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Abstract
In unsupervised domain adaptation, distributions of visual
representations are mismatched across domains, which leads
to the performance drop of a source model in the tar-
get domain. Therefore, distribution alignment methods have
been proposed to explore cross-domain visual representa-
tions. However, most alignment methods have not consid-
ered the difference in distribution structures across domains,
and the adaptation would subject to the insufficient aligned
cross-domain representations. To avoid the misclassifica-
tion/misidentification due to the difference in distribution
structures, this paper proposes a novel unsupervised graph
alignment method that aligns both data representations and
distribution structures across the source and target domains.
An adversarial network is developed for unsupervised graph
alignment, which maps both source and target data to a fea-
ture space where data are distributed with unified structure
criteria. Experimental results show that the graph-aligned vi-
sual representations achieve good performance on both cross-
dataset recognition and cross-modal re-identification.

1 Introduction
In machine learning and pattern recognition, the generaliza-
tion ability of a model decreases in the test dataset with
the deviation of distributions between the training and test
datasets. To overcome the problem of dataset bias when la-
bels are unavailable in the test dataset, unsupervised domain
adaptation (UDA) (Gopalan, Li, and Chellappa 2011) has
been proposed. Recent researches (e.g., (Sun, Feng, and
Saenko 2016; Tzeng et al. 2017)) have shown that align-
ing data distributions across the training dataset (source do-
main) and the test dataset (target domain) is a promising
approach to obtain cross-domain representations for unsu-
pervised domain adaptation. After distribution alignment,
the cross-domain representations have similar distributions
in the source and target domains, and therefore the target-
domain generalization error is reduced.

To achieve the cross-domain representations, many un-
supervised domain adaptation methods (Long et al. 2014b;
2015; Sun, Feng, and Saenko 2016; Sun and Saenko 2016)
proposed to align the statistical measures (e.g., mean, vari-
ances) across the source and target domains. These meth-
ods perform well when source and target data are distributed
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Figure 1: Basic idea of unsupervised graph alignment:
Data are distributed with different structures in the source
and target domains. Complete graphs are built in the source
and target domains (edges are partially drawn) for align-
ment. In the aligned feature space, nodes of source and tar-
get data are closely located. The distribution structures are
aligned across domains by constraining the values of source
and target edges using the same criteria.

with structures (Tenenbaum, De Silva, and Langford 2000;
Long et al. 2014a; Hou et al. 2016) that can be nicely re-
produced by the mean and covariance. But this assumption
is difficult to guarantee in real-world applications. When
the assumption is invalid, data distributions in the source
and target domains are failed to be aligned by merely shift-
ing the means and/or covariances of the source and tar-
get data. Other methods learned the cross-domain repre-
sentations by subspace alignment (Fernando et al. 2013;
Sun and Saenko 2015). Represented using the similar bases,
source and target representations in the subspaces are re-
garded as aligned. However, the source and target data in
each subspace may be variously distributed with different
distribution structures, resulting in a mismatch between dis-
tributions of source and target data in the subspaces.

Instead of directly modeling the distribution alignment
across domains, (Ganin et al. 2016; Tzeng et al. 2017)
approximated the distribution alignment by learning the
domain-invariant features that are indistinguishable to do-
mains. Although target data are confused with source data in
the feature space, this approximation is insufficient. Because
without the guide of target labels, the mapping for each tar-
get data is arbitrary. Therefore, the structural information in
the target distribution that needs to be preserved is destroyed
in the feature space.
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In this paper, we argue that data are distributed with
different distribution structures (Tenenbaum, De Silva, and
Langford 2000) in the source and target domains. That is,
source/target data may be tightly or discretely located in
the representation space without any prior geographic as-
sumptions. Thus, the distribution alignment is insufficient in
the existing methods that ignored the difference in distribu-
tion structures. Instead, this paper proposes an unsupervised
graph alignment method to explore cross-domain represen-
tations, where source and target data have both similar rep-
resentations and similar distribution structures. As shown in
Figure 1, source data are linked to build a complete graph
to represent the structural information of data distribution
in the source domain. Similarly, a complete graph is built
among target data. The values of edges in the source and tar-
get graphs are the geometric distance (Wang and Mahadevan
2013) between each pairs of nodes (data representations) in
each graph, and therefore, structural information of source
and target distributions is recorded in the edges of source and
target graphs, respectively. The distribution alignment across
domains can then be modeled as the alignment between the
source and target graphs. Domain-indiscrimination loss is
adopted for node alignment. To achieve the edge alignment
without target labels, unified criteria are designed for source
and target edges in the feature space. The unified criteria
constrain that values of source and target edges should be
minimized or approach to a fixed distance. We also propose
a consistency constraint to preserve the target structural in-
formation among target features, so that arbitrary mapping
of target data can be avoided with the guidance of the target
structural information.

The contributions of this paper are listed as follows.
1. We propose an unsupervised graph alignment method to

address the problem of structure difference in distribu-
tion for unsupervised domain adaptation. The proposed
method aligns representations of source and target data,
while matching the distribution structures in the source
and target domains.

2. We design unified criteria for edges in both source and
target domains. Constrained by the unified edge criteria,
edges that represent the structures of source and target
distributions are aligned without target labels.

3. We develop an adversarial network to learn the graph-
aligned representations with similar distribution struc-
tures in the source and target domains. The graph-aligned
representations not only are invariant to domains, but also
preserve structural information in each domain.

2 Related Work
The problem of comparing distributions was addressed in
(Gretton et al. 2007), and a statistic of Maximum Mean
Discrepancy (MMD) was proposed to measure the proba-
bility of two samples from different distributions. As unsu-
pervised domain adaptation that aims to align distributions
across the source and target domains has become popular
in recent years, the technique of MMD has been applied
in many unsupervised domain adaptation methods to ex-
plore source and target features with similar distributions.

For example, source and target data are mapped to a domain-
invariant feature space with the criterion of MMD in (Gong,
Grauman, and Sha 2013; Long et al. 2014b); TSC (Long et
al. 2013) and DsGsDL (Yang, Ma, and Yuen 2018) adopted
MMD in dictionary learning models to obtain the aligned
sparse representations; and (Long et al. 2015) formulated
the criterion of MMD as a loss function in deep-learning
models. However, (Sun, Feng, and Saenko 2016) found that
merely matching the statistical measure of mean was not
enough for distribution alignment, because the source and
target data could also diverge in the covariance. Therefore,
they proposed to align the second-order of statistics for un-
supervised domain adaptation. Incorporating the convolu-
tional network, (Sun and Saenko 2016) then extended this
idea to a deep-learning version.

On the other hand, (Gopalan, Li, and Chellappa 2011)
proposed a concept of domain shift that modeled the distri-
bution alignment across the source and target domains as the
shift of subspaces in the manifolds. The subspaces were also
formulated as the bases in dictionary learning models in (Ni,
Qiu, and Chellappa 2013), which aligned the source and tar-
get domains by interpolating subspaces between the source
and target domains. (Fernando et al. 2013) then summarized
these methods as subspace alignment and represented the
subspaces using eigenvectors extracted from PCA.

Besides, domain-indistinguishable features were pre-
sented in (Ganin et al. 2016) to align distributions for un-
supervised domain adaptation. (Ganin et al. 2016) believed
that the source and target distributions were aligned in the
domain-indistinguishable features. With the popularity of
generative adversarial networks, adversarial adaptation net-
works (Tzeng et al. 2017; Chen et al. 2018; Hu et al. 2018)
were developed. These networks introduced a domain clas-
sifier to adversary the mapping of domain-invariant features,
so that the mapping networks were optimized while refining
the domain classifier.

3 Proposed Method

In this section, we introduce the proposed unsupervised
graph alignment method that obtains cross-domain represen-
tations in unsupervised domain adaptation. As shown in Fig-
ure 2, the network for unsupervised graph alignment is com-
posed of a source CNN, a target CNN, a domain discrim-
inator, and a classifier. In the training phase, given source
images with labels and unlabeled target images, the unsu-
pervised graph alignment network is trained with four losses
to achieve both node and edge alignments. Domain loss is
adopted to align the features of source and target samples
for node alignment. Edge alignment that aligns the distribu-
tion structures across domains is achieved by classification,
discrepancy, and consistency losses. In the testing phase, the
cross-domain representations of the source and target im-
ages, named as source and target features, are obtained by
the trained source and target CNNs, respectively. The target
features are then classified by the trained classifier to pre-
dict the class label, or matched to the source features for
re-identification.
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Figure 2: An overview of the proposed network

3.1 Graphs for Distribution Alignment
Denote source and target samples as Xs and Xt, respec-
tively. We obtain the source and target features (represented
as Zs and Zt, respectively) by mapping source and target
samples using source and target CNNs, respectively. In each
domain d ∈ {s, t}, the features Zd are linked to build a com-
plete graphGfd =< Zd, Efd >, where nodes Zd are the fea-
tures of samples from domain d, and the edges Efd represent
the distance between each pair of features. Therefore, the
structural information of feature distribution in each domain
d is contained in the edge of Efd in graph Gfd . The edge
values are calculated based on cosine similarity. For exam-

ple, E ijfd = exp(− zi
d(z

j
d)

′

‖zi
d‖‖z

j
d‖
) is the value of the edge between

nodes (features) zid and zjd. Similarly, we build a graph for
target data Xt, to represent the structural information of dis-
tribution for target data. The graph for target data is formed
as Gt =< Xt, Et >, where E ijt = exp(− xi

t(x
j
t)

′

‖xi
t‖‖x

j
t‖
) repre-

sents the edge between target samples xit and xjt .

3.2 Domain-indiscrimination Loss for Node
Alignment

To align the source and target distributions, we first con-
sider the node alignment that aligns feature representations
of source and target samples. However, directly learning the
transformation between source and target samples is infea-
sible, as the pair-wise information of the source and target
samples is unknown without target labels. Motivated by the
idea of domain indiscrimination (Ganin et al. 2016), we in-
troduce a domain discriminator D to align source and tar-
get features. Source features Zs and target features Zt are
regarded as aligned if D cannot correctly predict the do-
main labels for source and target features Z = {Zs, Zt}.
We write the mapping of the source and target CNNs as Ms

and Mt, i.e., Zs = Ms(Xs), Zt = Mt(Xt). The domain-
indiscrimination loss for node alignment is then formulated
as a cross-entropy loss function,
LnM

(Xs, Xt,Ms,Mt, D) = −EXt
[logD(Mt(Xt))]

− EXs
[log(1−D(Ms(Xs)))]

(1)

where domain labels of source and target samples are 1 and
0, respectively.

On the other hand, the domain discriminator D is de-
signed as an adversary network, to ensure its discrimination
during the alignment. The loss function for domain discrim-
inator D is written as
LnD

(Xs, Xt,Ms,Mt, D) = −EXs [logD(Ms(Xs))]

− EXt [log(1−D(Mt(Xt)))]
(2)

The parameters of source CNN, target CNN, and domain
discriminator are updated simultaneously. A discriminative
discriminator is learned with the loss of Equation (2). Con-
strained by Equation (1), even the discriminative discrimi-
nator cannot correctly predict the domain labels for source
and target features. In other words, source features Zs and
target features Zt are aligned.

3.3 Edge Alignment with Unified Criteria Across
Domains

As discussed in Section 1, distribution structures in the
source and target domains should also be aligned to match
data distributions across domains. As the distribution struc-
tural information in the source and target domains is
recorded in the edges of graphs Gfs and Gft , respectively,
the alignment of distribution structures can be modeled as
the alignment between edges of Efs and Eft . A straightfor-
ward method to achieve edge alignment involves regarding
edge information as auxiliary features and directly aligning
Efs and Eft . However, expressed based on data similarity,
edge information is indistinguishable and less representa-
tive, especially in the target domain where labels are un-
known. Therefore, direct alignment of Efs and Eft has lim-
ited help for distribution alignment across domains.

Instead, we propose unified criteria for edges in both
graphs Gfs and Gft to minimize the discrepancy between
source and target edges in the feature space. As shown in
Figure 1, edges of Efs and Eft are divided into two cate-
gories: 1) internal edges (red edges) that link samples from
the same class, and 2) interacted edges (green edges) that
connect samples from different classes. We make the restric-
tion that all of the edges in graphs Gfs and Gft should meet
the following criteria: 1) values of internal edges are mini-
mized, and 2) values of interacted edges are approached to a
fixed distance `. Expressed using the unified representations,
the edges of Efs and Eft are aligned in the feature space.

5615



To achieve these unified criteria, we first consider the for-
mulation in the source domain. With label information, a
classifier is introduced to preserve the discrimination in the
feature space. Representing the classifier as C, the classifi-
cation loss is formulated as

LeC (Xs,Ms, C) = −E(Xs,ys)[
∑
k

1[ys=k] logC(Ms(Xs))] (3)

where ys denotes labels of source data Xs and k is the in-
dex of class. C(Ms(Xs)) ∈ RK×n is a probability matrix,
where K is the number of classes and n is the number of
source samples. 1[ys=k] represents a unit vector with non-
zero value in the k-th element.

In the source domain, the edge E ijfs between source fea-
tures zis and zjs can be allocated as internal edges or inter-
acted edges based on the labels of zis and zjs . Thus, the val-
ues of edges between source features from the same class
needs to be minimized, while the values of edges between
samples from different classes should be approached to the
value of `. That is to minimize the following loss function.

LeDs
(Efs) =

∑
yi
s=yj

s

‖ E ijfs ‖
2
2 +

∑
yi
s 6=yj

s

‖ `− E ijfs ‖
2
2 (4)

With Equations (3) and (4), source features Zs are clus-
tered into K groups, where K is the number of classes.
Features within the same group have the same label and
are closely distributed. Conversely, features from different
groups have different labels, and the distances between sam-
ples from different groups are unified as `. In specific, we set
` = µfs + 2σfs , where µfs and σfs are the mean and stan-
dard deviation of Efs , respectively.

However, unlike the source domain, labels are unavailable
in the target domain. Thus, target feature edges Eft cannot
be categorized according to labels of feature pairs. In this
paper, we propose obtaining the unified criteria for Eft by re-
stricting target samples to be mapped to one group of source
features. Each target feature is thus of high probability for
one class. Introducing the above-mentioned classifier C, the
probability of the target feature Zit for different classes can
be represented as P i = C(Mt(X

i
t)) ∈ RK×1. P ik denotes

the k-th element in P i, which records the probability of Zit
for class k. We minimize Zit of high probability for two dif-
ferent classes, i.e., P ik1 ∗ P ik2 , where k1 6= k2. Summing
P ik1 ∗P ik2 for all samples and classes, the loss function can
then be formulated as

LeDt
(Xt,Mt, C) = (C(Mt(Xt)))

′C(Mt(Xt))

− tr((C(Mt(Xt)))
′C(Mt(Xt)))

(5)

With Equation (4) and (5), each target feature is distributed
close to source samples from a certain class k, and away
from samples from other classes with a fixed distance of `.
In other words, the values of edges in Eft are minimized or
optimized to `. Hence, edges Efs and Eft are unified in the
feature space.

But without constraints from target labels, the mapping of
each target sample is independent, and therefore target data
are arbitrarily mapped close to source features from a ran-
dom class. Consequently, the target structural information
in the graph of target data (Gt) is likely to be broken among

target features. To avoid arbitrary alignment and preserve
target structural information in the feature space, we pro-
pose a consistency loss for target features. Given the edges
of target data (Et) and the edges of target features (Eft ), the
consistency loss is designed as

LeT (Eft , Et) =
∑
i,j

‖ H(E ijft , µft)−H(E
ij
t , µt) ‖22 (6)

whereH(E , µ) = 1/(1+e−(E−µ)) is a logistic function with
sigmoid’s midpoint µ, and µt and µft are the mean of Et
and Eft , respectively. Constrained by Equation (6), similar
(dissimilar) target samples remain closely (distantly) located
in the feature space. Thus, the structural information in the
target domain is preserved among the aligned target features.

Combining node and edge alignments, the graph-aligned
representations are obtained by solving the following opti-
mizations,
min
Ms

LnM
(Xs,Ms, D) + LeC (Xs,Ms, C) + LeDs

(Efs)

= −EXs [log(1−D(Ms(Xs)))]

− E(Xs,ys)[
∑
k

1[ys=k] logC(Ms(Xs))]

+
∑

yi
s=yj

s

‖ E ijfs ‖
2
2 +

∑
yi
s 6=yj

s

‖ `− E ijfs ‖
2
2

(7)
min
Mt

LnM
(Xt,Mt, D)+LeDt

(Xt,Mt, C)+LeT (Eft , Et)

= −EXt [log(D(Mt(Xt)))]

+
∑
i,j

‖ H(E ijft , µft)−H(E
ij
t , µt) ‖22

+ (C(Mt(Xt)))
′C(Mt(Xt))

− tr((C(Mt(Xt)))
′C(Mt(Xt)))

(8)

min
D
LnD (Xs, Xt,Ms,Mt, D)

= −EXs [log(D(Ms(Xs)))]− EXt [log(1−D(Mt(Xt)))]
(9)

min
C
LeC (Xs,Ms, C) + LeDt

(Xt,Mt, C)

= −E(Xs,ys)[
∑
k

1[ys=k] logC(Ms(Xs))]

+ (C(Mt(Xt)))
′C(Mt(Xt))

− tr((C(Mt(Xt)))
′C(Mt(Xt)))

(10)

3.4 Optimization
We denote the parameters of source CNN, target CNN, do-
main discriminator, and classifier as θs, θt, θD, and θC , re-
spectively. To solve the optimization problem of unsuper-
vised graph alignment, we iteratively optimize θs, θt, θD,
and θC by fixing the other components unchanged. In each
iteration, the gradients for parameters are calculated, and the
parameters are then updated via backpropagation with mini-
batch stochastic gradient descent (SGD) (Long et al. 2015).
In the following, we present the gradients for the parameters
of each component.
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Table 1: Performance (%) of Digit Recognition Across Datasets
Method M→ U M→ S U→M S→M Avg.

GFK 10.3±0.0 9.2±0.7 9.9±0.0 11.2±0.0 10.2
SA 8.8±0.6 11.6±2.3 11.2±0.0 10.2±0.7 10.5

Coral 9.7±2.2 12.2±2.2 10.2±0.0 9.9±0.5 10.5
LeNet 61.5±0.4 17.2±0.3 46.5±0.6 56.8±0.5 45.5
DAN 69.1±0.5 19.3±0.4 60.5±0.7 65.2±0.3 53.5

WDAN 72.6±0.3 23.4±0.2 65.4±0.4 67.4±0.4 57.2
ADDA 90.4±0.7 34.4±4.1 96.1±0.4 63.2±4.5 71.0
Ours 94.1±1.6 32.0±0.9 98.3±0.1 85.0±1.0 77.4

Table 2: Performance (%) of Object Recognition Across Datasets on Office-10 + Caltech-10 Dataset
Method D→ C W→ C A→ C C→ D C→W C→ A Avg.

GFK 36.4±0.0 26.4±0.0 41.4±0.0 42.0±0.0 43.7±0.0 56.2±0.0 41.0
SA 34.4±0.0 32.3±0.0 40.6±0.0 43.7±0.0 40.6±0.0 45.4±0.0 39.5

Coral 33.8±0.0 33.8±0.0 45.1±0.0 45.9±0.0 46.4±0.0 52.1±0.0 42.8
LeNet 61.2±3.6 60.5±2.2 74.6±2.1 77.7±2.2 69.9±5.1 86.6±1.4 71.8

ADDA (LeNet) 74.7±3.9 75.9±2.9 78.4±1.5 28.0±5.1 47.1±5.3 77.7±3.5 66.0
Ours (LeNet) 80.6±0.0 81.7±0.0 82.7±0.1 81.4±0.7 80.0±0.2 91.2±0.1 82.9

AlexNet 80.8±0.4 76.1±0.5 83.8±0.3 89.0±0.3 83.1±0.3 91.1±0.2 84.0
DDC (AlexNet) 80.5±0.2 76.9±0.4 84.3±0.5 89.1±0.3 85.5 ±0.3 91.3±0.3 84.6
DAN (AlexNet) 82.0±0.4 81.5±0.3 86.0±0.5 90.5±0.1 92.0±0.4 92.0±0.3 87.3
Ours (AlexNet) 85.8±0.1 85.6±0.2 86.8±0.4 91.6±0.4 89.1±0.5 92.7±0.2 88.6

Gradients for θD and θC Equations (9) and (10) are
derivable, because LnD

and LeC are typical cross-entropy
losses, and LeDt

is a quadratic loss. Thus, the gradients for
θD and θC can be obtained by simply computing the deriva-
tives of ∂LnD

/∂θD and ∂(LeC + LeDt
)/∂θC , respectively.

The formulations are not detailed presented in this paper due
to the limited space.

Gradient for θs The gradients of LnM
and LeC for θs in

Equation (7) can also be computed by derivation. On the
other hand, LeDs

in Equation (7) is a formulation based
on the pair-wise similarity E ijfs . This formulation causes a
complexity of O(n2), where n is the number of source
data. However, the complexity of O(n2) is undesirable in
deep-learning networks learned from large-scale datasets.
Inspired by the unbiased estimation (Gretton et al. 2012),
we adopt the strategy of sub-sampling without replacement
to reduce the complexity of LeDs

to O(n). In particular, the
unbiased estimator for LeDs

is written as

2

n

n/2∑
i

(1[ya
s=yb

s]
‖ uifs ‖

2
2 + 1[ya

s 6=yb
s]
‖ `− uifs ‖

2
2) (11)

where uifs = Eabfs = exp(− za
s (z

b
s)

′

‖za
s ‖‖zb

s‖
), a = 2i − 1 and

b = 2i. In deep-learning networks, normalization losses are
used for source features zas and zbs, and therefore, uifs can
be approximated as uifs = exp(−Ms(x

a
s)(Ms(x

b
s))
′).

In the mini-batch SGD, we only need to consider the gra-
dient with respect to each uifs , so that we only introduce

the computation of gradient for LeDs
(uifs). The gradient of

LeDs
can then be calculated by the combination of the gra-

dients from each uifs . We have

∂LeDs
(uifs)

∂θs
=
∂LeDs

(uifs)

uifs

∂uifs
∂θs

= 2(uifs−1[ya
s 6=yb

s]
`)
∂uifs
∂θs

(12)

In summary, the gradient for θs in Equation (7) is the sum-
mation of the gradients of LnM

, LeC and LeDs
.

Gradient for θt Similarly, unbiased estimation (Gretton
et al. 2012) is adopted to reduce the complexity of LeT in
Equation (8). We write unbiased estimator for LeT as

2

n

n/2∑
i

(‖ H(uift , µft)−H(u
i
t, µt) ‖22) (13)

where uift = Eabft ≈ exp(−Mt(x
a
t )(Mt(x

b
t))
′), uit = Eabt ,

a = 2i− 1 and b = 2i. For each uifs , we have

∂LeT (uift ,u
i
t)

∂θt
=
∂LeT (uift)

∂B

∂B

∂uift

∂uift
∂θt

= 2(B −H(uit, µt))B(1−B)
∂uift
∂θt

(14)

where B = H(uift , µft).
Then, we achieve the gradient of Equation (8) as the com-

bination of the gradients of LnM
, LeDt

and LeT .
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Table 3: Performance (%) of Cross-modal Person Re-identification on RegDB Dataset

Dataset Method Target-domain Training Dataset Target-domain Testing Dataset
r = 1 r = 5 r = 10 r = 20 mAP r = 1 r = 5 r = 10 r = 20 mAP

Visible→ Thermal

mLBP 2.5 5.8 8.6 12.4 3.2 2.0 5.1 7.3 10.9 3.3
HOG 8.7 16.2 21.8 29.7 7.8 7.3 14.3 19.8 28.2 7.2

AlexNet 18.0 27.3 35.3 43.4 16.6 7.4 15.1 20.5 28.2 7.9
Ours 23.4 29.4 34.3 43.2 24.4 10.6 20.3 26.4 35.3 10.7

Thermal→ Visible

mLBP 2.3 6.5 10.9 16.7 3.1 2.5 6.4 9.9 14.5 3.0
HOG 6.8 13.3 18.3 25.0 8.7 6.6 12.9 17.5 23.8 8.2

AlexNet 17.5 29.6 37.1 45.8 15.9 7.2 16.7 22.3 30.9 7.8
Ours 28.4 33.9 39.5 49.6 28.9 13.1 25.1 33.2 43.4 13.0

4 Experimental Results
In this section, we evaluate the proposed method on cross-
dataset digit and object recognition. Evaluations are also
performed on cross-modal re-identification. For each pair of
datasets, experiments are conducted 10 times, and the aver-
aged results in the target domains are reported. In Section
4.4, we visualize the aligned source and target features to
further analyze the performance of the proposed unsuper-
vised graph alignment method.

4.1 Cross-dataset Digit Recognition
Experiments of cross-dataset digit recognition are done
across the full training set of three benchmarks (MNIST (Le-
Cun et al. 1998), USPS and SVHN (Netzer et al. 2011)
datasets). Ten classes of digits are contained in each dataset.
In short, characters M, U and S are used to represent MNIST,
USPS, and SVHN datasets, respectively. Four adaptation di-
rections (i.e., M→U, M→ S, U→M, and S→M) are used
for evaluation. Following the network settings in (Tzeng et
al. 2017), the source and target CNNs are implemented with
the LeNet (LeCun et al. 1998), and the domain discrimina-
tor is implemented with three fully connected layers: two
layers with 500 hidden units followed by the final discrimi-
nator output. Results are compared with statistical measure
alignment methods (DAN (Long et al. 2015), WDAN (Yan
et al. 2017), Coral (Sun, Feng, and Saenko 2016)), subspace
alignment methods (GFK (Gong et al. 2012), SA (Fernando
et al. 2013)), and ADDA (Tzeng et al. 2017) that learned the
domain-indistinguishable features.

As shown in Table 1, the proposed method performs well
among these four digit recognition experiments. The av-
eraged accuracy of the proposed method is 77.4%, which
is the highest among all unsupervised domain adaptation
methods. We achieve more than 6% improvement over the
second-best result. The proposed method also achieves the
best results in the datasets of M → U, U → M, and S →
M. However, our result in the M→ S dataset is not as good
as that of other datasets. This may be because the SVHN
dataset is not well segmented, resulting in extensive noises
contained in the structural information. These noises can
spread to the aligned features via the consistency loss in
the proposed adversarial network. Consequently, the recog-
nition accuracy in the SVHN dataset is relatively low, but we
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Figure 3: Cumulated matching characteristics (CMC) curves

still obtain the second best result in M→ S dataset.

4.2 Cross-dataset Object Recognition
Cross-dataset object recognition experiments are conducted
across the Office-10 and Caltech-10 (Gong et al. 2012)
datasets. In the Office-10 dataset, 10 classes (e.g., bike, bag,
keyboard) of object images are captured from three differ-
ent conditions: the Amazon dataset consists of images down-
loaded from websites, and the Dslr and Webcam datasets in-
clude images taken by SLR and web cameras, respectively.
Ten common categories of images that are shared with the
Office-10 dataset are extracted from the Caltech-256 dataset
to form the Caltech-10 dataset. In Table 2, character A, D,
W and C are used as the abbreviations to represent Amazon,
Dslr, Webcam, and Caltech-10 datasets, respectively. Six
transfer tasks (D→ C, W→ C, A→ C, C→ D, C→W,
and C→ A) are formed across the Office-10 and Caltech-10
datasets for evaluation. The source and target CNNs in the
proposed method are implemented using both LeNet (Le-
Cun et al. 1998) and AlexNet (Krizhevsky, Sutskever, and
Hinton 2012), so that our results can be fairly compared with
the results of LeNet-based (ADDA (Tzeng et al. 2017)) and
AlexNet-based (DDC (Tzeng et al. 2014), DAN (Long et al.
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Figure 4: Spacial distributions of source (C) and target (D) features (◦ : source-domain samples; + : target-domain samples)

2015))) domain adaptation methods. As discussed in (Long
et al. 2015), features extracted by the lower convolutional
layers are general. Thus, we initialize the AlexNet using the
pre-trained ImageNet and only update the last three layers
for adaptation. The implementation of domain discriminator
is the same as that introduced in Section 4.1.

Table 2 presents the results of object recognition across
the Office-10+Caltech-10 datasets. It is shown that the pro-
posed method improves the recognition performance in the
target domain by 11.1% and 4.6% with LeNet and AlexNet,
respectively. Our method also outperforms other LeNet-
based and AlexNet-based unsupervised domain adaptation
methods in almost all (expect one) datasets. We obtain an
average accuracy of 82.9% and 88.6% with LeNet and
AlexNet, respectively, which are the best results in Table 2.

4.3 Cross-modal Re-identification
The graph-aligned representations are validated across
modality on RegDB (Nguyen et al. 2017) dataset that con-
tains images of 412 persons captured by dual camera sys-
tems. Two sub datasets are included in RegDB dataset: 1)
Visible dataset with 10 visible light images of each per-
son, and 2) Thermal dataset with 10 different thermal im-
ages of each person. Following the experimental protocol in
(Ye et al. 2018), we randomly split the Visible and Ther-
mal datasets into two halves for training and testing. In the
training phase, training images from one modality with la-
bels (source domain) and the training images from the other
modality without labels (target domain) are used. For test-
ing, images in the target domain are used as the probe set
while images in the source domain with the other modality
as the gallery set. The verifications are performed on both
target-domain training and testing datasets. To indicate the
performance, the standard cumulated matching characteris-
tics (CMC) curves are plotted in Figure 3, and mean average
precision (mAP) is listed in Table 3.

As shown in Table 3, the deep-learning (AlexNet) features
obtain better performance than the hand-craft features (HOG
(Dalal and Triggs 2005) and mLBP (Moore and Bowden
2011)) in the target-domain training dataset. But the per-
formance of AlexNet features in the target-domain testing
dataset is as poor as the HOG and mLBP features. In con-
trast, the proposed method achieves the highest average pre-
cision in both training and testing datasets in the target do-
main, which shows the better generalization ability of the
proposed graph-aligned representations. Moreover, it is dis-

played in Figure 3 that the proposed method gets the highest
matching scores at almost all ranks compared to other meth-
ods in each experiment.

4.4 Visualization
In this section, we visualize graph-aligned representations in
the source and target domains to qualitatively show the per-
formance of the proposed method. T-SNE (Maaten and Hin-
ton 2008) is employed, and the dataset of C→ D is selected
for visualization. SURF (Bay, Tuytelaars, and Van Gool
2006) features, features extracted from LeNet (LeCun et al.
1998) and ADDA (Tzeng et al. 2017) are also shown in Fig-
ure 4 for comparison. Symbols ◦ and + are used to mark the
features from source and target domains, respectively. Fea-
tures of different classes are presented in different colors.

As shown in Figure 4, samples from Caltech-10 (source)
and Dslr (target) datasets are disorderly distributed in the
SURF feature space. This indicates that the hand-crafted fea-
tures of SURF are not strongly discriminative toward class
labels in both the Caltech-10 and Dslr datasets. On the other
hand, LeNet features are learned from source images and
their labels, and therefore the source-domain LeNet features
are more distinguishable for the class labels. But the dis-
crimination is not extended to the Dslr dataset (target do-
main), as the distributions of LeNet features from Caltech-
10 and Dslr datasets are not nicely matched. Compared to
LeNet features, the marginal distributions of ADDA features
from the Caltech-10 and Dslr datasets are better aligned.
However, it can be found that each target sample is arbi-
trarily aligned to one cluster of source samples. In addi-
tion, some samples from different categories are closely dis-
tributed in the ADDA feature space, which results in a diffi-
culty of classification for samples from these classes.

In contrast, the proposed method aligns both the repre-
sentations and the distribution structures of the source and
target samples. Thus, as shown in the last sub-figure in Fig-
ure 4, the graph-aligned features of Caltech-10 and Dslr
datasets have similar distributions. Moreover, constrained
by the same structural criteria, samples from the same class
are clustered in groups with small variances, and samples
from different classes are separately distributed. Figure 4
also shows that samples from Dslr datasets are less likely to
be mapped to the wrong class in the graph alignment feature
space. Because the mapping of target samples is guided by
the constraint of consistency, and structural information in
the target domain are preserved in the graph alignment fea-
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ture space. Therefore, the graph-aligned features from the
Dslr dataset are more discriminative toward class labels.

5 Conclusion
This paper proposes an unsupervised graph alignment
method to address the problem of structural difference be-
tween the source and target distributions in unsupervised do-
main adaptation. An adversarial network is developed to ex-
plore the cross-domain visual representations with losses of
the node and edge alignments. Unified criteria are designed
for edge alignment and used as loss functions for propaga-
tion in the adversarial network. Experimental results show
that the proposed method achieves promising results in the
tasks of cross-domain recognition and re-identification.
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