s)}+∞k=1.

Assumptions 1-6 are standard conditions in functional data
analysis (Zhu, Li, and Kong 2012; Hall, Müller, and Wang
2006; Li and Hsing 2010), which are required to guarantee
that the estimates of β(s) and Ση(s, s′) are consistent. As-
sumption 7 is required in order to specify the bound of tuning
parameter λn for two different decay rates of {τk}+∞k=1. These
two decay rates are the most commonly used conditions in
the literature of functional data analysis (Qu and Wang 2017;
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Yuan and Cai 2010; Wang and Ruppert 2015). Here, we only
consider distinct eigenvalues. And the distance between one
eigenvalue and any other eigenvalues can not be too large
compared to itself. Conclusions for multiplicity greater than
one could be reached, yet is beyond the discussion of this
paper. Assumption 8 specified a sequence of local alternative
hypotheses from which we will derive the asymptotic power.

Main Theoretical Results
We present the key results below according to different de-
cay rates of {τk}+∞k=1. The proof of the theorem is given in
https://app.box.com/v/aaai19PFGT.
Theorem 1. When Assumptions 1 - 6 and 7(i) (or 7(ii)) hold,
as n,M → +∞, Tn(ω̂λn

) has the following asymptotic
normal distribution under the null hypothesis,

Tn(ω̂λn
)

d−→ N{µ0, σ
2
0}, (15)

where d−→ denotes convergence in distribution and µ0 and σ2
0

are given by,

µ0 =
a2

1

a2
and σ2

0 =
8a2

1

a2
+

2a4
1a4

a4
2

− 8a3
1a3

a3
2

, (16)

in which a1, a2, a3, and a4 are defined as,

a1 =

+∞∑
k=1

τk
τk + λn

, a2 =

+∞∑
k=1

(
τk

τk + λn
)2,

a3 =

+∞∑
k=1

(
τk

τk + λn
)3, a4 =

+∞∑
k=1

(
τk

τk + λn
)4.

When Assumptions 1 - 6 and 7(i) (or 7(ii)) hold, and the local
alternative hypothesis specified by Assumption 8 is satisfied,
Tn(ω̂λn

) has the following asymptotic normal distribution
given by

Tn(ω̂λn
)

d−→ N{µ1, σ
2
1}, (17)

where µ1 and σ2
1 are defined as,

µ1 =
(a1 + d1)2

a2 + d2
,

σ2
1 =

8(a1 + d1)2(a2 + 2d2)

(a2 + d2)2

+
2(a1 + d1)4(a4 + 2d4)

(a2 + d2)4

− 8(a1 + d1)3(a3 + 2d3)

(a2 + d2)3
. (18)

In the above equation, d1, d2, d3, and d4 are defined as

d1 =

+∞∑
k=1

δ2
k,0

σ2
c (τk + λn)

, d2 =

+∞∑
k=1

τkδ
2
k,0

σ2
c (τk + λn)2

,

d3 =

+∞∑
k=1

τ2
k δ

2
k,0

σ2
c (τk + λn)3

, d4 =

+∞∑
k=1

τ3
k δ

2
k,0

σ2
c (τk + λn)4

,

where δ0,k =

∫ S

0

d0(s)φk(s)ds and σ2
c = CΣ−1

x CT .

Theorem 1 establishes the asymptotic distribution of the
proposed test statistics for polynomial and exponential decay
rates under both null and alternative hypotheses. It inspires a
data-driven criterion to adaptively select tuning parameter λn
in order to achieve optimal power. Specifically, we choose

λ̂n = argmax[µ̂1/σ̂1 − µ̂0/σ̂0], (19)

in which µ̂0, µ̂1, σ̂0, σ̂1 are calculated by plugging in their
corresponding estimates. Intuitively, (19) tends to maximize
the asymptotic power of Tn(ω̂λn

) under alternative hypothe-
sis.

Numerical Simulation
Setup
In this section, we use numerical simulations to evaluate the
finite-sample performance of the proposed global test statistic.
Data was generated from the following model

yi(s) = β0(s) + xi,1β1(s) + ηi(s) + ei(s), i = 1, · · ·n,

where xi,1 ∼ N(0, 1). We set n = 200 and S = 1 and put
the number of grid points M = 100 evenly in [0, 1]. Our
hypothesis of interest is to test the following problem:

H0 : β1(s) = 0,∀s ∈ [0, 1],

H1 : β1(s) 6= 0,∃s ∈ [0, 1].

In this experiment, we simulated β1(s) as a spatially het-
erogenous function under the alternative hypothesis. Other
model parameters were estimated from the UK Biobank
dataset introduced in Application Section. We considered
two decay rates of {τk}+∞k=1 including a polynomial decay
rate with τk = k−3/2 and an exponential decay rate given
by τk = 0.75k. The signal-to-noise ratios under alternative
hypothesis are shown in Figure 1 (a)-(b) and the structure of
the covariance functions are presented in Fig 1 (c)-(d). As
can be seen, responses in the polynomial decay case have
stronger spatial correlation than those in the exponential de-
cay case. For the choice of the tuning parameter, we consid-
ered both fixed quantities where log λn takes values from
[−2, 0] with an equal increment of 0.1 (PFGT-λn) and an
optimal λ̂n selected by (19) in each run (PFGT-optimal). As
a comparison, we considered two state-of-the-art methods in
functional statistical inference, including FADTTS (Zhu, Li,
and Kong 2012) and FLMtest (Zhang 2011). In each scenario,
1,000 simulation replicates were generated to evaluate type
I and type II error rates respectively. To calculate p-values,
G = 1, 000 wild-bootstrap samples were generated in each
run.

Results
Simulation results are summarized in Figure 2. The rejection
rates under null hypotheses are shown in Figure 2 (a) - (b).
As can be seen, FADTTS controls type I error rates well.
Although our global test has slightly inflated false positive
rate as λn is relatively large, but the optimal λ̂n does not
have such problem. For FLMtest, type I error is slightly
inflated. Under the alternative hypothesis, PFGT substantially
outperforms FADTTS and FLMtest for both the polynomial
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Figure 1: Simulation settings: Panels (a)-(b) demonstrate the
signal-to-noise ratios under alternative hypothesis. Panels (c)-
(d) visualize the covariance function of simulated responses
along the curve.

decay rate and the exponential decay rate. In addition, the
proposed test using adaptive tuning parameter λ̂n achieves
almost the best performance given by PFGT using fixed λn,
which indicates the effectiveness of the data-driven strategy
to choose λn. Moreover, PFGT shows larger improvement in
the polynomial decay case than in the exponential decay case
compared with FADTTS and FLMtest. It is suggested that
the proposed method has better performance in the presence
of stronger spatial correlation.

Application: UK Biobank Data Analysis
UK Biobank Study
UK Biobank is a large-scale cohort in the United Kingdom
designed to investigate the influences of genetic susceptibility,
environmental exposures and lifestyle factors to a wide range
of health-related outcomes and disorders in middle aged and
elderly population. In this section, we perform a genome-
wide association analysis on the functional neuroimaging
phenotypes from this study.

Diffusion weighted images (DWI) were acquired for
8751 subjects in total. We ran the TBSS-ENIGMA pipeline
(McMahon and Thompson 2017) on DWIs with the FSL tool
set (Jenkinson et al. 2012) to perform quality control and
registration. The ENIGMA skeleton was then projected onto
the registered FA images and FA statistics on 26,334 vox-
els from 21 regions of interest (ROIs) were obtained. The
primary phenotype of interest is the distributional density
of voxel-wise FA statistics of the whole brain. As the den-
sity function is constrained by the normalization condition,
we applied a log quantile density transformation introduced
in (Petersen and Müller 2016) and took the output as the
functional phenotypes for further analysis.

Figure 2: Simulation results: Panels (a)-(b) present the type I
error for PFGT-λn, PFGT-optimal, FADTTS and FLMTest.
Panels (c)-(d) present the power under alternative hypothesis.

The Affymetrix Axiom platform was used to genotype
8057 subjects from the full population with imaging data,
which resulted in a set of 784,256 single-nucleotide poly-
morphism (SNPs). The genotype data were preprocessed by
standard quality control steps and SNPs with minor allele
frequency (MAF) less than 1% were removed. Eventually,
459,588 SNPs were remained in the dataset for further analy-
sis.

Statistical Analysis and Results
Our problem of interest is to perform a genome-wide asso-
ciation analysis on the log quantile curve of the whole brain
FA measure. We fitted model (1) with covariates including
an intercept term, a specific SNP, age, gender, and the top 5
genetic principal components. We developed a computation-
ally efficient strategy to approximate the p-values of SNPs
with different MAFs. For each MAF category, we generated
10,000 bootstrap samples and adopted a mixed chis-quare
approximation (Zhang 2005) to approximate the null distribu-
tion of the test statistic. The histograms and the QQ-plots for
a fixed λn are, respectively, presented in Figure 3 and Figure
4 as an example. Other λn choices showed very similar pat-
tern. The mixed chi-square approximation works reasonably
well for a wide range of MAFs. To obtain a single p-value,
we chose the optimal λn from (19) for each SNP.

We present the Manhattan plot and the QQ plot of the
GWAS results in Figure 5. The top 10 loci along with their
p-values are summarized in Table 1. As can be seen, no
genome-wide significant marker (p-value < 1.08 × 10−7)
is observed. Additionally, five loci exceed the suggestive
genome-wide association threshold (p-value < 5 × 10−6).
Among the top genes, CAMK2N1 plays an important role in
long-term potentiation, which is a process closely related to
learning and memory (Lisman, Schulman, and Cline 2002).
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Figure 3: Histograms of wild bootstrap statistics for differ-
ent MAF intervals with fixed λn = 10−2, along with their
density approximations by mixed chis-quare distribution.

Figure 4: QQ Plots of wild bootstrap statistics for different
MAF intervals for fixed λn = 10−2.

Figure 5: Visualization of GWAS results: Manhattan Plot and
QQ Plot of the p-values of 450,899 SNPs.

ZFP36L1, CEP128, HAS2 and EVI5 are risk genes impli-
cated by certain neurodegenerative diseases (Yuan et al. 2013;
Perga et al. 2015; Mowry et al. 2013; Le-Niculescu et al.
2009). MSI2 gene is known to be related to the proliferation
and maintenance of stem cells in the central nervous system
(Sakakibara et al. 2001).

Conclusion

We proposed a powerful functional global testing framework
(PFGT) to perform statistical inference on the varying coeffi-
cient model. The asymptotic distribution of the test statistic
has been systematically studied and we provided a strategy
to adaptively select the optimal tuning parameter in order to
maximize the testing power.

As a continuation of this paper, it is interesting and im-
portant to investigate optimal testing procedures for other
statistical inference problems of parametric and nonpara-
metric models using dimension reduction techiniques and
power maximization framework, for example, inference on
the transformed measurements (Zhou et al. 2016), test of
distributional differences (Jitkrittum et al. 2016), test of inde-
pendence (Heller and Heller 2016; Sen et al. 2017), test of
goodness-of-fit (Jitkrittum et al. 2017) and many others (Liu
and Coull 2017; Cecchi and Hegde 2017).
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Table 1: Top 10 SNPs from GWAS and their nearest genes
SNP Chr p-value Gene

rs6663450 1 5.15E-07 CAMK2N1
rs11158764 14 5.37E-07 ZFP36L1
rs2339157 15 1.45E-06 FMN1

rs143406098 14 3.87E-06 CEP128
rs17821769 17 4.93E-06 MSI2
rs79320696 8 9.47E-06 HAS2
rs72722496 1 9.61E-06 EVI5

rs893282 8 1.61E-05 RALYL
rs73086843 7 1.74E-05 HERPUD2
s55783991 7 2.10E-05 CPA4
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