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Abstract

Deep neural networks (DNNs) have achieved superior perfor-
mance in various prediction tasks, but can be very vulnerable
to adversarial examples or perturbations. Therefore, it is cru-
cial to measure the sensitivity of DNNs to various forms of
perturbations in real applications. We introduce a novel per-
turbation manifold and its associated influence measure to
quantify the effects of various perturbations on DNN classi-
fiers. Such perturbations include various external and inter-
nal perturbations to input samples and network parameters.
The proposed measure is motivated by information geometry
and provides desirable invariance properties. We demonstrate
that our influence measure is useful for four model building
tasks: detecting potential ‘outliers’, analyzing the sensitiv-
ity of model architectures, comparing network sensitivity be-
tween training and test sets, and locating vulnerable areas.
Experiments show reasonably good performance of the pro-
posed measure for the popular DNN models ResNet50 and
DenseNet121 on CIFAR10 and MNIST datasets.

1 Introduction
Deep neural networks (DNNs) have exhibited impressive
power in image classification and outperformed human de-
tection in the ImageNet challenge (Russakovsky et al. 2015;
He et al. 2015; 2016; Huang et al. 2017). Despite this huge
success, it is well known that state-of-the-art DNNs can be
sensitive to small perturbations (Szegedy et al. 2013; Good-
fellow, Shlens, and Szegedy 2015; Moosavi-Dezfooli, Fawzi,
and Frossard 2016; Carlini and Wagner 2017; Su, Vargas,
and Kouichi 2017). This vulnerability has called into ques-
tion their usage in safety-critical applications, including self-
driving cars (Bojarski et al. 2016) and face recognition (Sharif
et al. 2017), among many others (Akhtar and Mian 2018).
There is rich literature on quantifying the sensitivity or robust-
ness of DNNs to external perturbations that affect the input
samples; see (Fawzi, Moosavi-Dezfooli, and Frossard 2017;
Akhtar and Mian 2018; Novak et al. 2018). For instance,
one popular robustness measure computes the minimum ad-
versarial distortion for a given sample (Moosavi-Dezfooli,
Fawzi, and Frossard 2016; Hein and Andriushchenko 2017;
Weng et al. 2018). However, very little work has been done
on measuring the effects of various internal perturbations to
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network trainable parameters on DNNs. To the best of our
knowledge, (Cheney, Schrimpf, and Kreiman 2017) is the
first paper to examine the robustness of AlexNet (Krizhevsky,
Sutskever, and Hinton 2012) by tracking the classification
performance over several chosen standard deviations of Gaus-
sian perturbations to network weights.

The aim of this paper is to develop a novel perturbation
manifold and its associated influence measure to evalute
the effects of various perturbations to input samples and/or
network trainable parameters. Our influence measure is a
novel extension of the local influence measures proposed in
(Zhu et al. 2007; Zhu, Ibrahim, and Tang 2011) to classifica-
tion problems by using information geometry (Amari 1985;
Amari and Nagaoka 2000). Compared with the existing meth-
ods (Akhtar and Mian 2018), we make the following two
major methodological contributions.

Our influence measure is motivated by information geome-
try, and its calculation is computationally straightforward and
does not require optimizing any objective function. When the
dimension of the perturbation vector is larger than the num-
ber of classes, the perturbation manifold in (Zhu et al. 2007;
Zhu, Ibrahim, and Tang 2011) has a singular metric tensor
and thus fails to form a Riemannian manifold. We address
this singularity issue by introducing a low-dimensional trans-
form and show that our influence measure still provides the
invariance under diffeomorphisms of the original perturba-
tion. Such an invariance property is critical for assessing the
simultaneous effects or comparing the individual impacts
of different external and/or internal perturbations within or
between DNNs without concerning their difference in scales,
such as the comparison between perturbations to trainable
parameters in a convolution layer and those in a batch nor-
malization layer within a single DNN. In contrast, existing
measures, such as the Jacobian norm (Novak et al. 2018) and
Cook’s local influence measure (Cook 1986), do not have
this invariance property, leading to some misleading results.

Our proposed influence measure is applicable to various
forms of external and internal perturbations and useful for
four important model building tasks: (i) detecting potential
‘outliers’, (ii) analyzing the sensitivity of model architectures,
(iii) comparing network sensitivity between training and test
sets, and (iv) locating vulnerable areas. For task (i), down-
weighting outliers may be used to train a DNN with increased
robustness. Task (ii) may serve as a guide to the improvement
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of an existing network architecture. Task (iii) can evaluate
the heterogeneity of the model robustness between training
and test sets, and combining tasks (i)–(iii) may be useful
for selecting DNNs. For task (iv), the discovered vulnerable
locations in a given image can be utilized to either craft ad-
versarial examples or fortify a DNN with data augmentation.
The application of our influence measure to tasks (i)-(iv) is
illustrated for two popular DNNs, ResNet50 (He et al. 2016)
and DenseNet121 (Huang et al. 2017), on the benchmark
datasets CIFAR10 and MNIST.

2 Method
2.1 Perturbation Manifold
Given an input image x and a DNN model N with a train-
able parameter vector θ, the prediction probability for the
response variable y ∈ {1, . . . ,K} is denoted as P (y|x,θ) =
Nθ(y,x). Let ω = (ω1, . . . , ωp)

T be a perturbation vector
varying in an open subset Ω ⊆ Rp. The perturbation ω can
be flexibly imposed on x, θ, or even the combination of x
and θ. Denote P (y|x,θ,ω) to be the prediction probability
under perturbation ω such that

∑K
y=1 P (y|x,θ,ω) = 1. It

is assumed that there is a ω0 ∈ Ω such that P (y|x,θ,ω0) =
P (y|x,θ). Also, {P (y|x,θ,ω)}Ky=1 is assumed to be posi-
tive and sufficiently smooth for all ω ∈ Ω.

Following the development in (Zhu et al. 2007;
Zhu, Ibrahim, and Tang 2011), we may define
M = {P (y|x,θ,ω) : ω ∈ Ω} as a perturbation
manifold. The tangent space of M at ω is denoted
by Tω, which is spanned by {∂`(ω|y,x,θ)/∂ωi}pi=1,
where `(ω|y,x,θ) = logP (y|x,θ,ω). Let Gω(ω) =∑K

y=1 ∂
T
ω`(ω|y,x,θ)∂ω`(ω|y,x,θ)P (y|x,θ,ω) with

∂ω = (∂/∂ω1, . . . , ∂/∂ωp). If Gω(ω) is pos-
itive definite, then for any two tangent vectors
vi(ω) = hTi ∂

T
ω`(ω|y,x,θ) ∈ Tω, i = 1, 2, where

hTi denotes the coordinate vector of vi(ω) on the basis
∂ω`(ω|y,x,θ), the inner product can be defined by

〈v1(ω), v2(ω)〉 =

K∑
y=1

v1(ω)v2(ω)P (y|x,θ,ω)

= hT1 Gω(ω)h2. (1)

Subsequently, the length of v1(ω) is given by

‖v1(ω)‖ =
√
〈v1(ω), v1(ω)〉 =

[
hT1 Gω(ω)h1

]1/2
.

With the above inner product defined by Gω(ω), M is a
Riemannian manifold and Gω(ω) is the Riemannian metric
tensor (Amari 1985; Amari and Nagaoka 2000).

We need the positive definiteness of Gω(ω). However,
Gω(ω) as a sum of K rank-1 matrices has rank(Gω(ω)) ≤
K, so it is a singular matrix when K < p. The case K < p
is true in many classification problems since the number
of classes is often much smaller than the dimension of ω.
The singularity of Gω(ω) indicates that the p tangent vec-
tors ∂`(ω|y,x,θ)/∂ωi are linearly dependent and thus some
components of ω are redundant. In addition, our focus is on
the small perturbations around ω0. We hence transform the

p-dimensional ω to be a vector ν such that Gν(ν) is positive
definite in a small neighborhood of ν0 that corresponds to
ω0.

Our low-dimensional transform is implemented as fol-
lows. We first obtain a compact singular value decompo-
sition (cSVD) of Gω(ω0). For very large p, rather than
the direct but extremely expensive cSVD computation of
the p × p matrix, we apply a computationally efficient ap-
proach using the cSVD of the much smaller p ×K matrix
L0 = [∂Tω`(ω0|y,x,θ)P 1/2(y|x,θ,ω0)]1≤y≤K by notic-
ing that Gω(ω0) = L0L

T
0 . Let r0 = rank(Gω(ω0)). The

usual cSVD computation can easily yield that L0 = B0A0

and A0A
T
0 = UAΛ0U

T
A, where B0 is a p× r0 matrix with

orthonormal columns, UA is a r0 × r0 orthogonal matrix
and Λ0 is a r0 × r0 diagonal matrix. We hence obtain the
cSVD: Gω(ω0) = U0Λ0U

T
0 with U0 = B0UA. Define the

desirable transform of ω ∈ Ω by ν = Λ
1/2
0 UT

0 ω. Denote
P (y|x,θ,ν) = P (y|x,θ,ω = U0Λ

−1/2
0 ν + ξ0), where

ξ0 = ω0 −U0Λ
−1/2
0 ν0 and ν0 = Λ

1/2
0 UT

0 ω0. It follows
from ∂ν` = ∂ω`U0Λ

−1/2
0 that Gν(ν0) = I. By the smooth-

ness of P (y|x,θ,ω) in ω ∈ Ω, the metric tensor Gν(ν) is
positive definite in an open ball Bν0

centered at ν0.

Definition 1. We define the Riemannian manifoldMν0 =
{P (y|x,θ,ν) : ν ∈ Bν0} with the inner product defined by
Gν(ν) in (1) as the perturbation manifold around ν0.

2.2 Influence Measure
Let f(ω) be the objective function of interest for sensitivity
analysis. We define the influence measure to evaluate the
discrepancy of the objective function f(ω) at two points, ω1

and ω2, corresponding to νi = Λ
1/2
0 UT

0 ωi, i = 1, 2 on the
perturbation manifoldMν0

. Let C(t) = P (y|x,θ,ν(t)) be
a smooth curve on Mν0

connecting ν1 = ν(t1) to ν2 =

ν(t2), where ν(t) = Λ
1/2
0 UT

0 ω(t) with a smooth curve
ω(t) connecting ω1 = ω(t1) to ω2 = ω(t2). The distance
between ν1 and ν2 along the curve C(t) is defined by

SC(ν1,ν2) =

∫ t2

t1

[
ν̇(t)TGν(ν(t))ν̇(t)

]1/2
dt,

with ν̇(t) = dν(t)/dt. Following (Zhu, Ibrahim, and Tang
2011), the influence measure for f(ω) along C(t) is given
by

IC(ω1,ω2) =
[f(ω1)− f(ω2)]2

S2
C(ν1,ν2)

.

Let ω(0) = ω0, then ν(0) = ν0. We define the (first-order)
local influence measure of f(ω) at ω0 by

FIω(ω0) = max
C

lim
t→0

IC(ω(t),ω(0)). (2)

Denote hν = ν̇(0) = Λ
1/2
0 UT

0 hω, hω = ω̇(0), ω̇(t) =

dω/dt, ∇f(ω0) = ∂ωf |ω=ω0
, and Hf(ω0) = ∂2f

∂ω∂ωT

∣∣
ω=ω0

.

Plugging S2
C(ν(t),ν(0)) = t2hTν Gν(ν0)hν + o(t2) and

f(ω(t)) = f(ω(0)) + ∇f(ω0)hωt + 1
2 (hTωHf(ω0)hω +
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∇f(ω0)
d2ω(0)
dt2 )t2 + o(t2) into (2) yields the closed form

FIω(ω0) = max
hν

hTν∇Tf(ν0)
∇f(ν0)hν

hTν Gν(ν0)hν

= ∇f(ν0)∇
T
f(ν0)

(3)

= ∇f(ω0)G
†
ω(ω0)∇Tf(ω0)

,

where ∇f(ν0) := ∇f(ω0)U0Λ
−1/2
0 , G†ω(ω0) is the

pseudoinverse of Gω(ω0), and we used the identi-
ties Gν(ν0) = I and ∂ωf∂tω = ∂ωf∂νω∂tν =

∂ωf∂νω∂ωνU0Λ
−1/2
0 ∂tν = ∂ωfU0Λ

−1/2
0 ∂tν.

Definition 2. We define the influence measure of f(ω) at ω0

by FIω(ω0) given in (2) with the closed form in (3).
Theorem 1. Suppose that ϕ is a diffeomorphism of ω. Then,
FIω(ω0) is invariant with respect to any reparameterization
corresponding to ϕ.

Proof. Let ϕ = ϕ(ω), ω = ω(ϕ), and ϕ0 = ϕ(ω0). De-
note their Jacobian matrices by Φ = ∂ϕ/∂ω and Ψ =
∂ω/∂ϕ. Differentiating ω = ω(ϕ(ω)) with respect to ω
yields I = ΨΦ. Denote Ψ0 = Ψ(ϕ0), Φ0 = Φ(ω0),
ω̇0 = ω̇(0) and ϕ̇0 = dϕ(0)/dt. We have

FIω(ω0) = max
hω

hTω∇Tf(ω0)
∇f(ω0)hω

hTωU0Λ0UT
0 hω

= max
ω̇0

ω̇T0∇Tf(ω0)
∇f(ω0)ω̇0

ω̇T0 Gω(ω0)ω̇0

= max
ω̇0

ω̇T0 ΦT
0 ΨT

0∇Tf(ω0)
∇f(ω0)Ψ0Φ0ω̇0

ω̇T0 ΦT
0 ΨT

0 Gω(ω0)Ψ0Φ0ω̇0

= max
ϕ̇0

ϕ̇T0∇Tf(ϕ0)
∇f(ϕ0)

ϕ̇0

ϕ̇T0 Gϕ(ϕ0)ϕ̇0

= FIϕ(ϕ0).

Theorem 1 shows the invariance of FIω(ω0) under any dif-
feomorphic (e.g., scaling) reparameterization of the original
perturbation vector ω rather than ν. This result is analogous
to those in (Zhu et al. 2007; Zhu, Ibrahim, and Tang 2011),
but we extend it to cases where the original perturbation
modelM with Gω(ω) is not a Riemannian manifold, espe-
cially when K < p.

The invariance property is not enjoyed by the widely used
Jacobian norm (Novak et al. 2018) and Cook’s local influ-
ence measure (Cook 1986). For example, consider the per-
turbation α + ∆α, where α = (α1, . . . , αp)

T is a subvec-
tor of (xT ,θT )T , and the scaling version α′ + ∆α′ with
α′ = kα. Let (ω,ω0) = (∆α,0) and its scaling counter-
part (ω′,ω′0) = (∆α′,0). We have that the Jacobian norm

‖J(α)‖F =
[ p∑
i=1

( ∂f
∂αi

∣∣∣
ω=ω0

)2]1/2
= k‖J(α′)‖F (4)

and the Cook’s local influence measure

Cη,ω =
1

(1 +∇f(ω0)∇Tf(ω0)
)1/2

ηTHf(ω0)η

ηT (I +∇Tf(ω0)
∇f(ω0))η

6= Cη,ω′ = Ckη,ω′ (5)

with ω(t) = ω0 + tη are not scaling-invariant. This is
problematic especially when the scale heterogeneity ex-
ists between parameters to which the perturbations are im-
posed. For instance, in the simultaneous perturbations to
both input image x and trainable network parameters θ, i.e.,
α = (xT ,θT )T , the contribution of ∆x appears to be ex-
aggerated if x is scaled with larger values than θ. Another
example is the comparison between perturbations to train-
able parameters (weights and bias) in a convolution layer and
those (shift/scale parameters) in a batch normalization layer.
There are no uniform criteria for the scaling because either
rescaling to a unit norm or keeping on the original scales
seems to have its own advantages. However, our influence
measure evades this scaling issue by utilizing the metric ten-
sor of the perturbation manifold rather than that of the usual
Euclidean space.

2.3 Perturbation Examples
In this subsection, we illustrate how to compute the proposed
influence measure for a trained DNN model P (y|x,θ) =
Nθ(y,x). We consider the following commonly used per-
turbations to the input image x or the trainable parameters
θ = (θT1 , . . . ,θ

T
L)T , where θl are the parameters in the l-th

trainable network layer.
• Case 1: x+ ∆x;
• Case 2: θ + ∆θ;
• Case 3: θl + ∆θl.

All three cases can be written in a unified form α+ ∆α
with α ∈ {x,θ,θl}. Let the perturbation vector ω = ∆α
and ω0 = 0. For the influence measure FIω(ω0) in (3), we
have

∇f(ν0) = (∂αf |ω=ω0
)U0Λ

−1/2
0 , (6)

where Λ0 and U0 are obtained starting from matrix L0 =
[∂Tω`(ω0|y,x,θ)P 1/2(y|x,θ,ω0)]1≤y≤K through L0 =
B0A0, A0A

T
0 = UAΛ0U

T
A and U0 = B0UA. The compo-

nent ∂ω`(ω0|y,x,θ) in L0 is now computed by
∂ω`(ω0|y,x,θ) = ∂α logP (y|x,θ). (7)

The gradients ∂αf |ω=ω0
and ∂α logP (y|x,θ) can be calcu-

lated easily via backpropagation (Goodfellow et al. 2016) in
deep learning libraries like TensorFlow (Abadi et al. 2016)
and Pytorch (Paszke et al. 2017).

Next, we consider a specific DNN example under Case 3.
Consider the following feedforward DNN architecture before
the softmax layer:

nθ(x) = σL(ΘLσL−1(· · · (Θ3σ2(Θ2σ1(Θ1x))))) ∈ RK ,

where x ∈ Rk0 , Θl ∈ Rkl×kl−1 , θl = vec(ΘT
l ), and σl’s

are entry-wise activation functions. For notational simplicity,
we set all bias terms to zero and consider the sigmoid function
σ(x) = [1 + exp(−x)]−1 with σ̇(x) = σ(x)(1− σ(x))

for all activation functions. Let il(x,θ) and ol(x,θ) be the
input and output vectors of the l-th layer such that ol(x,θ) =
σl(il(x,θ)) and o0(x,θ) = x. The softmax function is
given by

g(z) =

(
exp(z1)∑K
k=1 exp(zk)

, . . . ,
exp(zK)∑K
k=1 exp(zk)

)T
.
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Figure 1: Manhattan plots for Setup 1.

The whole DNN model is

P (y|x,θ) = Nθ(y,x) = g(nθ(x))[y],

for y = 1, . . . ,K, where g(·)[y] is the y-th entry of vec-
tor g(·). Under Case 3, we haveα = θl. Choose the objective
function f to be the cross-entropy, i.e.,

f(α,ω) = − logP (y = ytrue|x,θ,ω).

Hence, in (6) we have ∂αf |ω=ω0 = −∂α logP (y =
ytrue|x,θ). Then, to calculate the gradients
in (6) and (7), we only need to consider
∂α logP (y|x,θ) = ∂θl log(g(nθ(x))[y]). Note that
∂z log(g(z)[y]) = (ey − g(z))T , where ey ∈ RK
has 1 in the y-th entry and 0 in the others. Moreover,
∂θlnθ(x) = DLΘLDL−1 · · ·Dl+1Θl+1DlOl−1, with
Dl = diag({σ̇(il(x,θ)[j])}klj=1) ∈ Rkl×kl and Ol−1 =

diag({oTl−1(x,θ), . . . ,oTl−1(x,θ)}) ∈ Rkl×(kl−1kl). Hence,
for (6) and (7), we have

∂α logP (y|x,θ)

= (ey − g(nθ(x)))
T DLΘLDL−1 · · ·Dl+1Θl+1DlOl−1.

3 Experiments
In this section, we investigate the performance of our lo-
cal influence measure. We address the four tasks stated in
Introduction through the following setups under the three
perturbation cases in Section 2.3.

• Setup 1: Compute each training image’s FI under Case 1,
with f being the cross entropy, i.e., f = − logP (y =
ytrue|x,θ,ω).

• Setup 2: Let f = − logP (y = ytrue|x,θ,ω).

– Setup 2.1: Compute each training image’s FI under
Case 2.

– Setup 2.2: Compute each trainable network layer’s FI
under Case 3 for each training image.

• Setup 3: Compute each image’s FI under Case 1 for
both training and test sets, where f = − logP (y =
ypred|x,θ,ω).

• Setup 4: Compute each pixel’s FI under Case 1 for a given
image. We adopt a multi-scale strategy taking into account
the spatial effect. For each pixel, we set x in Case 1 to
be the k × k square centered at the pixel with the scale
k ∈ {1, 3, 5, 7}. We use f = − logP (y = ypred|x,θ,ω).

For the cross-entropy like function f in Setups 3 and 4, we
use the predicted label ypred instead of the true label ytrue for
the prediction purpose rather than the training purpose in the
first two setups. In Setup 4, the scale of the pixel-level FI is
analogous to the convolutional kernel size.

We conduct experiments on the two benchmark datasets
CIFAR10 and MNIST using the two popular DNN mod-
els ResNet50 (He et al. 2016) and DenseNet121 (Huang et
al. 2017). Originally, there are 50,000 and 60,000 training
images for CIFAR10 and MNIST, respectively. As the vali-
dation sets, we use randomly selected 10% of those images,
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with the same number for each class. No data augmentation
is used for the training process. Both datasets have 10,000
test images. The prediction accuracy of our trained models is
summarized in Table 1.

Table 1: Accuracy for models trained without data augmenta-
tion

CIFAR10 MNIST

Model Training Test Training Test

ResNet50 99.78% 88.70% 99.87% 99.29%
DenseNet121 99.87% 91.16% 99.998% 99.58%

3.1 Outlier Detection
We study the outlier detection ability of our proposed influ-
ence measure under Setup 1. Figure 1 illustrates the results
of Setup 1 by using Manhattan plots. DenseNet121 gener-
ally has smaller FIs than ResNet50 for the two benchmark
datasets, excluding several large FIs over 10 shown in Fig-
ure 1(c) for CIFAR10. The images with the top 5 largest
FIs are displayed in Figure 2 for each case. Most of the 20
images, especially those in MNIST, are difficult even for hu-
man visual detection. This indicates the strong power of our
influence measure in detecting outlier images.

We further examine the outlier detection power of our pro-
posed influence measure by simulating outlier images from
MNIST. Each outlier image was generated by overlapping
two training digits of different classes that are shifted up to 4
pixels in each direction, with the true label randomly set to be
one of the two classes. The two DNN models in Table 1 are
trained with additional 50 epochs after incorporating 2700

Figure 2: Images with top 5 largest FIs in Setup 1 for
ResNet50 (R) and DensetNet121 (D). Each subcaption shows
ytrue→ypred and FI.

Figure 3: ROC and PR curves of our proposed FI measure
(red) and the Jacobian norm (blue) on MNIST with simulated
outliers.

and 300 simulated outlier images into the training and valida-
tion sets, with accuracies reduced up to 0.38% and 0.11% for
respective training and testing. The original 54,000 training
images are all treated as non-outliers. We compare the pro-
posed FI measure with the Jacobian norm given in (4) using
the cross-entropy as the objective function f . The maximal
Cook’s local influence, maxη Cη,ω, is not considered here
due to the expensive computation of the very large Hessian
matrix; see (5). Figure 3 shows the outlier detection results
of the two considered measures. Although the receiver op-
erating characteristic (ROC) curves of the two measures are
almost overlapping, our FI measure significantly outperforms
Jacobian norm in terms of the precision-recall (PR) curves
that are more useful for highly unbalanced data (Davis and
Goadrich 2006).

3.2 Sensitivity Analysis on DNN Architectures
We conduct the sensitivity analysis on DNN architectures
under Setup 2. The invariance property of our FI measure
shown in Theorem 1 enables us to fairly compare the effects
of small perturbations to model parameters of different scales
within or between DNNs. Setup 2.1 compares the sensitiv-
ity between the two DNNs, while Setup 2.2 undertakes the
comparison across trainable layers within each single DNN.

The Manhattan plots for Setup 2 on CIFAR10 are presented
in Figure 4; results for MNIST are provided in the Supple-
mentary Material. The patterns on CIFAR10 under Setup 2.1
in Figure 4(a)-(c), with mostly smaller FIs for DensetNet121,
are quite similar to those for Setup 1 in Figure 1(a)-(c), in-
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Figure 4: Manhattan plots for Setup 2 on CIFAR10.

Figure 5: Manhattan plots for Setup 3 on CIFAR10.

dicating that DenseNet121 is generally less sensitive than
ResNet50 to the infinitesimal perturbations to all network
trainable parameters. From Figure 4(d)-(f) for Setup 2.2, we
see stable patterns of FIs over the trainable layers for the
two DNNs. Modifying their network architectures does not
appear to be necessary here. Note that the FI value for the
trainable parameters in each single network layer is theoret-
ically dominated by that for all trainable parameters of the
entire network, which is well supported by the comparison
between Figure 4(a)-(c) and (d)-(f).

3.3 Sensitivity Comparison between Training and
Test Sets

We compare the network sensitivity between training and test
sets under Setup 3. Figure 5 and Table 2 show the FI values
for Setup 3 on CIFAR10; results for MNIST are also provided

in the Supplementary Material. In the figure and table, the
test set has more slightly large FIs than the training set for
both DNNs, while FIs are generally smaller in both sets
for DenseNet121. We suggest to select a DNN model with
similar sensitivity performance and smaller FI values on both
training and test sets. Together with the results of Sections 3.1
and 3.2 shown in Figure 1 (a)-(c) and Figure 4 (a)-(c), and
also with the model accuracies in Table 1, DenseNet121
is preferred over ResNet50 on CIFAR10 in terms of both
sensitivity and accuracy.

3.4 Vulnerable Region Detection
We apply the multi-scale strategy in Setup 4 to detect the
areas in an image that are vulnerable to small perturbations.

For Setup 4, the test images from the two benchmark
datasets with the largest FI in Setup 3 by DenseNet121 are

4948



Table 2: Percentiles of FI values for Setup 3 on CIFAR10

ResNet50 DenseNet121

Percentile Training Test Training Test

75th 2.87e-3 0.031 1.10e-4 1.83e-3
80th 5.38e-3 0.073 2.42e-4 6.57e-3
85th 0.010 0.160 6.00e-4 0.025
90th 0.023 0.343 1.78e-3 0.097
95th 0.064 0.678 7.80e-3 0.352
98th 0.177 0.999 0.037 0.755
99th 0.316 1.215 0.099 0.951

100th 2.160 3.579 2.533 2.215

illustrated in Figure 6. The vulnerable areas for both images
are mainly in or around the object, and the image boundaries
are generally less sensitive to perturbations. The figure also
reasonably shows that the vulnerable areas expand as the
scale of pixel-level FI increases.

Figure 7 illustrates the one-pixel adversarial attacks based
on pixel-wise FI maps. The two selected test images are
correctly predicted by ResNet50 with a high probability and
also with a large FI in Setup 3. The pixel-wise FI map denotes
the scale-1 pixel-level FI map for the MNIST image, and is
the average scale-1 map over the three RGB channels for the
CIFAR10 image. For each image, the attacked pixel is the
one with the largest value in the pixel-wise FI map. We see

Figure 6: Multi-scale pixel-level FI maps for Setup 4 using
DenseNet121. Results are shown for the test image with
the largest FI in Setup 3. The CIFAR10 test image has
Setup-3 FI = 2.22, ytrue = dog, and ypred = bird. The
MNIST test image has Setup-3 FI = 1.28, ytrue = 1, and
ypred = 7.

(a) Original
images

(b) Adversarial
images

(c) Annotated 
Adv. images

(d) Pixel-wise 
FI maps

(e) Overlaid 
FI maps

Pred: 8 (50.75%)
3 (49.15%)

Pred: 3 (69.66%)
8 (30.26%)

Pred: truck (50.0%)
ship (42.4%)

Pred: ship (58.6%)
truck (33.3%)

The attacked pixel’s 
FI=0.968

The attacked pixel’s 
FI=0.988

Figure 7: One-pixel adversarial attacks on ResNet50 using
pixel-wise FI maps. The original images have ytrue = 8 and
ytrue = truck, respectively. The prediction probabilities from
ResNet50 are given in the parentheses. The attacked pixels
are framed in red.

that the prediction result significantly changes after slightly
altering the selected pixel’s value. This indicates that our FI
measure is useful for discovering vulnerable locations and
crafting adversarial examples.

4 Conclusion
In this paper, we introduced a novel perturbation manifold
and its associated influence measure for sensitivity analysis
of DNN classifiers. This new measure is constructed from a
Riemannian manifold and provides the invariance property
under any diffeomorphic (e.g., scaling) reparameterization
of perturbations. This invariance property is not owned by
the widely used measures like the Jacobian norm and Cook’s
local influence. Our influence measure performs very well
for ResNet50 and DenseNet121 trained on CIFAR10 and
MNIST datasets in the tasks of outlier detection, sensitivity
comparison between network architectures and that between
training and test sets, and vulnerable region detection.
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