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Abstract

As networks are ubiquitous in the modern era, point anoma-
lies have been changed to graph anomalies in terms of
anomaly shapes. However, the specific-shape priors about
anomalous subgraphs of interest are seldom considered by
the traditional approaches when detecting the subgraphs
in attributed graphs (e.g., computer networks, Bitcoin net-
works, and etc.). This paper proposes a nonlinear approach
to specific-shape graph anomaly detection. The nonlinear ap-
proach focuses on optimizing a broad class of nonlinear cost
functions via specific-shape constraints in attributed graphs.
Our approach can be used to many different graph anomaly
settings. The traditional approaches can only support linear
cost functions (e.g., an aggregation function for the summa-
tion of node weights). However, our approach can employ
more powerful nonlinear cost functions, and enjoys a rigor-
ous theoretical guarantee on the near-optimal solution with
the geometrical convergence rate.

Introduction
In numerous network applications, the computer network
data of interest consist of “star-shape” attacking sub-
graphs (Wu et al. 2017), and the political blog data of interest
consist of “core-periphery” graph shape anomalies (Zhang,
Martin, and Newman 2015). Anomalies appear in the real
network applications in the form of specific-shapes rather
than point shapes. In the cyber attack detection applications
in Figure 1, the deep node (i.e., computer) color represents
the higher “transfer rate”. Given the “star-shape” anomaly
query in Figure 1, we formulate the following specific-shape
constrained minimization problem to uncover the specific
shape attack subgraph anomalies:

min
x∈Rn

ϕ(x) s.t. supp(x) ∈M(Q). (1)

where ϕ : Rn 7→ R is a powerful nonlinear cost function. An
attributed graph G = (V,E,W) is comprised of a set of n
vertices V = [v] = {1, · · · , n}, an edge setE ⊆ V ×V , and
an attribute matrix W ∈ Rn×p (p, the number of attributes).
Given the specific-shape anomalous graph prior Q, let VQ
denote the vertex set of Q, andM(Q) := {VC |C ⊆ G,C ∼=
Q} be the family set of “specific-shape” vertex sets, whose
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Figure 1: The main idea of uncovering specific-shape graph
anomalies by the powerful nonlinear function within the
continuous space (Akoglu, Tong, and Koutra 2015). In the
attributed graph, abnormal vertices come with red circles.

graphs {C} are subgraph of the attributed graph G, and are
isomorphic to the specific-shape anomalous graph prior Q.
The basic intuition for Problem (1) is that the cost function
ϕ is minimized at the constrained x whose nonzero entry
index set supp(x) := {v | xv 6= 0, v ∈ V } corresponds to
the specific-shape vertex set VC fromM(Q).

To motivate this problem, in an attributed computer net-
work G, we represent the attribute matrix W as “transfer
rate” attributes. Let Wv := WT

v,: be the p-dimensional at-
tribute vector for the vertex v ∈ V in the attributed graph
G, and W(i) := W:,i be the n-dimensional attribute vector
for the attribute i ∈ [p]. Let W(0) denote as the vector w.
Problem (1) for identifying cyber attacking scenarios can be
formulated as the least square problem: minx∈Rn ||w−x||22,
subject to supp(x) ∈M(Q) (Chen and Zhou 2016).

Related work. Point anomalies (i.e., outliers) can be con-
sidered as a binary 0/1 classification problem (Akoglu, Tong,
and Koutra 2015). These approaches just assign what is
called an outlierness score to each node. The specific-shape
anomaly is not considered in these approaches. A num-
ber of approaches are proposed specifically for the graph
anomaly detection problem. They can be directly classi-
fied as vector-based and graph-based approaches from the
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Table 1: Comparison between our work and several representative works in graph anomaly detection. The nonzero entry index
set of vector x implies a graph anomaly in the attributed graph, and s = |VQ|.
Related Work Target Solution Anomaly Shape Nonlinear Cost Function
(Hegde, Indyk, and Schmidt 2015) s-sparse signal ||x||0 ≤ s Connected subgraph anomaly

√

(Chen and Zhou 2016) s-sparse signal ||x||0 ≤ s Connected subgraph anomaly
√

(Gupta et al. 2014) Subgraph C Specific-shape graph anomaly ×
(Yang et al. 2016) Subgraph C Specific-shape graph anomaly ×
(Wu et al. 2017) s-sparse signal ||x||0 ≤ s Tree-shape graph anomaly

√

Our work s-sparse signal ||x||0 ≤ s Specific-shape graph anomaly
√

target solution (e.g., in Table 1). In the vector-based ap-
proaches, a graph anomaly is considered as a sparse signal,
and the true signal is recovered by the nonlinear cost func-
tions (e.g., the norm-2 function). Graph-structured matching
pursuit (Chen and Zhou 2016) and Graph-CoSaMP (Hegde,
Indyk, and Schmidt 2015) approaches are proposed to con-
nected subgraph anomaly detection by general nonlinear
functions. The graph tree projection pursuit approach (Wu
et al. 2017) can employ the nonlinear cost functions, such
as Kulldorff (Kulldorff 1997) and Expectation-based Pois-
son (EBP) graph scan statistics (Neill 2009b), to the tree
shape graph anomaly detection. The specific-shape prior can
be used to the powerful nonlinear cost function for anomaly
detection in attributed graphs with network structures and
vertex attributes. In the graph-based approaches, a graph
anomaly is considered as a matching subgraph in attributed
graphs, and the index is built on vertices and edges. Most
traditional approaches (Cordella et al. 2004; Huan, Wang,
and Prins 2003; Gupta et al. 2014; Yang et al. 2016; 2014;
Zou, Chen, and Lu 2007) can employ just linear cost func-
tions for the index structure. Those approaches can not han-
dle the nonlinear anomalies exhibited in attributed graphs.

In Table 1, our work can employ more powerful nonlin-
ear cost functions than the graph-based approaches (Gupta
et al. 2014; Yang et al. 2016). The other vector-based ap-
proaches (Hegde, Indyk, and Schmidt 2015; Chen and Zhou
2016) consider just the connected subgraph anomaly without
the specific shape anomaly prior. Although the work (Wu et
al. 2017) considers the tree-shape graph anomaly, the other
complex specific shapes can not be handled in this approach.

Our work aims to develop a nonlinear approach to spe-
cific shape sparsity anomaly structure via attributed graphs.
Our approach has three main features: (a) Generality: the
approach can encompass several previously studied sub-
graph matching methods and projection-pursuit oracles
(e.g., model-projection algorithms). (b) Theoretical basis:
the approach achieves the near-optimal solution at a con-
stant error bound with the geometrically convergence rate.
(c) Computational efficiency: we present a near-linear time
algorithm for Problem (1). The main contributions of our
work are summarized as follows:

• Develop an efficient nonlinear approach to graph
anomalies. Given the specific shape anomaly query graph
Q, a new and efficient approach, namely, Query-based
matching pursuit (Query-map), is developed to opti-
mize a nonlinear function over the specific shape graph-
structured sparsity modelM(Q).

• Theoretical basis. The proposed approach, Query-map,
achieves the near-optimal solution at a constant error
bound with the geometrically linear convergence rate. The
cost function ϕ satisfies a weaker condition than the pop-
ular strong condition such as Restricted Strong Convex-
ity/Smoothness (RSC/RSS).

• Comprehensive experiments to verify the proposed
approach on the real datasets. The powerful graph
scan statistic nonlinear functions are employed in our ap-
proach, Query-map, for the task of specific shape graph
anomaly detection. The extensive experiments on the real
datasets show that Query-map performs competitively
with a variety of representative methods for the graph
anomaly detection.

This work aims to study the graph anomaly with a specific
shape prior. For the tree shape prior, (Wu et al. 2017) work
can be employed. For the connected subgraph prior, (Chen
and Zhou 2016), and (Hegde, Indyk, and Schmidt 2015)
works can be employed. Without any graph anomaly priors,
our method can not guarantee the near-optimal solution.

Query-based matching pursuit algorithm
(Query-map)

The specific-shape graph anomaly in attributed graphs can
be considered as a sparse signal (Chen and Zhou 2016).
In referring to matching pursuit techniques in compressive
sensing works, the main idea in this paper is summarized as:
a) from the gradient, getting the most specific-shape anoma-
lous vertex set A := arg maxA∈M(Q) ‖ ∇Aϕ ‖1 (e.g.,
2||x − w||1, i.e., aggregation function) where (∇Aϕ)v =
(∇ϕ)v for v ∈ A, and (∇Aϕ)v = 0 otherwise; b) from the
previous solution x, with Ω := A ∪ supp(x), getting the
vector b minimizing ϕ over Ω; c) from M(Q), pruning b
into the new better solution x; and the three procedures are
repeated until the halting condition holds. The final solution
x implies the underlying specific-shape graph anomaly.

The proposed approach to Problem (1) is illustrated in Al-
gorithm 1. Query-map is an iterative selection method for
approximately optimizing the nonlinear cost function ϕ in
Problem (1). The method generates a sequence of interme-
diate specific shape s-sparse vectors x0,x1, . . . from a start
approximation x0 = 0 (i.e., 0 ∈ Rn). At the i-th iteration,
Step 4, g = ∇ϕ(xi), computes the gradient of ϕ at the cur-
rent solution xi. Step 5, A = P(g), selects the best specific
shape vertex set A of the restricted gradient gA leading to
the best approximation to g. The specific shape projection
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Algorithm 1: Query-map
1 Pick the specific shape anomaly query Q, attributed

graph G;
2 Set i = 0,xi = 0;
3 repeat
4 g = ∇ϕ(xi);
5 A = P(g); . Specific Shape Projection Oracle
6 Ω = A ∪ supp(xi);
7 b = arg minx∈Rn ϕ(x) s.t. xΩc = 0;
8 B = P(b); . Specific Shape Projection

Oracle
9 xi+1 = bB ;

10 i = i+ 1;
11 until halting condition holds;
12 return the specific shape vertex set B;

oracle, P(g), projects the gradient vector g onto the nearest
point vector gA in the specific shape graph-structured spar-
sity modelM(Q) in Problem (2).

P(g) = arg min
A∈M(Q)

‖ g − gA ‖1 (2)

We define in detail the specific shape graph-structured spar-
sity model M(Q). A graph C is a subgraph of G, denoted
as C ⊆ G, if VC ⊆ VG, EC ⊆ EG and ∀(u, v) ∈ EC,
u, v ∈ VC. A graph C is isomorphic to a query graph Q,
denoted as C ∼= Q, if there is a bijection ψ : VC → VQ
such that, for every pair of vertices u, v ∈ VC, (u, v) ∈ EC
if and only if (ψ(u), ψ(v)) ∈ EQ. Therefore, M(Q) :=
{VC | C ⊆ G,C ∼= Q} represents the specific shape vertex
sets of interest in the attributed graph G, whose correspond-
ing subgraphs are isomorphic to the specific shape anomaly
query graph Q.

Obviously, Problem (2) is equal to the subgraph match-
ing problem of arg maxA∈M(Q) ‖ gA ‖1, where g implies
a node-weighted graph. The target is to construct a maxi-
mum weight specific shape subgraph in the node-weighted
graph. The subgraph matching problem is well studied in
the graph matching field (Yang et al. 2016; 2014). In Steps
5 and 8, our approach can encompass the previously studied
subgraph mathcing methods or projection projection-pursuit
oracles. The main work of our paper is that we proposed a
generic approach to optimize a broad class of nonlinear cost
function via specific shape constraints in attributed graphs.

In Step 6, the set, Ω = A∪supp(xi), is chosen as the sup-
port. Pursuing the minimization of a nonlinear cost function
in Ω will be most effective. In Step 7, we find a vector b with
this support, and b minimizes the nonlinear cost function. In
Step 8, the specific shape projection oracle, P(b), projects
the vector b onto the desired specific shape vertex set B. In
Step 9, prune b into the new better solution xi+1 by the set
B. The above steps are repeated until the halting criterion
is satisfied. The natural halting criterion is xi+1 = xi. In
practice there are two popular options to define the halting
criterion: (1) the difference between the current ϕ and the
previous one is less than a threshold |ϕ(xi)−ϕ(xi+1)| < ε;
and (2) the difference between the current x and the previous

one is less than a threshold ||xi−xi+1|| < ε (e.g., ε = 0.01).
Our approach connects to the existing works. In the spe-

cial case where the specific shape projection oracles are the
head and tail approximations for connected subgraph spar-
sity signals, Query-map reduces to Graph-MP (Chen and
Zhou 2016) for the connected subgraph anomaly detection.
Specifically, the support set selection in Step 6 is tuned
by the gradient descent parameter η for Ω = supp(xi −
η∇Aϕ(xi)), and the specific shape projection oracles con-
sider just the tree-shape graph anomaly. Query-map reduces
to Graph-TPP (Wu et al. 2017) for the tree-shape subgraph
anomaly detection.

Theoretical Analysis
In this section, for our proposed algorithm Query-map, we
analyze its theoretical properties on the two aspects: 1)
Studying the convergence rate; and 2) time complexity of
Query-map.

Before obtaining the theoretical properties, we require the
following key technical condition under which the conver-
gence of Query-map is guaranteed. Without loss of gener-
ality, we assume the cardinality of the vertex set of specific
shape query graph to s = |VQ|.
Definition 1. Weak Restricted Strong Convexity (WRSC)
condition for the objective function ϕ (Wu et al. 2017;
Chen and Zhou 2016; Yuan, Li, and Zhang 2014). AsM(Q)
is the vertex sets of attributed graphs, if ∀S ∈ M(Q) with
cardinality |S| ≤ 4s and ∀y, z ∈ Rn with supp(y) ∪
supp(z) ⊆ S, the following inequality holds for some ξ > 0
and 0 < δ4s < 1. The objective function ϕ has the technical
condition (ξ, δ4s,M(Q))-WRSC.

||y − z− ξ∇Sϕ(y) + ξ∇Sϕ(z)|| ≤ δ4s||y − z|| (3)

where ∇Sϕ(y) is a restriction of ∇ϕ(y) in S: we have
(∇Sϕ(y))v = (∇ϕ(y))v for v ∈ S, and (∇Sϕ(y))v = 0
otherwise. The WRSC condition is derived from the Re-
stricted Strong Convexity/Smoothness (RSC/RSS) condi-
tions (Yuan, Li, and Zhang 2014). The RSC condition is first
characterized for the functions have quadratic bounds on the
derivative of the objective function. Then a function must
have the WRSC condition if the function has the RSC or
RSS conditions (Yuan, Li, and Zhang 2014).

Now we analyze the convergence property of Query-map.
We make a simple observation about Query-map that the se-
quence solution {xi} defined by Query-map is eventually
periodic on a vertex set S, due to the fact that the limit of ϕ
in the support vertex set of size 4s is exactly achieved after
a finite number of iterations.

Theorem 1. Query-map Convergence Rate. Consider a
nonlinear cost function ϕ : Rn 7→ R that satisfies the
condition (ξ, δ4s,M(Q))-WRSC. Given the prior query
graph Q, the attributed graph G, let x∗ be the true spe-
cific shape vector: ∀x ∈ Rn, ϕ(x) ≥ ϕ(x∗) subject to
supp(x), supp(x∗) ∈ M(Q), the sequence solution {xi}
defined by Query-map holds

||xi+1 − x∗||2 ≤ α||xi − x∗||2 + β||∇Iϕ(x∗)||2 (4)
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where the parameters are specified as α = 4
√

δ4s
1−δ4s ,

β = ξ
1−δ4s [ 4

1−2δ4s
+ 2(1−2δ4s)√

δ4s−δ2
4s

+ 2], and the vertex set

I = arg maxS∈M(Q) ||∇Sϕ(x∗)||2. We ensure α < 1, when
selecting δ4s < 1

17 .
We analyze the constant ||∇Iϕ(x∗)||2, and the parame-

ters, α β, impact on the convergence to the near-optimal x∗
for the sequence solution {xi}. The following result is an
immediate corollary achieved by Theorem 1.
Corollary 1.1. Estimation Error Level. For the specific
shape anomaly detection (i.e., isomorphism to Q), the vec-
tor x is calibrated to x ∈ [0, 1]n where v corresponds to the
desired anomaly node in G if xv 6= 0, and v is not anomaly
node otherwise. For the i-th solution xi, and the true specific
shape vector x∗, we have

‖ xi − x∗ ‖2≥
β

1− α
‖ ∇Iϕ(x∗) ‖2 (5)

‖ ∇Iϕ(x∗) ‖2≤
1− α
β

√
s (6)

Before reaching the estimation error level (5), Query-map
geometrically converges to the near-optimal x∗. The estima-
tion error of Query-map is determined by the multipliers of
||∇Iϕ(x∗)||2. Especially, when ||∇Iϕ(x∗)||2 = 0, Query-
map guarantees that the true x∗ is exactly recovered within
finite iterations. The shrinkage rate α relates to the param-
eter δ, where δs ≤ δ2s ≤ δ4s (Tropp and Needell 2008).
The smaller δ is attained, and the faster convergence rate of
Query-map is achieved. In this work, as

√
s(1−α)/β in the

upper bound (6) is a small constant, we consider the case
where ||∇Iϕ(x∗)|| is a sufficiently small constant, such that
||xi+1−x∗|| ≤ ||xi−x∗||. Thus the speed of convergence of
our algorithm Query-map mainly depends on the shrinkage
rate α for ||∇Iϕ(x∗)|| is a sufficiently small constant.
Theorem 2. Query-map Time Complexity. The absolute
upper bound to the estimation error ||xi − x∗|| is

√
2s for

xi,x∗ ∈ [0, 1]n. Within an approximate estimation error,
we obtain a near-optimal solution x̂ ∈ [0, 1]n, such that
||x∗ − x̂||2 ≤

(
||x∗||2 + β/(1 − α)

)
||∇Iϕ(x∗)||2, subject

to, supp(x̂) ∈M(Q). The time complexity of Query-map is

O
(
T log(1 / ||∇Iϕ(x∗)||2)

)
(7)

where for each iteration, the time T consists of two parts: 1)
One execution of the subproblem in Line 5 and 8; and 2) one
execution of the subproblem in Line 7.

The estimation error,
(
||x∗||2+β/(1−α)

)
||∇Iϕ(x∗)||2

)
,

is a tighter bound for the estimation error level (5). The total
time complexity relates to which well-studied oracle is em-
ployed to the projection pursuit for specific shape anomaly
query. Our approach in Algorithm 1 reaches a near-linear
time complexity with linear projection pursuit oracles. We
observe that M(Q) is not a convex set. The optimization
methods, such as Frank-Wolfe, can not be directly applied
to the specific shape anomalous subgraph discovery based
problem as studied in this paper before. We first proposed an
approach to optimize nonlinear functions in specific shape
anomaly queries with the better theoretical basis.

Application to Well-known Objective Function
The nonlinear cost function ϕ in Problem (1) can be ap-
plied to least square function, Kulldorff’s original Poisson
scan statistic (KULL) and Expectation-based Poisson statis-
tic (EBP) (Neill 2009b). Least square is one of the most pop-
ular models in regression analysis that finds “specific-shape”
sets of best fit for the attributed graphs (Chen and Zhou
2016). In this model, given the attribute vector w ∈ Rn,
the least square function is optimized via specific-shape con-
straints in attributed graphs.

min
x∈Rn

‖ w − x ‖22 s.t. supp(x) ∈M(Q)

It is well-known that the least square function is strongly
convex. Its Bregman divergence (4ϕ := ϕ(x) − ϕ(y)− <
∇ϕ(y),x − y >) is ‖ x − y ‖22. We obtain that the
least square function satisfies the condition (ξ, δ4s,M(Q))-
WRSC that δ4s = 1 − 2ξ for ξ < 1 (Yuan and Liu 2014).
For ensuring that Query-map converges to the near-optimal
solution, the parameter ξ ranges between 8/17 and 1.

In this work, there are the other two well-known graph
scan statistics functions: KULL and EBP that are widely
employed in pattern detection in graphs. For the statistics,
there are just two attributes, observed count and expected
count (Neill 2009a). Let c = W:,0 ∈ Rn denote the “ob-
served count” attribute values. Similarly, let d = W:,1 ∈
Rn denote the “expected count” attribute values. The log
forms of EBP and KULL are examined in the following
functions.

ϕEBP (x) :=− xT c log(xT c / xTd)− xTd + xT c

ϕKULL(x) :=− xT c log(xT c / xTd)−
(1− x)T c log

(
(1− x)T c / (1− x)Td

)
The forms of EBP and KULL are derived from the statistics
F (VC) in (Neill 2009a) that is formulated as the detection
problem: minC⊆G−F (VC) s.t. VC ∈M(Q).

Experiments
Our experiments consist of two parts: (i) uncovering high
quality specific shape attacking anomalies in the real-world
∗edu.cn network dataset by our method; and (ii) demonstrat-
ing the efficiency of our method on different applications.

Uncovering High Quality Specific Shape Attacking
Anomaly
Dataset. Real-World ∗edu.cn Network Dataset. An Inter-
net security company1 provided us with the total 3,978,073
web sites browsing logs from May 31, 2014 to May 13,
2015. The real-world traffic network of 131,107 nodes and
358,386 edges, is built from the browsing logs (i.e., the edge
(IP site A, IP site B) denotes that A visited B). For a day t
and a node v in this network, we denote the number of logs
within v on that day t as the observed value cv , and the av-
erage number of logs within v before t as the expected value
dv .

1An Internet security company in China with more than 0.6 bil-
lion users.
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Our method. Query-map employs the graph scan statis-
tic ϕEBP as the objective function to detect specific shape
attack subgraphs in real networks.

Result. In Figure 2, given the query graphs Q1, Q2 and
Q3, choose a random day (i.e., March 13, 2015) from the
period of Jan 1, 2015 and May 13, 2015. The specific shape
attacking anomalies are presented in Figure 2. The right
subfigure of Figure 2 denotes the star-chain-shape anomaly
queries. The middle subfigure of Figure 2 presents an at-
tacking sub-network. The left subfigure of Figure 2 shows
the specific shape cyber attacking cases. All of the detected
sites with our method are identified as true attacking sources
by the experts from the Internet security company. (1) Spe-
cific shape anomaly Q1. The user x.x.223.66 attacking the
server xkb.hlu.edu.cn is categorized to “FckEditor”, “Up-
load Webshell” and “Common Vulnerability” attacks. This
user attacking the servers tw.hlu.edu.cn, zsb2.hlu.edu.cn and
kydown.hlu.edu.cn with the same approach is categorized to
“Upload Webshell” attacks. (2)Specific shape anomaly Q2.
The server www.hlu.edu.cn is attacked from the users x.x.78.
34 by “SQL Inject”, x.x.3.69 and x.x.103.149 by “Dedecms”
and “Common Vulnerability”. The user x.x.103.149 also
attacked the servers xkb.hlu.edu.cn and tw.hlu.edu.cn with
“Dedecms” and “Common Vulnerability” attacks. (3)Spe-
cific shape anomaly Q3. The user x.x.223.66 attacked the
server www.hlu.edu.cn with “FckEditor”, “Upload Web-
shell” and “Common Vulnerability” approaches. These at-
tacks caused this server to be a bot machine. This infected
server attacked the server www.cq51edu.cn with “Common
Vulnerability”. The user x.x.32.220 attacked the server www.
cq51edu.cn with “Upload Webshell” and “Common Vulner-
ability” approaches. The user x.x.21.210 attacked the server
www.cq51edu.cn with the “nginx parse” approach. From the
results, we can observe that the specific shape anomalies are
exactly detected from the network.

Efficiency Comparison of Query-map and Baseline
Datasets: 1) Water Pollution Dataset. By the chemical
contaminant plumes are distributed at 4 nodes within dif-
ferent areas (Chen and Zhou 2016), we collected the real-
world water pollution network of 12,527 nodes and 14,831
edges. The network is constructed by the K-Nearest Neigh-
bor (KNN) algorithm. “The spreads of contaminant plumes
were simulated using the water network simulator EPANET
for 8 hours” (Chen and Zhou 2016). For the observed count
attribute, the value at each node v is collected from the corre-
sponding sensor per hour, cv ← 1 if it is polluted and cv ←
0 otherwise. For testing the robustness of methods to noises,
we randomly flipped K percent sensor binary values, where
K ∈ {2, 4, 6, 8, 10}. The noise ratio dv ← K% is consid-
ered as the expected count attribute (Chen and Zhou 2016).
2) Respiratory Emergency Department (ED) Dataset. In a
grid network of 10,000 nodes and 14,850 edges, for each
node v, we collected the T day period of respiratory ED visit
data Wv ∈ RT (e.g., T = 28, and the time t = 0 denotes the
current day). The outbreak linearly increases in cases over
the outbreak duration (Neill 2009a). During non-outbreak
period, the number of patients visiting ED in v is Wt

v ←
Poisson(µ) for t = 0, · · · , T where µ ∈ {1, · · · , 34} de-

notes the expected number in v on that days. During out-
break period, we randomly select the outbreak duration of
U from {1, · · · , 7}, normalizes the weight wv ∝

∑
tW

t
v

so that the total weight is equal to 1 in infected nodes, and
set the outbreak severity ∆ (e.g., ∆=800) (Neill 2009a). On
each day t ∈ {0, · · · , U}, we inject cases into each infected
node v i.e., Wt

v ← Wt
v + Poisson((T − t)wv∆) for t =

0, · · · , U (medium-size outbreaks injected for 10 percent
nodes (Neill 2009a)). For testing the robustness of methods,
we flipped values of K ∈ {2, 4, 6, 8, 10} percent nodes ran-
domly, i.e., no inject outbreak cases if the nodes are infected,
inject outbreak cases otherwise. Let cv = W0

v denote the
observed count of infected cases, and dv = 1

T

∑T
t=1 W

t
v

denote the expected count. The datasets are summarized in
Table 2.

Comparison Methods. We compared our method
“Query-map” with the two state-of-the-art baselines: Top-
k (Gupta et al. 2014) and Fast-k (Yang et al. 2016). The base-
lines are designed specifically for specific shape anomaly
discovery in attributed graphs. The baselines aim to obtain
top k subgraphs with the maximal sum of its node scores,
which are isomorphic to the query graph. The parameters k
and D are tuned completely based on the author recommen-
dation in the original papers for k = 10, D = 2 to Top-
k (Gupta et al. 2014) and k = 20, d = 2 to Fast-k (Yang et
al. 2016). Let w(v)← cv for each vertex v ∈ VG.

Performance Metrics. 1) Precision. We compute the pre-
cision of the target subgraph (i.e., the ratio of the number of
correct anomalous nodes and the number of nodes). The re-
call metric is ignored for the fixed size of returned target
subgraph. 2) Function Score and Running Time. The opti-
mization power of our method is examined in the scores of
graph scan statistics. We compare our method to the base-
lines on running times.

Results: Precision for target subgraphs detection. Fig-
ure 3 illustrates the precisions obtained by our methods
Query-map (EBP and KULL) corresponding to red bars and
cyan bars, and the competitive methods Fast-K and Top-K
corresponding to green bars and blue bars. For the 2% noise
level, Figure 3 (a) and (c) illustrate that our methods Query-
map (KULL) for Water Pollution dataset and Query-map
(EBP) for Emergency dataset outperformed all the baselines
on the precision. For the Water Pollution dataset in Figure 3
(a), our methods and baselines perform similar results. Our
methods recovered at least 99.5% true target subgraphs on
the anomaly queries Q2 and Q3. With the query graph ex-
panding in Figure 3(c), the precisions of baselines decrease
quickly, however the precisions of our method Query-map
(EBP) even increase to 1.0. Especially for the query graph
Q3, we can observe that the precisions of our methods are
greater than at least 0.67 for the best baseline. For the 10%
noise level, the most results in Figure 3(b) and (d) indicate
that our methods outperform the baselines. In Figure 3(b),
the precisions of baselines decrease with the query graph
size. However, even at the 10% noise level, the precisions of
our methods still increase to 1.0. For the Emergency dataset
in Figure 3(d), although our Query-map (KULL) is little bet-
ter than the best baselines, our Query-map (EBP) achieves at
least 0.27 improvement in the precision larger than the best
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Figure 2: The cyber attack cases on March 13, 2015 are detected by our method Query-map (EBP) in the ∗edu.cn real-world
network dataset (red solid nodes denote the attacking or attacked sites, and blue solid nodes denote normal nodes).

Table 2: Summary of datasets (WP: Water Pollution; ED: Emergency Department).
Attributed Networks Interesting Anomaly Queries

Data
set

# of
nodes

# of
edges

Attribute cv (i.e., observed
value) for each node v

Attribute dv (i.e., expected
value) for each node v

Q1 query
graph

Q2 query
graph

Q3 query
graph

WP 12,527 14,831 Sensor value (0 or 1) Noise level

ED 10,000 14,850 Number of patient visits Average number of visits

baseline. Although Fast-K and Top-K performed not bad in
Figure 3(a), these heuristic algorithms do not have any the-
oretical guarantees on identifying specific shape anomaly
subgraphs. From the results in Figure 3, we can observe that
our methods not only have a significant theoretical property,
but also always have a high precision.

In Table 2, the graph anomaly shapes Q1, Q2 and Q3 in
Water Pollution dataset are different from graph anomaly
shapes in Emergency Department dataset for the pollution
area showing strip shapes and the outbreak area showing star
shapes (Wu et al. 2017). Query-map achieved the precisions
for “strip” anomaly shapes in Water Pollution data and “star”
anomaly shapes in Emergency Department data illustrated in
Figure 3. The Top-K is a path index-based method (Gupta et
al. 2014), and the Fast-K is a heuristic method for assem-
bling star components. The baselines tend to perform better
on Water Pollution data with “strip” shape graph anomalies,
however, perform not better on Emergency Department data
with “star” shape graph anomaly.

Evolving curves of graph scan statistics. Figure 4(a-b)
report the graph scan statistic (EBP) scores of detected sub-
graphs for the {0, · · · , 9} iterations. The results in Fig-
ure 4(a-b) illustrate that our method Query-map (EBP) con-
verges in less than 10 iterations. Especially in Figure 4(a) for
the Water Pollution dataset, Query-map (EBP) converges in
less than 3 iterations. The empirical results show the fast
convergence trends of our methods Query-map.

Scalability analysis of running time. Table 3 reports the
comparison between our methods Query-map and the com-
petitive baseline methods on the running time. In Table 3, the
running times were collected from the computer with Intel
Xeon E3-1220 (e.g., 4 CPU, 3.1 GHz) and 24GB RAM. The

results in Table 3 show that our proposed method Query-
map ran faster than all the baseline methods in most set-
tings, except for the specific shape anomaly graph Q1. Even
though the baseline method Fast-K ran the fastest over the
query graph Q1, this method can not detect the target sub-
graph with high qualities in Figure 3(b-d). In Emergency
data, for the Q3, our methods returned results within 97 sec-
onds, however, Top-K did not output any results within 7
hours. The method can performs on the edu.cn data with
131,107 nodes. Results in Table 3 also imply that the run-
ning time of our methods is insensitive to the noise level,
which is consistent with the time complexity of Query-map
as discussed in Theorem 2.

Conclusion
This paper presents an efficient algorithm to optimize non-
linear functions subject to specific shape anomaly. Our ap-
proach is guaranteed to the near-optimal solution under
the estimation error upper bound of

(
||x∗||2 + β/(1 −

α)
)
||∇Iϕ(x∗)||2

)
. A wide variety of attributes can be em-

ployed to the specific shape anomaly discovery in graphs.
We will extend Query-map on the best-effort match to the
specific shape graph anomaly.

Appendix
A1. Proof of Theorem 1

We first introduce Lemma 3 to bound residues between the
solution xi and the optimal x∗.

Lemma 3. Let ri = xi − x∗. Given A ∈ M(Q), we have
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Table 3: Efficiency Measure: Comparison on the running times of our methods and the baselines.
Water Pollution Data Emergency Data

Run Time (second) 2 % noise 10 % noise 2 % noise 10 % noise
Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q1 Q2

Query-map (EBP) 7.99 13.26 22.57 8.18 14.25 21.92 0.95 0.98 0.73 0.74
Query-map (KULL) 7.90 12.81 22.22 7.10 12.57 19.21 0.81 0.82 0.35 0.36

Fast-K 2.37 34.03 86.13 2.27 46.83 190.54 0.47 73.41 0.47 72.32
Top-K 33.27 389.69 1,343.22 56.62 660.79 2,313.82 315.99 6,433.98 389.73 6,640.92
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Figure 3: Effective Validation: Precision comparisons of our methods Query-map (EBP) and Query-map (KULL), and the
baseline methods Fast-K and Top-K.
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Figure 4: Efficiency Measure: Evolving curves of graph scan
statistic scores (EBP) for our method (Query-map) in dif-
ferent iterations. These scores are evaluated on these two
datasets with 2% and 10% noises and the query graphs.

the following inequality.

||riAc || ≤2
√
δ4s − δ2

4s||ri||+( 2ξ

1− 2δ4s
+

(1− 2δ4s)ξ√
δ4s − δ2

4s

)
||∇Iϕ(x∗)||

(8)

where I = arg maxS∈M(Q) ||∇Sϕ(x∗)||2.

Now, we present the proof of Theorem 1.

Proof. Similarly, we denote ri+1 = xi+1 − x∗. We have
||(xi+1−b) + (b−x∗)||2 ≤ ||xi+1−b||2 + ||b−x∗||2 by
the triangular inequality property. In Algorithm 1, by Line
8, we have ||xi+1−b||2 = ||bB −b||2. According to Prob-
lem (2), bB is restricted to the largest elements of b by the
projection oracle P , and thus ||bB−b||2 ≤ ||x∗−b||2. The
upper bound of ||ri+1||2 is 2||x∗−b||2, for the deduction of
||ri+1||2 = ||xi+1 − x∗||2 ≤ ||xi+1 − b||2 + ||x∗ − b||2 =
||bB − b||2 + ||x∗ − b||2 ≤ 2||x∗ − b||2.

Compute the upper bound of ||(x∗ − b)Ω||22
=< b− x∗, (b− x∗)Ω >

=< b− x∗ − ξ∇Ωϕ(b) + ξ∇Ωϕ(x
∗), (b− x∗)Ω > −

< ξ∇Ωϕ(x
∗), (b− x∗)Ω >

≤ ||b− x∗ − ξ∇Ωϕ(b) + ξ∇Ωϕ(x
∗)||2||(b− x∗)Ω||2+

ξ||∇Ωϕ(x
∗)||2||(b− x∗)Ω||2

≤ δ4s||b− x∗||2||(b− x∗)Ω||2 + ξ||∇Ωϕ(x
∗)||2||(b− x∗)Ω||2

where the second equality is derived from ∇Ωϕ(b) = 0
for the function ϕ is minimized at b over the set Ω in Line
7 of Algorithm 1. The last inequality is derived from the
condition (ξ, δ4s,M(Q))-WRSC. Thus the upper bound of
||(x∗ − b)Ω||2 is δ4s||b− x∗||2 + ξ||∇Ωϕ(x∗)||2.

For the sets Ω and A, we denote the complement sets are
Ωc = VG \ Ω and Ac = VG \ A. We have ||x∗ − b||2 ≤
||(x∗ − b)Ω||2 + ||(x∗ − b)Ωc ||2. By the upper bound of
||(x∗ − b)Ω||2, we have ||(x∗ − b)Ω||2 ≤ δ4s||x∗ − b||2 +
ξ||∇Ωϕ(x∗)||2 + ||(x∗ − b)Ωc ||2. We have ||x∗ − b||2 ≤
||(x∗−b)Ωc ||2

1−δ4s + ξ||∇Ωϕ(x∗)||2
1−δ4s . By supp(b) ⊆ Ω at Line

7 and supp(xi) ⊆ Ω at Line 6 of Algorithm 1, we have
||(x∗−b)Ωc ||2

1−δ4s + ξ||∇Ωϕ(x∗)||2
1−δ4s =

||x∗
Ωc ||2

1−δ4s + ξ||∇Ωϕ(x∗)||2
1−δ4s =

||(x∗−xi)Ωc ||2
1−δ4s + ξ||∇Ωϕ(x∗)||2

1−δ4s =
||riΩc ||2
1−δ4s + ξ||∇Ωϕ(x∗)||2

1−δ4s . As

Ωc ⊆ Ac, we have ||r
i
Ωc ||2

1−δ4s + ξ||∇Ωϕ(x∗)||2
1−δ4s ≤ ||riAc ||2

1−δ4s +
ξ||∇Iϕ(x∗)||2

1−δ4s . At last we obtain the upper bound as follows

||x∗−b||2 ≤ ||riAc ||2 / (1− δ4s)+ξ||∇Iϕ(x∗)||2 / 1− δ4s
Combing ||ri+1||2 ≤ 2||x∗−b||2, the above inequality, and
Lemma 3, we finish proving this theorem.

A2. Proof of Theorem 2
Proof. As xi,x∗ ∈ [0, 1]n and |supp(xi)|, |supp(x∗)| ≤ s,
the absolute upper bound to ||xi − x∗|| is

√
2s. For the
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small constant ||∇Iϕ(x∗)||2, we present the acceptable up-
per bound

(
||x∗||2 + β/(1− α)

)
||∇Iϕ(x∗)||2.

By Inequality (4), at the i-th iterate of Algorithm 1, we ob-
tain the bound ||x∗−xi||2 ≤ αi||x∗||2 + β

1−α ||∇Iϕ(x∗)||2.
Let αi||x∗||2 + β

1−α ||∇Iϕ(x∗)||2 ≤
(
||x∗||2 + β/(1 −

α)
)
||∇Iϕ(x∗)||2. After dlog( 1

||∇Iϕ(x∗)||2 )/ log 1
αe itera-

tions, the estimate x̂ satisfies ||x∗−x̂||2 ≤
(
||x∗||2+β/(1−

α)
)
||∇Iϕ(x∗)||2. As the time complexity is T for one itera-

tion, the overall time complexity of Query-map follows the
result in Theorem 2.
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