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Abstract

Decision trees have attracted much attention during the past
decades. Previous decision trees include axis-parallel and
oblique decision trees; both of them try to find the best splits
via exhaustive search or heuristic algorithms in each iteration.
Oblique decision trees generally simplify tree structure and
take better performance, but are always accompanied with
higher computation, as well as the initialization with the best
axis-parallel splits. This work presents the Weighted Oblique
Decision Tree (WODT) based on continuous optimization
with random initialization. We consider different weights of
each instance for child nodes at all internal nodes, and then
obtain a split by optimizing the continuous and differentiable
objective function of weighted information entropy. Extensive
experiments show the effectiveness of the proposed algorithm.

Introduction
Decision trees have attracted much attention in many real
applications such as computer vision (Bosch, Zisserman,
and Munoz 2007) and information retrieval (Fuhr and
Pfeifer 1994). The classical decision trees include CART
(Breiman et al. 1984), ID3 (Quinlan 1986), C4.5 (Quin-
lan 1993), etc. This motivates a series of studies (Murthy,
Kasif, and Salzberg 1994; Loh and Shih 1997; Breiman 2001;
Geurts, Ernst, and Wehenkel 2006; Shotton et al. 2013b;
Fan 2016; Abuzaid et al. 2016; Zhou and Feng 2017). Recent
years have witnessed an increasing popularity on decision
trees, for example, Microsoft Kinect makes real time human
pose estimation from single depth images by decision trees
trained on millions of examples (Shotton et al. 2013a).

The basic idea of decision trees is to seperate data with
some certain splitting criterion, recursively. This procedure
requires an optimization at each internal node of the tree,
which partitions the training data in the node into subsets
according to some splitting criteria, such as information gain
(Quinlan 1993) or Gini impurity index (Breiman et al. 1984).
A large number of decision trees have been developed to
exploit univariate split functions, according to the feature
value below some threshold or not. We call it axis-parallel
decision tree since the split at each node can be viewed as
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an axis-parallel hyperplane in the feature space, and these
trees have made successful applications (Cicalese, Laber, and
Saettler 2014; Shotton et al. 2013a).

The axis-parallel decision trees may yield complex tree
structure and increase computational cost, when decision
boundaries are not parallel to axes. Hence, an oblique
split is introduced to make a multivariate linear combina-
tion of features followed by binary quantization. Generally,
oblique decision trees simplify tree structure and achieve
better performance (Breiman et al. 1984; Heath, Kasif, and
Salzberg 1993; Brodley and Utgoff 1995; Loh and Shih 1997;
Amasyali and Ersoy 2008; Robertson, Price, and Reale 2013;
Kontschieder et al. 2015). While training oblique decision
trees is always followed with high running-time cost, as well
as the initialization with best axis-parallel splits (Murthy,
Kasif, and Salzberg 1994; Norouzi et al. 2015).

This work introduces another oblique decision tree based
on continuous optimization with random initialization. The
main contributions can be summarized as follows:

• Motivated from weighted information entropy, we consider
different weights of each instance for child nodes at all
internal nodes, and then obtain a split by optimizing a
continuous and differentiable objective function. Here we
introduce the ‘soft’ splitting instead of ‘hard’ splitting
to tackle the intractability for continuous optimization.
Our method proceeds with random initialization, whereas
previous oblique decision trees require initialization with
the best axis-parallel splits.

• Extensive experiments show that our method simplifies
tree structure, and achieves significantly better perfor-
mance than state-of-the-art algorithms of decision trees.
Our experiments also show that previous oblique decision
trees can not obtain small-size trees without the best axis-
parallel splitting initialization. Moreover, our method takes
relatively less running-time cost, especially for datasets of
dimensionality larger than 200, such as usps, protein and
mnist. We finally analyze the tree depths of the proposed
WODT method.

The rest of this work is organized as follows: we begin with
relevant work and some preliminaries, and then propose our
WODT method with empirical supports, and finally conclude
with future work.
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Relevant Work
Decision trees have a long history from the early work (Mes-
senger and Mandell 1972), which employed a measure of
node impurity based on the distribution of class labels for
each internal node. Quinlan (1993) and Breiman et al. (1984)
introduced the famous C4.5 and CART decision trees based
on entropy and Gini index, respectively. Loh and Shih (1997)
presented a two-step QUEST tree by spliting each node
with significance tests. Due to simplicity and interpretabil-
ity, a large number of axis-parallel decision trees have been
developed in the literature (Domingos and Hulten 2000;
Zhou and Chen 2002; Geurts, Ernst, and Wehenkel 2006;
Shotton et al. 2013a; Abuzaid et al. 2016), and decision trees
have been used as base learners for ensemble algorithms such
as boosting and bagging (Breiman 2001; Friedman 2001;
Zhou 2012).

Oblique decision trees present another way to construct
compact trees and achieve better performance, and the main
difference lies in the splits of multivariate linear combinations
over features. CART (Breiman et al. 1984) can be applied to
oblique decision tree by optimizing the coefficients of oblique
splits based on the coordinate descent method. Murthy, Kasif,
and Salzberg (1994) made a refinement of CART to find
a local optimum by multiple restarts and random perturba-
tions. Some statistical techniques are suggested for oblique
decision trees, such as least square method and linear discrim-
inant analysis (Brodley and Utgoff 1995; Loh and Shih 1997;
Bennett and Blue 2002; López-Chau et al. 2013).

There are also some heuristic oblique decision trees with
good performance under proper assumptions (Amasyali and
Ersoy 2008; Manwani and Sastry 2012). In addition, various
models have been developed by combining neural networks
with decision trees, but with complex structure and high
computational cost (Strömberg, Zrida, and Isaksson 1991;
Guo and Gelfand 1992; Setiono and Liu 1999; Kontschieder
et al. 2015). Norouzi et al. (2015) proposed the oblique de-
cision tree by optimizing a continuous loss, which upper
bounds the empirical 0/1 loss with the-best-axis-parallel-split
initialization. Our method utilizes the robust sigmoid function
to obtain a continuous and differentiable objective function,
and proceeds with random initialization.

Preliminaries
Let X ⊂ Rd and Y = {1, 2, ..., C} denote the instance and
label space, respectively. Suppose that D is an (unknown)
underlying distribution over the product space X × Y . Let
Sm = {(x1, y1), (x2, y2), ..., (xm, ym)} be a training data,
where each example is drawn i.i.d. from the distribution D.

An oblique decision tree is generally constructed as fol-
lows. An instance x ∈ X is directed from the root of the tree
down through internal nodes to a leaf node. Each leaf node
specifies a distribution over the label space Y , and each inter-
nal node performs a binary test by evaluating a split function
sθ(x) : Rd → R. If sθ(x) < 0, then x is directed to the left
child node; and the right child otherwise. Here, sθ(x) = θTx
is parameterized by θ ∈ Rd, and we further incorporate an
offset parameter to obtain split functions of the form θTx+ b
by appending a constant ”+1” to the feature vector.

For each internal node, we aim to find a parameter θ for
a good oblique split. However, it is difficult to make direct
continuous optimization w.r.t. θ, since the indicator function
I[sθ(x) < 0] is a discontinuous and piecewise-constant func-
tion (Breiman et al. 1984; Murthy, Kasif, and Salzberg 1994;
Norouzi et al. 2015). Here, I[·] denotes the indicator function,
which returns 1 if the argument is true and 0 otherwise.

Our WODT Method
Motivated from weighted information entropy (Guiaşu 1971),
this section introduces another oblique decision tree based
on instance weights. The basic idea is to consider different
weights of each instance for child nodes when searching for
split parameters, and obtain a good oblique split by optimiz-
ing a continuous and differentiable objective function. We
use the ‘soft’ splitting instead of ‘hard’ splitting to tackle the
intractability for gradient-based optimization.

At an internal node, let S be the set of training examples
in this node. Without loss of generality, we assume
S = {(x1, y1), (x2, y2), ..., (xn, yn)} for n ≤ m.

Given split parameter θ, we compute the weight w.r.t. the left
child node by selecting sigmoid function over the negative of
the split function sθ(x), i.e.,

σ(−sθ(x)) = σ(−θTx) = 1/(1 + eθ
Tx),

and the weight w.r.t. right child node is given by

1− σ(−sθ(x)) = 1− σ(−θTx) = σ(θTx).

Let SL and SR denote the set of training examples and the
corresponding weights w.r.t. the left and right child nodes,
respectively, i.e.,

SL = {((xi, yi), wLi )|wLi = σ(−θTxi), (xi, yi) ∈ S},
SR = {((xi, yi), wRi )|wRi = σ(θTxi), (xi, yi) ∈ S}.

Let WL and WR be the sum of weights w.r.t. the left and
right child nodes, respectively, that is,

WL(θ) =
∑

((xi,yi),wL
i )∈SL

wLi ,

WR(θ) =
∑

((xi,yi),wR
i )∈SR

wRi .

We further denote by W k
L and W k

R the sum of weights in left
and right child nodes w.r.t. each class k ∈ Y , respectively, by

W k
L(θ) =

∑
((xi,yi),wL

i )∈SL

I[yi = k]wLi ,

W k
R(θ) =

∑
((xi,yi),wR

i )∈SR

I[yi = k]wRi .

We finally have the objective function E(θ) as
E(θ) =WL(θ)HL(θ) +WR(θ)HR(θ),

whereHL andHR are the left and right weighted information
entropies, respectively. More precisely, we have

HL(θ) = −
C∑
k=1

W k
L(θ)

WL(θ)
log2

W k
L(θ)

WL(θ)
,

HR(θ) = −
C∑
k=1

W k
R(θ)

WR(θ)
log2

W k
R(θ)

WR(θ)
.
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Algorithm 1 InduceSubtree(S,D, d) of Weighted Oblique
Decision Tree (WODT)
Input: Training data S, maximum tree depth D, depth of the
current node d

1: Create a node p based on data S
2: if Examples in data S all belong to class k ∈ Y then
3: Node p is a leaf node labelled with class k
4: end if
5: if d > D then
6: Node p is a leaf node labelled with the majority class

k′ ∈ Y
7: end if
8: Calculate the split parameter θ by the L-BFGS algorithm

according to Eqns. (1) and (2)
9: Obtain the training data for the left-child and right-child

nodes according to Eqns.(3) and (4), respectively.
10: The left subtree of node p: InduceSubtree(L,D, d+ 1)
11: The right subtree of node p: InduceSubtree(R,D, d+ 1)

Output: A decision subtree with the root node p

The objective function E(θ) can be further expressed as

E(θ) =WL log2WL +WR log2WR

−
C∑
k=1

W k
L log2W

k
L −

C∑
k=1

W k
R log2W

k
R. (1)

It is easy to observe that the objective function E(θ) is
continuous and differentiable w.r.t. the split parameter θ, and
we could make use of standard optimization techniques to
find a good split parameter θ, such as gradient-descent and
quasi-Newton method. It is important to calculate the gradient
function g(θ) of our objective function E(θ), that is,

g(θ) = dE(θ)/dθ.

We have

g(θ) · ln 2 = (1 + lnWL)
dWL

dθ
+ (1 + lnWR)

dWR

dθ

−
C∑
k=1

(1 + lnW k
L)
dW k

L

dθ
−

C∑
k=1

(1 + lnW k
R)
dW k

R

dθ
.

From σ(−z) = 1− σ(z), σ′(z) = σ(z)(1− σ(z)), we have

dWL

dθ
=

n∑
i=1

σ(−θTxi)[1− σ(−θTxi)](−xi)

= −
n∑
i=1

[1− σ(θTxi)]σ(θTxi)xi = −
dWR

dθ
.

For simplicity, we denote by

βi = σ(θTxi)[1− σ(θTxi)]xi,

and we have dWR/dθ =
∑n
i=1 βi. Similarly, we have

dW k
L/dθ = −dW k

R/dθ and dW k
R/dθ =

∑n
i=1 I[yi = k]βi.

Table 1: Benchmark datasets

dataset #instance #feature dataset #instance #feature
iris 150 4 satimage 6435 36

wine 178 13 usps 9298 256
glass 214 9 pendigits 10992 16
heart 270 13 letter 20000 16
breast 683 10 protein 24387 357

diabetes 768 8 shuttle 58000 9
vehicle 846 18 connect4 67557 126

fourclass 862 2 mnist 70000 780
segment 2310 19 ijcnn1 141691 22

dna 3186 180 cod-rna 331152 8

This follows that

g(θ) · ln 2 = ln
WR

WL
· dWR

dθ
−

C∑
k=1

ln
W k
R

W k
L

· dW
k
R

dθ

= ln
WR

WL
·
n∑
i=1

βi −
n∑
i=1

βi ln
W yi
R

W yi
L

=

n∑
i=1

βi ln
WRW

yi
L

WLW
yi
R

,

which yields

g(θ) = log2
WR

WL
·
n∑
i=1

βi log2
W yi
L

W yi
R

. (2)

In the implementation, we can use vectorization methods
to accelerate our WOTD method according to Eqns. (1) and
(2). We also optimize the objective function E(θ) based on
the L-BFGS algorithm, where we initialize the parameter θ
with random vectors. This is quite different from previous
oblique decision trees which require the initialization with
the best axis-parallel splits. The parameter θ is not initialized
to the zero vector so as to avoid the zero gradient.

Given the split parameter θ, we partition data as follows:

L = {(x, y) ∈ S|θTx < 0}, (3)

R = {(x, y) ∈ S|θTx ≥ 0}. (4)

As can be seen, we make use of the direction of split param-
eter θ to partition data, while the objective function E(θ) is
related with norm and direction of parameter θ simultane-
ously. A natural idea is to make an additional constraint over
the norm of θ and then utilize the projection or Lagrange
multiplier as in the work (Norouzi et al. 2015). Here, we do
not make any additional constrain since σ(θTx) will be ap-
proximated by floating-point numbers in the implementation
of the proposed method.

Algorithm 1 presents the detailed description of the
weighted oblique decision subtree. Given an instance x ∈ X
and weighted oblique decision tree of Algirhtm 1, we predict
the label of instance x according to the leaf node at the end
of the path traversed by instance x.

Experiments
This section empirically evaluates our WODT method on
extensive datasets. We begin with the experimental settings,
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Table 2: Comparison of test accuracies (mean±std.) on benchmark datasets. •/◦ indicates that WODT is significantly better/worse
than the corresponding method (pairwise t-tests at 95% significance level). ‘N/A’ means that no results were obtained after
running out 250000 seconds (about 3 days).

dataset our WODT APDT CO2 CO2r OC1 OC1r CART-LC CART-LCr
iris .9733±.0248 .9467±.0499• .9467±.0540• .9263±.0526• .9600±.0442 .9400±.0554• .9467±.0499• .9000±.1125•

wine .9665±.0323 .9271±.0529• .9271±.0579• .8818±.0565• .9213±.0456• .8876±.1293• .9494±.0450 .9045±.0529•
glass .6216±.0256 .6521±.1215 .6521±.0517◦ .5837±.0740• .6168±.1056 .6075±.0810 .7056±.0763◦ .6215±.1142
heart .7630±.0429 .7370±.0737 .7370±.0300• .7167±.0446• .7593±.0668 .7815±.0898 .6815±.1285• .7556±.0529
breast .9590±.0099 .9466±.0581 .9346±.0458• .9378±.0190• .9341±.0608• .9356±.0639• .9414±.0271• .9517±.0173•

diabetes .7161±.0191 .7090±.0486 .6908±.0370• .6953±.0306• .6667±.0387• .6914±.0541• .7161±.0335 .6784±.0379•
vehicle .7069±.0383 .7045±.1603 .7223±.0466 .6501±.0180• .6418±.1568• .6927±.1050 .6702±.1212 .7069±.0402

fourclass .9896±.0043 .9843±.0164 .9809±.0191• .8778±.0203• .9350±.0875• .9118±.1139• .9548±.1283 .9664±.0252•
segment .9623±.0099 .9660±.0869 .9558±.0417 .8653±.0587• .8355±.1560• .9143±.0809• .9580±.0167 .9242±.0214•

dna .9250±.0167 .9039±.0241• .8820±.0162• .7578±.0178• .8331±.0114• .8516±.1031• .8980±.0176• .8711±.0102•
satimage .8760±.0097 .8485±.0217• .8480±.0126• .8139±.0103• .8485±.0115• .8159±.0248• .8510±.1034 .8360±.0177•

usps .9058±.0050 .8620±.0341• N/A .5879±.0300• .8729±.0180• .7200±.0320• .6542±.0772• .5999±.0258•
pendigits .9660±.0025 .9177±.0849• .9104±.0987• .7503±.0343• .9374±.0042• .9094±.0608• .9342±.0062• .9248±.0028•

letter .8786±.0030 .8672±.0777 .8041±.0578• .7215±.0011• .8142±.0162• .7764±.0254• .8530±.0026• .7688±.0122•
protein .5957±.0052 .4887±.0191• .5218±.0084• .4285±.0064• .5406±.0244• .5606±.0162• .5248±.0087• .4770±.0047•
shuttle .9990±.0002 .9999±.0014 .9914±.0135• .9177±.0115• .9995±.0011 .9982±.0023 .9998±.0005◦ .9986±.0008•

connect4 .7415±.0041 .7527±.0261 .7131±.0201• .6457±.0000• .7312±.0342 .7060±.0189• .7400±.0108 .7249±.0044•
mnist .9434±.0013 .8806±.0101• N/A N/A .7557±.0240• .7941±.0203• .8890±.0051• .8393±.0147•
ijcnn1 .9703±.0014 .9670±.0020• .9634±.0011• .9056±.0002• .9047±.0045• .9005±.0082• .9519±.0033• .9603±.0023•

cod-rna .9543±.0016 .9433±.0969 .8767±.0663• .6667±.0016• .7838±.0363• .9230±.0606• .8001±.0017• .9365±.0014•
win/tie/loss 9/11/0 17/2/1 20/0/0 15/5/0 16/4/0 11/7/2 17/3/0

and then make empirical comparisons of our WODT method
with state-of-the-art algorithms of decision trees. We further
investigate tree sizes based on the cardinality of leaf node, and
show the comparisons of running time. We finally analyze
the training and generalization performance with respect to
different tree depths.

Experimental Setting
We conduct our experiments on twenty benchmark datasets,
as summarized in Table 11. Most datasets have been well-
studied in previous studies on decision trees. The features
have been scaled to [−1, 1] for all datasets.

We compare our proposed WODT method with state-of-
the-art algorithms of decicions tree as follows:

• CART-LC: CART for oblique decision trees with best axis-
parallel splitting initialization (Breiman et al. 1984)

• CART-LCr: CART for oblique decision trees with random
initialization (Breiman et al. 1984)

• OC1: Oblique decision trees induced by coordinate descent
method, multiple restarts and random perturbations with
best axis-parallel splitting initialization (Murthy, Kasif,
and Salzberg 1994)

• OC1r: Oblique decision trees induced by coordinate de-
scent method, multiple restarts and random perturbations
with random initialization (Murthy, Kasif, and Salzberg
1994)

• CO2: Oblique decision trees induced by optimizing a con-
tinuous upper bound on the empirical loss with best axis-
parallel splitting initialization (Norouzi et al. 2015)

1http://www.ics.uci.edu/˜mlearn/MLRepository.html

• CO2r: Oblique decision trees induced by optimizing a
continuous upper bound on the empirical loss with random
initialization (Norouzi et al. 2015)

• APDT: axis-parallel decision trees (Quinlan 1993)

We implement the OC1 method as in the work of (Murthy,
Kasif, and Salzberg 1994)2, but slightly modify it so that the
tree grows up to the fullest extent unless reaching the maxi-
mal tree depth. For the CO2 method, we excute 2 trials of 5-cv
to select regularization parameter ν ∈ {0.1, 1, 4, 10, 43, 100}
and the learning rate η ∈ {0.003, 0.01, 0.03} as in the work
(Norouzi et al. 2015). We take the default parameters as in
the work of (Murthy, Kasif, and Salzberg 1994) for OC1,
OC1r, CART-LC and CART-LCr. We also select information
gain as the criterion for APDT, OC1, OC1r, CART-LC and
CART-LCr. Our WODT method does not require additional
hyper-parameter.

The performance of all methods are evaluated by 10 trials
of 5-fold cross validation with different random seeds, and
the performance is obtained by averaging over 50 runs. All
experiments are performed on a node of computational cluster
with 16 CPUs (Intel Xeon Core 3.0GHz) running RedHat
Linux Enterprise 5 with 48GB main memory.

Experimental Results
Table 2 shows the test accuracy comparisons of our method
with other methods. As can be seen, our WODT method
significantly outperforms those oblique decision trees with
random initialization, such as CO2r, OC1r and CART-LCr,
since the win/tie/loss counts show that our WODT wins for
most times and never loses. It is also observable that our
WODT achieves better or comparable performance with CO2,

2The codes of OC1 and CART-LC are downloaded from
http://ccb.jhu.edu/software/oc1/oc1.tar.gz
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Table 3: Comparison of leaves cardinality (mean±std.) on benchmark datasets. •/◦ indicates that our WODT generates fewer/more
leaf nodes than the corresponding method (pairwise t-tests at 95% significance level). ‘N/A’ means that no results were obtained
after running out 250000 seconds (about 3 days), and we adopt the scientific notation a± b(Ec)=a× 10c ± b× 10c.

dataset our WODT APDT CO2 CO2r OC1 OC1r CART-LC CART-LCr
iris .5200±.1170(E1) .7800±.1200(E1)• .8000±.0200(E1)• .1500±.0000(E2)• .5400±.0699(E1) .5589±.1440(E2)• .6500±.0900(E1) .1080±.0343(E3)•

wine .3400±.0490(E1) .7500±.1100(E1)• .7500±.5200(E1)• .2710±.1095(E2)• .5100±.1200(E1)• .3730±.3080(E2)• .5100±.1600(E1)• .8400±.6500(E1)•
glass .4620±.0240(E2) .3620±.0220(E2)◦ .3620±.0250(E2)◦ .2976±.0842(E3)• .8120±.4630(E2)• .3566±.0462(E3)• .5280±.2380(E2) .5901±.0662(E3)•
heart .2320±.0412(E2) .3429±.0279(E2)• .3429±.0520(E2)• .9797±.0862(E3)• .7120±.4700(E2)• .1949±.0467(E3)• .9090±.3660(E2)• .3639±.0598(E3)•
breast .1400±.0210(E2) .2320±.0200(E2)• .2390±.0960(E2)• .5391±.1154(E3)• .3279±.2910(E2)• .9020±.4100(E2)• .4610±.1889(E2)• .1943±.0458(E3)•

diabetes .1082±.0044(E3) .1041±.0047(E3)◦ .1049±.0226(E3) .1841±.0256(E4)• .1409±.0940(E3) .4521±.1076(E3)• .1565±.0367(E3)• .9519±.0910(E3)•
vehicle .1140±.0087(E3) .1055±.0031(E3)◦ .2236±.0105(E3)• .1508±.0172(E4)• .1840±.0895(E3) .6143±.1993(E3)• .2148±.0539(E3)• .1133±.0098(E4)•

fourclass .1860±.0242(E2) .2170±.0240(E2)• .2320±.0540(E2)• .3289±.1830(E2)• .2950±.1920(E2) .4360±.2680(E2)• .1989±.1250(E2) .4520±.2420(E2)•
segment .6419±.0248(E2) .5570±.0279(E2)◦ .2232±.1011(E3)• .3252±.1256(E3)• .1108±.0537(E3)• .3972±.1203(E3)• .8800±.2849(E2)• .7347±.1109(E3)•

dna .1601±.0170(E2) .1194±.0094(E3)• .4130±.1079(E3)• .5216±.1290(E3)• .1723±.0147(E3)• .2904±.0222(E3)• .1242±.0211(E3)• .3371±.0214(E3)•
satimage .2103±.0121(E3) .3298±.0278(E3)• .6102±.0736(E3)• .5791±.0354(E4)• .5258±.1346(E3)• .1913±.0144(E4)• .5137±.0719(E3)• .2818±.0198(E4)•

usps .1500±.0096(E3) .3389±.0517(E3)• N/A .5295±.0964(E4)• .5100±.0073(E3)• .9744±.0367(E3)• .6143±.0974(E3)• .1227±.0022(E4)•
pendigits .1494±.0407(E3) .2094±.0597(E3)• .1508±.0502(E3) .3315±.0760(E3)• .3970±.0050(E3)• .1107±.0150(E4)• .1941±.0424(E3)• .1890±.0121(E4)•

letter .1213±.0023(E4) .1752±.0063(E4)• .1198±.0167(E4) .1787±.0171(E4)• .2083±.0100(E4)• .1056±.0020(E5)• .1804±.0122(E4)• .1610±.0025(E5)•
protein .4572±.0173(E3) .2849±.0050(E4)• .3044±.0031(E4)• .4398±.0003(E5)• .3329±.1120(E4)• .1502±.0054(E4)• .3165±.0017(E4)• .1586±.0058(E4)•
shuttle .8115±.0363(E2) .2739±.0409(E2)◦ .1459±.0589(E3)• .3091±.0855(E3)• .3979±.2100(E2)◦ .4869±.1146(E3)• .3410±.0310(E2)◦ .8264±.0474(E3)•

connect4 .2976±.0069(E4) .9700±.0657(E4)• .1388±.0054(E5)• .5242±.0000(E5)• .1041±.0296(E5)• .6458±.2000(E4)• .1065±.0074(E5)• .7490±.0254(E4)•
mnist .7371±.0270(E3) .3329±.0167(E4)• N/A N/A .2500±.0119(E4)• .2032±.0002(E4)• .3279±.0118(E4)• .1910±.0020(E4)•
ijcnn1 .7180±.0078(E3) .8742±.2904(E3)• .1566±.0218(E4)• .2327±.0016(E5)• .1724±.1793(E3)◦ .1006±.0937(E4)• .1611±.0181(E4)• .9714±.0205(E4)•

cod-rna .7743±.0031(E4) .2751±.0174(E4)◦ .9501±.5928(E3)◦ .1000±.0000(E3)◦ .7283±.0290(E4)◦ .1240±.0280(E5)• .9594±.1264(E3)◦ .1535±.0121(E5)•
win/tie/loss 14/0/6 15/3/2 19/0/1 13/4/3 20/0/0 15/3/2 20/0/0

iris wine glass heart breast diabetes vehicle fourclass segment dna satimage usps pendigits letter protein shuttle connect4 mnist ijcnn1 cod-rna
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Figure 1: Comparison of the running time (in seconds) of WODT and other decision trees on benchmark datasets. Notice that the
y-axis is in log-scale. Full black columns imply that no results were returned after running out 250000 seconds (about 3 days).

OC1 and CART-LC, though these oblique decision trees are
accompanied with the best axis-parallel splitting initialization
in the implementation. In comparison with the axis-parallel
decision tree (APDT) method, our proposed WODT method
achieves comparable performance for small-size datasets, and
shows its superior for datasets of size larger than 5000, such
as satimage and pendigits.

Table 3 shows the comparisons of leaves cardinality of
our WODT with other methods. As can be seen, our WODT
has fewer leaves than the oblique decision trees with random
initialization such as CO2r, OC1r and CART-LCr, except for
dataset cod-rna. We think that CO2r gets invalid partitons
repeatedly until this method runs up to the maximal depth
and returns with a deep and thin tree, which results in such
few leaves. This analysis is also supported in Table 2 that our
WODT method and CO2r achieve accuracy rates of 0.9543
and 0.6667, respectively.

It is also observable, from Table 3, that our WODT method
has fewer, or as many leaves as those oblique decision trees
with the best axis-parallel splitting initialization. Moreover,
we notice that the previous oblique decision trees are not
easy to obtain small-size trees without the best axis-parallel

splitting initialization, and the oblique decision trees with
random initialization could produce more leaves, which may
cause overfitting and take relatively poor performance as
shown in Table 2.

We also compare the running time of WODT and the other
decision tree methods, and the average CPU time (in sec-
onds) is shown in Figure 1. As can be seen, our WODT takes
comparable running time with the traditional axis-parallel
decision tree (APDT) method. It is also observable that our
WODT takes much less running time than the state-of-the-art
oblique decision trees with the best axis-parallel splitting ini-
tialization or random initialization in most cases. In particular,
our WODT is about 100 times faster than the other decision
tree methods for the datasets of feature dimensionality larger
than 200, such as usps, protein and mnist.

Depth Analysis
We finally analyze the influence of tree depths. Due to page
limitation, we only present empirical results on four datasets
usps, protein, connect4 and mnist, while the trends are
similar for the other datasets.
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Figure 2: The influence on test accuracy with respect to tree depths for different methods.
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Figure 3: The influence on training accuracy with respect to tree depths for different methods.

Figure 2 shows the relationships between test accuracies
and tree depths. Here the tree depth ranges from 2 to 20 with
interval 2, and we compare our WODT with four decision
trees: APDT, CO2r, OC1 and CART-LCr for simplicity, and
the trends are similar to other methods such as CO2, OC1
and CART-LC. As can be seen, our WODT achieves the
best performance at different depths in comparison with the
other four methods, and it is also observable that our WODT
method tends to achieve better generalization performance
only with a shallow decision tree.

Figure 3 shows the relationships between the training ac-
curacies and tree depths, where the range and compared
methods are similar to those of Figure 2. As can be seen,
our WODT method achieves better training accuracies than
the others, which shows its stronger ability to fit data of our
method. It is noteworthy that our WODT method and axis-
parallel decision tree (APDT) method well fit dataset usps
and mnist at a depth of 20 while WODT achieves better test
accuracies as shown in Figure 2. This illustrates that optimiz-
ing the objective function in this work could yield a robust
split by considering weighted entropy.

Conclusions
Oblique decision trees have attracted much attention during
the past decades, and previous decision trees rely on the best
axis-parallel splitting initialization with high computational
cost. This work presents new Weighted Oblique Decision
Tree (WODT). The basic idea is motivated from the weighted
entropy, and we optimize the continuous and differentiable
objective function with random initialization to find the split
for each internal node. Extensive experiments show the ef-

fectiveness and robustness of our proposed method. In the
future, an interesting work is to construct oblique decision
trees based on ‘sparse’ splits by optimizing our objective
function under the `1 penalty, which may present better inter-
pretability and efficiency for prediction. Another interesting
future work is to construct ensemble methods, such as ran-
dom forests and boosting, based on our WODT method.
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