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Abstract

As a novel learning paradigm, label distribution learning
(LDL) explicitly models label ambiguity with the definition
of label description degree. Although lots of work has been
done to deal with real-world applications, theoretical results
on LDL remain unexplored. In this paper, we rethink LDL
from theoretical aspects, towards analyzing learnability of
LDL. Firstly, risk bounds for three representative LDL al-
gorithms (AA-kNN, AA-BP and SA-ME) are provided. For
AA-kNN, Lipschitzness of the label distribution function is
assumed to bound the risk, and for AA-BP and SA-ME,
rademacher complexity is utilized to give data-dependent risk
bounds. Secondly, a generalized plug-in decision theorem is
proposed to understand the relation between LDL and clas-
sification, uncovering that approximation to the conditional
probability distribution function in absolute loss guarantees
approaching to the optimal classifier, and also data-dependent
error probability bounds are presented for the corresponding
LDL algorithms to perform classification. As far as we know,
this is perhaps the first research on theory of LDL.

Introduction
Traditional learning paradigms include single-label learn-
ing (SLL) and multi-label learning (MLL) (Zhang and Zhou
2014). SLL assumes that an instance is associated with one
label, while MLL assumes that multiple labels are assigned
to an instance. Essentially both SLL and MLL aim at find-
ing related label/labels to describe the instance, while nei-
ther SLL nor MLL support relative importance of labels as-
signed to the instance. However in some real-word applica-
tions, labels are related to the instance with different relative
importance degree. Thus it seems reasonable to label an in-
stance with a soft label rather than a hard one (e.g., single
label or a set of labels). Inspired by this, (Geng 2016) pro-
poses a novel learning paradigm, Label Distribution Learn-
ing (LDL), which labels an instance with a distribution of
description degree over label space, called label distribution,
and learns a mapping from instance to label distribution di-
rectly. Compared with MLL, where positive labels are com-
monly treated equally (with description degree equals 1/c
implicitly for c positive labels), LDL allows explicitly mod-
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eling of different relative importance of labels assigned to
the instance, which is more suitable for many real scenarios.

Recently, LDL has been extensively applied in many real-
world applications, which can be classified into three classes
according to the source of label distribution. The first one
features that label distribution is from data itself, which in-
cludes pre-release rating prediction on movies (Geng and
Hou 2015), emotion recognition (Zhou, Xue, and Geng
2015), et al. The second one is characterized by that label
distribution is originated from pre-knowledge, among which
applications include age estimation (Geng, Yin, and Zhou
2013), head pose estimation (Geng and Xia 2014), et al.
The third one is attributed to that label distribution is learned
from data automatically. Applications of such class include
label-importance-aware multi-label learning (Li, Zhang, and
Geng 2015), beauty sensing (Ren and Geng 2017), video
parsing (Geng and Ling 2017), et al. The secret of successes
of LDL being applied in a variety of fields is that explicit in-
troduction of label ambiguity with label distribution boosts
performance of real-world applications.

In this paper, we re-examine LDL from theoretical as-
pects, towards analyzing generalization of LDL algorithms.
Precisely, there are at least two arguments related to the
generalization of LDL. The first one is on generalization
of LDL itself, and the second one is on generalization of
LDL to perform classification. On one hand, LDL can be
regarded as one kind of multi-output regression (Borchani
et al. 2015), and generalization of multi-output regression
algorithms (Kakade, Sridharan, and Tewari 2009) can be
transfered to LDL somewhat. However, specializations of
LDL should not be neglected. The first thing to note is prob-
ability simplex constraint of label distribution. As suggested
by (Geng 2016), the target label distribution is real-valued
and satisfies distribution constraints, i.e., ηyx ∈ [0, 1], and∑
y∈Y η

y
x = 1 (formally defined in Preliminary). This con-

straint is often satisfied by applying a softmax function onto
each output of a multi-output regression model, which com-
plicates complexity of the corresponding multi-output re-
gression model. Furthermore, the second thing to note is
specialization of measures for LDL. Although Lipschitzness
of loss function is a general assumption when bounding the
risk, Kullback-Leibler (KL) divergence as loss function for
LDL (e.g., SA-ME) does not satisfy Lipschitzness instead.
On another hand, we find that LDL is usually adopted to per-
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form classification implicitly. For examples, in applications
of age estimation (Geng, Yin, and Zhou 2013), head-pose es-
timation (Geng and Xia 2014), pre-release rating prediction
on movies (Geng and Hou 2015), et al., label correspond-
ing to the maximum predicted description degree is treated
as the predicted label. As far as we know, generalization of
such framework has never been touched. The main contribu-
tions of this paper are summarized as followings,

1) We establish risk bounds for three representative LDL
algorithms, i.e., AA-BP, SA-ME, and AA-kNN, where
bounds for the first two are data-dependent risk bounds,
and bound for AA-kNN is consistency bound with Lips-
chitz assumption.

2) We generalize the binary plug-in decision theorem into
multi-class classification, discovering that LDL domi-
nates classification.

3) We provide, to the best of our knowledge, the first data-
dependent error probability bounds for three representa-
tive LDL algorithms to perform classification.

The rest of this paper is organized as follows. Firstly, re-
lated works are briefly reviewed. Secondly, notations are in-
troduced in preliminary. Then risk bounds for three repre-
sentative LDL algorithms are provided. Next generalization
of LDL to perform classification is examined. Finally, we
conclude the paper.

Related Work
LDL (Geng 2016) is a novel learning paradigm, which la-
bels an instance with a label distribution and learns a map-
ping from instance to label distribution straightly. Existing
studies mainly focus on algorithm design and improvement.

Three strategies are embraced to design algorithms for
LDL (Geng 2016). The first one is Problem Transforma-
tion (PT). Algorithms of this class firstly transform dataset
equipped with label distribution into single-label dataset via
re-sampling, and then SLL algorithms are employed to learn
the transformed single-label dataset. Two representative al-
gorithms are PT-SVM and PT-Bayes, which apply SVM and
Bayes classifier respectively. The second one is Algorithm
Adaptation (AA), which extends certain existing learning al-
gorithms to handle label distribution seamlessly. Concretely,
k-NN is adapted in such that, for an instance, mean of label
distribution of its k nearest neighbors is calculated as the
predicted label distribution, which is denoted by AA-kNN.
Besides, three-layer back-propagation neural network with
multi-output is also adapted to minimize the sum-squared
loss of output of neural network compared with real label
distribution, which is denoted by AA-BP. The third one is
Specialized Algorithms (SA), which matches characteristics
of LDL. Two specialized algorithms, i.e., SA-IIS and SA-
BFGS, are proposed by applying maximum entropy model
(Berger, Pietra, and Pietra 1996) with KL divergence as loss
function to learn the label distribution. Notice that all above
algorithms are designed without learnability guarantee.

Recently, two improvements on LDL are noteworthy. The
first one tackles shortage of label distribution dataset. Com-
pared with SLL and MLL, LDL dataset is more difficult to

acquire. (Xu, Tao, and Geng 2018) proposes to boost logi-
cal label (from SLL/MLL dataset) into real-valued label dis-
tribution by graph laplacian label enhancement. (Hou et al.
2017) utilizes semi-supervised learning, with abundant un-
labeled data, to adaptively learn label distribution. (Xu and
Zhou 2017) deals with the situation when label distribu-
tion is partially observed, and jointly recovers and learns it
by matrix completion with trace-norm regularizer. The sec-
ond one exploits label correlations of LDL. (Zhou, Xue, and
Geng 2015) represents label correlations by Pearson’s cor-
relation coefficient. (Jia et al. 2018) addresses label correla-
tions by adding a regularizer, which encodes label correla-
tions into distance between labels. (Zheng, Jia, and Li 2018)
considers label correlation is local, which is encoded into
a local correlation vector, and learns optimal encoding vec-
tor and LDL simultaneously. Algorithm improvements are
mainly according to practice guide, without taking theoreti-
cal feasibility into consideration.

There are few work on theoretical research of LDL. One
recent paper (Zhao and Zhou 2018) studies generalization of
LDL partially. However, the major motivation of the paper
is to take structures of label space into consideration by ap-
plying optimal transport distance (Villani 2008) instead of
traditional LDL measures. And the proposed risk bound is
too abroad, without providing a bound for rademacher com-
plexity of the hypothesis space. Besides, characteristics of
LDL measures are not taken into consideration at all. Risk
bounds we developed in this paper match specializations of
LDL (i.e., probability simplex constraint and loss function
characteristics), which are broadly applicable.

For generalization of LDL to perform classification, one
possible related topic is the plug-in decision theorem (De-
vroye, Györfi, and Lugosi 1996) (formally described in The-
orem 8). It states that error probability difference between
a decision function and the optimal one is bounded by ex-
pectation of absolute difference between the plug-in func-
tion and the conditional probability distribution function.
Plug-in decision theorem has been widely used to prove
consistency of many decision rules, such as Stone’s Theo-
rem (Stone 1977), strong consistency of k-NN rule (Biau
and Devroye 2015), consistency of kernel rule (Devroye and
Krzyźak 1989), et al. Note that the classic plug-in decision
theorem is only established in the binary setting, which lim-
its its applications. In this paper, we generalize the plug-in
decision theorem and develop data-dependent error proba-
bility bounds for the corresponding LDL algorithms.

Preliminary
Denote input space by X ∈ Rd, and label space by Y =
{y1, y2, . . . , ym}. Define label distribution function η : X ×
Y → R, which satisfies η(x, y) ≥ 0 and

∑
y η(x, y) = 1.

Let the training set be S = {(x1, η(x1)), . . . , (xn, η(xn))},
where xi is sampled according to an underlying probabil-
ity distribution D, and η(xi) = {ηy1xi

, . . . , ηymxi
} is deter-

mined by an unknown label distribution function η with
η
yj
xi = η(xi, yj) for convenience of notation. The goal of

LDL is to learn the unknown function η.
Given a function class H and a loss function ` : Rm ×
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Rm → R+, for function h ∈ H, its corresponding risk and
empirical risk are defined as LD(h) = Ex∼D[`(h(x), η(x))]
and LS(h) = 1

n

∑n
i=1 `(h(xi), η(xi)), respectively. Recall

the definition of rademacher complexity w.r.t. S and `,

R̂n(` ◦ H ◦ S) = Eε1,...,εn

[
sup
h∈H

1

n

n∑
i=1

`(h(xi), η(xi))εi

]
,

where ε1, . . . , εn are n independent rademacher random
variables with P(εi = 1) = P(εi = −1) = 1/2. Then
Lemma 1. (Bartlett and Mendelson 2003; Mohri, Ros-
tamizadeh, and Talwalkar 2012) Let H be a family of func-
tions. For a loss function ` bounded by µ, then for any δ > 0,
with probability at least 1− δ, for all h ∈ H such that

LD(h) ≤ LS(h) + 2R̂n(` ◦ H ◦ S) + 3µ

√
log 2/δ

2n
. (1)

Risk Bounds for LDL Algorithms
We now provide risk bounds for three representative algo-
rithms from two classes, i.e., AA-kNN and AA-BP from al-
gorithm adaptation, SA-ME (maximum entropy) from spe-
cialized algorithms. Notice that (Geng 2016) proposes two
specialized algorithms, i.e., SA-IIS and SA-BFGS, which
differ only in the underlying optimization methods. In this
paper we focus on the generalization ability of algorithms,
and SA-ME represents SA-IIS and SA-BFGS collectively
from the perspective of the underlying model, i.e., maxi-
mum entropy model. Also algorithms from problem trans-
formation are not covered, for the reason that this type of
algorithms circumvent learning label distribution with re-
sampling and single-label learning algorithms instead of
learning it directly.

AA-kNN
AA-kNN extends kNN to deal with label distribution. Given
a new instance x, its k nearest neighbors are firstly selected
in the training set. Then mean of label distribution of k near-
est neighbors is calculated as the label distribution of x, i.e.,

η̃yix =
1

k

∑
j∈Nk(x)

ηyixj
, (i = 1, 2, . . . ,m),

where η̃ : X × Y → Rm is the output function of AA-kNN
with η̃yix = η̃(x, yi) for simplicity of notation, and Nk(x) is
the index set of k nearest neighbors of x. For convenience
of analysis, we assume X = [0, 1]d.
Theorem 2. Assume η(·, yi) be ci-Lipschitz w.r.t. X , and
c =

∑m
i=1 ci, then for any δ > 0, with probability at least

1− δ such that

Ex∼D

[
m∑
i=1

|ηyix − η̃yix |

]
≤ 4c

√
d

δ

(
2k

n

)1/(d+1)

. (2)

Proof. With Lipschitz assumption of η(·, yi), we have

ES,x

[
m∑
i=1

|ηyix − η̃yix |

]
≤ ES,x

 m∑
i=1

1

k

∑
j∈Nk(x)

|ηyix − ηyixj
|


≤
c

k
ES,x

 ∑
j∈Nk(x)

||xj − x||2

 .

Thus to prove Theorem (2), it suffices to prove

ES,x

 ∑
j∈Nk(x)

||xj − x||2

 ≤ 4
√
dk

(
2k

n

)1/(d+1)

, (3)

which is tricky and left to appendices. Then apply Markov’s
inequality to Eq. (3), and Theorem (2) follows directly.

AA-BP
AA-BP adapts back-propagation neural network to perform
label distribution learning. The three-layer neural network
has m output units, each of which outputs the description
degree of a label. To make sure the output of neural network
satisfies probability simplex constraint, softmax activation
function is applied in each output unit. Similar to multi-
output regression, AA-BP minimizes sum-squared loss of
the output of neural network with the real label distribution.
Observing that AA-BP can be regarded as a combination of
softmax function and function family of the three-layer neu-
ral network, rademacher complexity of which w.r.t. S for
loss function ` is bounded as following,
Theorem 3. Denote softmax function by SF. Let H be a
family of functions for three-layer neural network with m
outputs (identity activation on the output layer), and Hj be
a family of functions for j-th output. For a loss function `
with Lipschitz constant L`, we have

R̂n(` ◦ SF ◦ H ◦ S) ≤ 2
√
2mL`

m∑
j=1

R̂n(Hj ◦ S), (4)

Proof. Define function φ(·, ·) as `(SF(·), ·). Next, we show
that φ is Lipschitz. For probability distribution p,q ∈ Rm,

|φ(p, ·)− φ(q, ·)| ≤ L`||SF(p)− SF(q)||1,
where the inequality is according to Lipschitzness of `. Next,
right-hand side of the proceeding equation equals

L`

m∑
i=1

∣∣∣∣∣ 1

1 +
∑
j 6=i epj−pi

− 1

1 +
∑
j 6=i eqj−qi

∣∣∣∣∣ ,
where pi, qi is i-th element of p and q, respectively. Ob-
serving that for v ∈ Rm, function 1

1+
∑

i exp(vi)
is actually

1-Lipschitz, thus the preceding equation is bounded by

L`

m∑
i=1

||p− 1 · pi − q+ 1 · qi||2

≤ L`
m∑
i=1

(||p− q||2 +
√
m|pi − qi|)

≤ L`(m||p− q||2 +
√
m

m∑
i=1

|pi − qi|)

≤ 2mL`||p− q||2,
where the last inequality is according to Cauchy-Schwarz’s
inequality. Recall the definition of rademacher complexity

R̂n(` ◦ SF ◦ H ◦ S) = E

[
sup
h∈H

1

n

n∑
i=1

φ(h(xi), η(xi))εi

]
,
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and according to (Maurer 2016), with φ being 2mL`-
Lipschitz, right-hand side of above equation is bounded by

√
2(2mL`)E

sup
h∈H

1

n

n∑
i=1

m∑
j=1

εi,jhj(xi)

 , (5)

where hj(xi) is j-th component of h(xi), and εi,j are n×m
i.i.d. random variables. Notice that function class of a multi-
output neural network can be regarded as a direct sum of
function classes of multiple scalar-output neural networks.
SupposeH1, . . . ,Hm be classes of functions for three-layer
neural network with scalar output, then H = ⊕j∈[m]Hj ={
x→ [h1(x) . . . hm(x)]T : hj ∈ Hj

}
, and Eq. (5) equals

2
√
2mL`E

 sup
h∈

⊕
j∈[m]Hj

1

n

n∑
i=1

m∑
j=1

εi,jhj(xi)


≤ 2
√
2mL`

m∑
j=1

E

[
sup
hj∈Hj

1

n

n∑
i=1

εi,jhj(xi)

]

≤ 2
√
2mL`

m∑
j=1

R̂n(Hj ◦ S).

which finishes proof of Theorem 3.

Rademacher complexity of class of functions for three-
layer neural network with scalar output satisfies
Lemma 4. (Bartlett and Mendelson 2003; Gao and Zhou
2016). Let σ be Lipschitz with constant Lσ . Define class
of functions Hj = {x 7→

∑
i wj,iσ(vi · x) : ||wj ||2 ≤

B1, ||vi||2 ≤ B0}, rademacher complexity of which satis-
fies

R̂n(Hj ◦ S) ≤
LσB0B1√

n
max
i∈[n]
||xi||2.

Accordingly, right-hand side of Eq. (4) is bounded as

R̂n(` ◦ SF ◦ H ◦ S) ≤ 2
√
2m2L`LσB0B1√

n
max
i∈[n]
||xi||2.

For AA-BP, sum-squared loss is 2-Lipschitz, and bounded
by 2. Finally data-dependent risk bound for AA-BP is
Theorem 5. Let F be the family of functions for AA-BP
defined above, with sum-squared loss and weight constraints
as Theorem 4, for any δ > 0, with probability at least 1− δ,
for all f ∈ F such that

Ex∼D

[
m∑
i=1

(fyix − ηyix )2

]
≤ 1

n

n∑
i=1

m∑
j=1

(η
yj
xi − f

yj
xi )

2

+
8
√
2m2LσB0B1√

n
max
i∈[n]
||xi||2 + 6

√
log 2/δ

2n
.

(6)

SA-ME
SA-ME applies maximum entropy model to learn label dis-
tribution, i.e.,

η̃
yj
x =

1

Z
exp(wj · x), (7)

where Z =
∑
j exp(wj · x) is the normalization factor. Ac-

tually Eq. (7) can be regarded as a combination of softmax
function and multi-output linear regression, namely SF ◦ H,
where H represents a class of functions of multi-output lin-
ear regression. SA-ME uses KL divergence as loss function,
which is denoted by KL : Rm × Rm → R+. Rademacher
complexity of SA-ME w.r.t. S for loss function KL satisfies
Theorem 6. LetH be a family of functions for multi-output
linear regression, and Hj be a family of functions for the
j-th output. Rademacher complexity of SA-ME with KL loss
satisfies

R̂n(KL◦SF◦H◦S) ≤ (
√
2m+

√
2)

m∑
j=1

R̂n(Hj ◦S), (8)

Proof. Note that KL(u, ·) is not ρ-Lipschitz over Rm for
any ρ ∈ R and u ∈ Rm, thus Theorem 3 cannot be ap-
plied directly. Define function φ(·, ·) as KL(·,SF(·)). Next
we show that φ(u, ·) satisfy Lipschitzness. For p,q ∈ Rm,
|φ(u,p)− φ(u,q)| = |KL(u,SF(p))− KL(u,SF(q))|,

which equals∣∣∣∣∣
m∑
i=1

ui

(
ln

exp(pi)∑m
j=1 exp(pj)

− ln
exp(qi)∑m
j=1 exp(qj)

)∣∣∣∣∣
≤

m∑
i=1

∣∣∣∣∣∣ln(1 +
∑
j 6=i

epj−pi)− ln(1 +
∑
j 6=i

eqj−qi)

∣∣∣∣∣∣ui.
Observing that ln(1+

∑
j exp vi) is 1-Lipschitz for v ∈ Rm,

thus right-hand side of preceding equation is bounded by
m∑
i=1

ui||p− 1 · pi − q+ 1 · qi||2

≤ ||p− q||2 +
√
m

m∑
i=1

ui|pi − qi|

≤ (
√
m+ 1)||p− q||2,

namely, φ is (
√
m + 1)-Lipschitz. Similar to the discussion

of bounding rademacher complexity for AA-BP, we have

R̂n(KL ◦ SF ◦ H ◦ S) ≤ (
√
2m+

√
2)

m∑
j=1

R̂n(Hj ◦ S),

which concludes the proof.

As discussed above, although KL alone does not satisfy
Lipschitzness, KL◦SF, however, is (

√
m+1)-Lipschitz. De-

fine class of functions of j-th output with weight constraints
asHj = {x→ wj ·x : ||wj ||2 ≤ 1}. According to (Kakade,
Sridharan, and Tewari 2009), rademacher complexity of Hj
satisfies

R̂n(Hj ◦ S) ≤
maxi∈[n] ||xi||2√

n
.

Then right-hand side of Eq. (8) is bounded as

R̂n(KL ◦ SF ◦ H ◦ S) ≤ (
√
2m+

√
2)m√

n
max
i∈[n]
||xi||2.

Accordingly, data-dependent risk bound for SA-ME is

5259



Theorem 7. Let F be the family of functions for SA-ME
defined above with KL divergence as loss function bounded
by a constant b, for any δ > 0, with probability at least 1−δ,
for all f ∈ F such that

Ex∼D

 m∑
j=1

η
yj
x ln

η
yj
x

f
yj
x

 ≤ 1

n

n∑
i=1

m∑
j=1

η
yj
xi ln

η
yj
xi

f
yj
xi

+3b

√
log 2/δ

2n
+

2(
√
2m+

√
2)m√

n
max
i∈[n]
||xi||2.

(9)

As (Cha 2007) suggests that 0 is replaced by a very small
value, say γ > 0, for division by 0 when implementing KL
divergence, then for probability distribution p,q ∈ Rm with
pi ≥ γ, qi ≥ γ

KL(p,q) =
m∑
i=1

pi ln
pi
qi
≤

m∑
i=1

pi ln
1

γ
≤ − ln γ,

thus there exists a constant b ≥ − ln γ such that KL(·, ·) ≤ b
(e.g., b = 35 for γ = 1× 10−15).

Relation between LDL and Classification
LDL aims at learning the unknown label distribution func-
tion η by minimizing distance (or maximize similarity)
between the given distribution and the output distribu-
tion. However, in practice, LDL is usually applied to per-
form classification. Firstly, a label distribution function η̃
is learned according to training sample S with label dis-
tribution. Secondly, a given instance x is classified by η̃,
with label corresponding to the maximum predicted la-
bel description degree as the predicted label, i.e., ỹ =
argmaxy∈Y η̃(x, y). In this part we tackle feasibility of per-
forming classification of LDL algorithms. To make the anal-
ysis possible, we stay in probabilistic setting, where the un-
derlying label distribution function η is the conditional prob-
ability distribution function, i.e., η(x, y) = P(y|x).

Unlike LDL, where the unknown label distribution func-
tion η is deterministic though unknown, label variable for
classification is stochastic, and sampled according to the
conditional probability distribution. Thus we start with the
plug-in decision theorem to bound error probability with risk
of LDL (with absolute loss), then get the upper bound for er-
ror probability using union bound.

Generalized Plug-in Decision Theorem
As a preliminary, we firstly introduce the well-known plug-
in decision theorem. The classic plug-in decision theorem
applies to binary decision. For a given x with label y, then
the Bayes decision function h∗ is

h∗(x) =

{
y0 if η1(x) ≤ 1/2,
y1 otherwise,

where η1(x) = P(y = y1|x). For another decision h with
plug-in decision function

h(x) =

{
y0 if η̃1(x) ≤ 1/2,
y1 otherwise,

where η̃1(x) (0 ≤ η̃1(x) ≤ 1) is an approximation of η1(x).
Then we have

Theorem 8. (Devroye, Györfi, and Lugosi 1996) For the
plug-in decision function h defined above, difference of error
probability between h and h∗ satisfies
P(h(x) 6= y)− P(h∗(x) 6= y) ≤ 2Ex [|η̃1(x)− η1(x)|] .
The theorem states that if η̃1(x) is close to η1(x) in ab-

solute value, then 0/1 risk of decision h is near that of the
optimal decision function h∗. The preceding plug-in deci-
sion theorem only applies to binary classification, and we
generalize it to multi-class classification. Formally, given an
instance x with the conditional probability distribution func-
tion η (multi-class), the corresponding Bayes decision is

h∗(x) = argmax
y∈Y

η(x, y).

Similarly, assume we have access to η̃ that approximates η
and the plug-in decision is defined as

h(x) = argmax
y∈Y

η̃(x, y).

Theorem 9. For the plug-in decision function h defined
above, we have

P(h(x) 6= y)−P(h∗(x) 6= y) ≤ Ex

[
m∑
i=1

|ηi(x)− η̃i(x)|

]
,

where ηi(x), η̃i(x) represent η(x, yi), η̃(x, yi) respectively.

Proof. Given an instance x, then the conditional error prob-
ability of h

P(h(x) 6= y|x) = 1− P(h(x) = y|x)

= 1−
m∑
i=1

P(h(x) = yi, y = yi|x)

= 1−
m∑
i=1

Kr(h(x), yi)ηi(x),

where Kr(·, ·) is the Kronecker delta function. Then differ-
ence of conditional error probability between h and h∗

P(h(x) 6= y|x)− P(h∗(x) 6= y|x)

=

m∑
i=1

(Kr(h∗(x), yi)− Kr(h(x), yi)) ηi(x).

Without loss of generality, let k be the prediction of h and j
be the prediction for h∗, then
P(h(x) 6= y|x)− P(h∗(x) 6= y|x) = ηj(x)− ηk(x). (10)

Lemma 10. Let a ≥ b and d ≥ c, then |a− b| ≤ |a− c|+
|b− d|.

Proof. If c ≤ b or d ≥ a, the inequality is obvious. If c ≥ b
and a ≥ d, then |a− b| = |a− c|+ |c− b| ≤ |a− c|+ |b−
d|.

For k 6= j, then ηj(x) ≥ ηk(x) and η̃k(x) ≥ η̃j(x), and
according to Lemma 10, |ηj(x)−ηk(x)| ≤ |ηj(x)−η̃j(x)|+
|ηk(x) − η̃k(x)|. For k = j, left-hand side of (10) reduces
to 0. Thus we have

P(h(x) 6= y|x)− P(h∗(x) 6= y|x) ≤
m∑
i=1

|ηi(x)− η̃i(x)|.

(11)
Take expectation of both sides of Eq. (11) and we finish
proof of Theorem 9.
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Table 1: Measures for LDL

Measure Formula
Chebyshev ↓ Dis1(p,q) = maxi |pi − qi|
Clark ↓ Dis2(p,q) =

√∑
i
pi−qi)2
(pi+qi)2

Canberra ↓ Dis3(p,q) =
∑
i
|pi−qi|
pi+qi

Kullback-Leibler ↓ Dis4(p,q) =
∑
i pi ln

pi
qi

Cosine ↑ Sim1(p,q) =
∑

i piqi√
||p||2
√
||q||2

Intersection ↑ Sim2(p,q) =
∑
imin(pi, qi)

Measures for LDL
As we already have discussed in Theorem 9 that in proba-
bilistic setting, LDL with absolute loss is sufficient for clas-
sification, because approximation to the conditional proba-
bility distribution function with absolute loss guarantees ap-
proximation to the optimal classifier. (Geng 2016) suggests
six measures for LDL, i.e., Chebyshev distance, Clark dis-
tance, Canberra metric, KL divergence, cosine coefficient,
and intersection similarity, which belong to Minkowski fam-
ily, the χ2 family, the L1 family, the Shannon’s entropy fam-
ily, the inner product family, and the intersection family, re-
spectively (Cha 2007). For probability distribution p,q ∈
Rm, formulation of the six measures are summarized in Ta-
ble 1, where ↓ after the distance measures indicates “the
smaller the better”, and ↑ after the similarity measures in-
dicates “the larger the better”.

Theorem 11. All measures in Table 1 are sufficient for LDL
to perform classification.

Proof. Denote absolute loss as Dis(p,q) =
∑
i |pi−qi|. For

Chebyshev, Clark and Canberra distances, it’s trivial to val-
idate that Dis1 ≥ 1

mDis, Dis3 ≥ 1
2Dis and Dis2 ≥ 1

2
√
m

Dis.
For KL distance, we have

√
Dis4 ≥ 1

2Dis. For cosine sim-
ilarity, we have 1 − mSim1 ≥ 1

2Dis2, and for intersection
similarity, it satisfies that 1 − Sim2 = 1

2Dis. In conclusion,
all measures in Table 1 bound absolute loss somehow. De-
tails of the proof is left to appendix.

Data-dependent Error Probability Bounds for LDL
As discussed above, error probability is directly correlated
with absolute loss, and Theorem 11 states that measures
in Table 1 bound absolute loss somehow. Accordingly, risk
bounds for AA-kNN (absolute loss), AA-BP (sum-squared
loss), and SA-ME (KL loss) can be extended to error prob-
ability bounds. Formally, let f be a learned label distri-
bution function, define corresponding decision function as
g(f(x)) = argmaxy∈Y f(x, y).

Notice that the optimal error probability L∗ exists in the
left-hand side of Theorem 9, which can be bounded with
Hoeffding’s inequality. Moreover, the optimal classifier h∗
outputs the label corresponding to the maximum conditional
probability, and empirical error probability of the optimal
classifier h∗is LS(h∗) = 1

n

∑n
i=1

(
1−maxy∈Y η

y
xi

)
. By

Hoeffding’s inequality, for any ε > 0 such that

P {|LS(h∗)− L∗| ≥ ε} ≤ 2 exp(−2nε2),

namely for any δ > 0, with probability at least 1− δ,

|LS(h∗)− L∗| ≤
√

ln 2/δ

2n
. (12)

Finally combine Theorem 9 and Equation 12 with the results
of Theorem 2, Theorem 5 and Theorem 7 respectively, and
we conclude with following theorems.

Theorem 12. Let ηi be ci-Lipschitz. Let η̃ be the output
function of AA-kNN. Then for any δ > 0, with probability
at least 1− δ, we have

P(g(η̃(x)) 6= y) ≤ 8c
√
d

δ

(
2k

n

)1/(d+1)

+

√
ln 4/δ

2n

+1− 1

n

n∑
i=1

max
y∈Y

ηyxi
.

Different with AA-kNN, AA-BP minimizes sum-squared
loss, and note that for random variable z ∈ Rm

Ez||z||1 ≤
√
mEz||z||2 ≤

√
m
√
E||z||22,

where the first inequality is according to Cauchy-Schwarz’s
inequality and the second one is according to Jensen’s in-
equality. Thus error probability for AA-BP satisfies
Theorem 13. Let F be a family of functions for AA-BP de-
fined above. For any δ > 0, with probability at least 1 − δ,
for all f ∈ F , such that

P(g(f(x)) 6= y) ≤
√
m
√

 1

n

∑
i,j

(η
yj
xi
− fyjx )2 + 7

√
log 4

δ

2n

+
8
√
2m2LσB0B1√

n
max
i∈[n]

||xi||2 + 1−
1

n

n∑
i=1

max
y∈Y

ηyxi

)
,

where
√

is the root operator.

Observing that for probability distribution p,q ∈ Rm,
||p− q||1 ≤ 2

√
KL(p,q), which implies that

Theorem 14. Let F be family of functions for SA-ME de-
fined above, and b′ = 3(b + 1). For any δ > 0, with proba-
bility at least 1− δ, for all f ∈ F such that

P(g(f(x)) 6= y) ≤ 2
√
 1

n

∑
i,j

η
yj
xi ln

η
yj
xi

f
yj
xi

+ b′

√
log 4

δ

2n

+
2(
√
2m+

√
2)m√

n
max
i∈[n]
||xi||2 + 1− 1

n

n∑
i=1

max
y∈Y

ηyxi

)
,

Conclusion
This paper studies learnability of LDL from two aspects, i.e.,
generalization of LDL itself, and generalization of LDL to
perform classification. On one hand, for generalization of
LDL, risk bounds for three representative LDL algorithms,
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i.e., AA-kNN, AA-BP and SA-ME are provided, with con-
vergence rate O(( kn )

1/d+1), O( 1√
n
), O( 1√

n
) respectively,

which indicates learnability of LDL. On the other hand,
for generalization of LDL to perform classification, a gen-
eralized plug-in decision theorem is proposed, discovering
that minimizing absolute loss is sufficient for a correspond-
ing LDL decision function approaching the optimal clas-
sifier. Furthermore, six commonly used LDL measures are
also shown to be sufficient for classification, for the reason
that all six measures bound absolute loss somehow. Besides,
data-dependent error probability bounds for LDL are given
to demonstrate feasibility of LDL to perform classification.

Appendices
Details of Proof of Theorem 11
For discrete probability distribution p,q ∈ Rm, the missing
proof for relation between measures in Table 1 and absolute
loss is as following.
Intersection Similarity. For intersection similarity and ab-
solute distance, it satisfies 1− Sim2 = Dis/2.

Proof. Firstly for a, b ∈ R, we have min(a, b) = (a+b)/2−
|a− b|/2, and it follows that Sim2(p,q) =

∑m
i=1[(pi +

qi)/2− |pi − qi|/2] = 1− Dis/2

Cosine Similarity. For cosine similarity and absolute dis-
tance, it satisfies 1−mSim1 ≥ Dis2/2.

Proof. According to cosine law, we have
‖|p||22 + ||q||22 − 2||p||2||q||2Cosine(p,q) = ||p− q||22.

Notice that ||p||1 = 1 and ||q||1 = 1. Apply Cauchy-
Schwarz’s inequality to both sides of above equation, and
it follows that m/2− 2Cosine(p,q) ≥ Dis2/m.

Kullback-Leibler Distance. For Kullback-Leibler distance
and absolute distance, it satisfies

√
Dis4 ≥ Dis/2.

Proof. This proof is according to (Cover and Thomas 2012),
where the probability distribution is continuous, and here
KL divergence is applied to discrete probability distribution.
Observing −Dis4(p,q) =

∑
i pi ln

qi
pi

, which equals∑
i

pi {lnmin(qi/pi, 1) + lnmax(qi/pi, 1)}

≤ ln
∑
i

pimin(
qi
pi
, 1) + ln

∑
i

pimax(
qi
pi
, 1)

≤ ln
∑
i

min(pi, qi) + ln
∑
i

max(pi, qi)

≤ ln
∑
i

pi + qi − |pi − qi|
2

+ ln
∑
i

pi + qi + |pi − qi|
2

≤ ln {1− Dis(p, q)/2}+ ln {1 + Dis(p, q)/2}
≤ ln

{
1− Dis2/4

}
,

where the third inequality is according to Jensen’s inequal-
ity. Arrange items, and it follows that ( 12Dis)2 ≤ 1 −
exp(−Dis4) ≤ Dis4, where the second inequality is accord-
ing to the trivial inequality 1 − e−x ≤ x for any x ≥ 0,
which concludes the proof.

Proof of Equation (3)
The proof is according to the work of (Shalev-Shwartz and
Ben-David 2014), which bounds expected distance between
a random x and its closest neighbor in the training set.

Proof. For k = 1, according to (Shalev-Shwartz and Ben-
David 2014),

Ex,S

[
||xN1(x) − x||2

]
≤ 4
√
dn−

1
d+1 ,

which satisfies Eq. (3). One can easily check that when k =
1, the right-hand side of Eq. (3) is 21/(d+1)4

√
dn−1/(d+1) >

4
√
dn−1/(d+1), thus Eq. (3) holds. Furthermore for k ≥ 2,

Lemma 15. (Shalev-Shwartz and Ben-David 2014) Let
C1, C2, . . . , Cr be a collection of subsets of X , then for any
k ≥ 2,

ES

 ∑
i:|Ci∩S|<k

P[Ci]

 ≤ 2rk

n
.

Firstly, let C1, C2, . . . , Cr be the cover of X = [0, 1]d us-
ing boxes of length λ. Then for x and its k nearest neighbors
in the same box, we have

∑
j∈Nk(x)

||x − xj ||2 ≤ k
√
dλ,

otherwise
∑
j∈Nk(x)

||x− xj ||2 ≤ k
√
d. Therefore,

Ex,S

 ∑
j∈Nk(x)

||xj − x||2

 ≤ k√dES
 ∑
i:|Ci∩S|<k

P[Ci]


+k
√
dλES

 ∑
i:|Ci∩S|≥k

P[Ci]

 .
By Lemma 15 and trivial bound

∑
i:|Ci∩S|≥k P(Ci) ≤ 1, it

follows that

Ex,S

 ∑
j∈Nk(x)

||xj − x||2

 ≤ k√d(2rk
n

+ λ).

Since number of boxes r = (1/λ)d, set λ = (2kd/n)(1/d+1)

to maximize the right-hand side of the preceding equation,

Ex,S

∑
j∈Nk(x)

||xj − x||2 ≤
√
dk

(
2k

n

) 1
d+1

(d
−d
d+1 + d

1
d+1 ).

Notice that function d−d/d+1+d1/d+1 is monotone decreas-
ing with maximum 2 when d = 1. Therefore,

Ex,S

 ∑
j∈Nk(x)

||xj − x||2

 ≤ 2
√
dk

(
2k

n

) 1
d+1

,

and Eq. (3) holds as well, which concludes the proof.
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