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Abstract

A large body of research is currently investigating on the
connection between machine learning and game theory. In
this work, game theory notions are injected into a preference
learning framework. Specifically, a preference learning prob-
lem is seen as a two-players zero-sum game. An algorithm
is proposed to incrementally include new useful features into
the hypothesis. This can be particularly important when deal-
ing with a very large number of potential features like, for
instance, in relational learning and rule extraction. A game
theoretical analysis is used to demonstrate the convergence
of the algorithm. Furthermore, leveraging on the natural anal-
ogy between features and rules, the resulting models can be
easily interpreted by humans. An extensive set of experiments
on classification tasks shows the effectiveness of the proposed
method in terms of interpretability and feature selection qual-
ity, with accuracy at the state-of-the-art.

Introduction
Nowadays, the connection between game theory (GT) and
machine learning (ML) is heavily studied in the field of ML
for security in which security challenges are faced using in-
tegration frameworks between GT and ML (Yufei Liu 2017;
Xu et al. 2017). Many of these approaches can also be con-
sidered part of the more general literature concering Adver-
sarial Learning (Goodfellow et al. 2014) that is now a hot
topic in ML. Less recently, the GT-ML duo has been also in-
vestigated in the mainstream ML literature. For instance, it
is well known that hard margin SVM can be cast into a two-
players zero-sum game (Aiolli, Da San Martino, and Sper-
duti 2008). Another famous example is the seminal work
that introduced Adaboost (Freund and Schapire 1997), in
which GT is applied to on-line learning. Many others ML
concepts have been also related to GT, e.g., as showed by
Ionnadis et al. (Ioannidis and Loiseau 2013), linear regres-
sion problems can be seen as a non-cooperative game, while
in (Rezek et al. 2008) authors elucidate the equivalence be-
tween inference in ML and GT.

In this paper we present a principled algorithm inspired
by GT and preference learning (Fürnkranz and Hüllermeier
2010) for classification. The learning problem is seen as a

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

two-players zero-sum game, in which the considered hy-
potheses spaces consist in a set of preference prototypes
along with (possibly non-linear) features. Moreover, we
show how feature selection naturally comes as a side ef-
fect of the algorithm. One of the biggest challenges in fea-
ture selection is dealing with large scale data in particular
with (infinitely) many input features. This is a typical sce-
nario in real-world applications when data instances are of
high dimensionality or it is expensive/inconvenient to ac-
quire all attributes. In these contexts, batch approaches are
simply not applicable for computational reasons. Thus, there
is the need to move towards online feature selection (OFS)
approaches (Wang et al. 2014; Wu et al. 2013), which are al-
lowed to work with a small and limited number of features.
Following this direction, we discuss how the on-line feature
generation plays a key role in the algorithm, especially when
it comes to interpret the solution of the model, which is very
useful for producing explanations. Differently from post-hoc
methods which explain black box models (Guidotti et al.
2018; Polato and Aiolli in press 2019), our model is intrinsi-
cally explainable when features are easy to interpret. There
are plenty of applications in which explanation plays a key
role, such as bioinformatic applications, recommender sys-
tems, and support systems for physicians, just to mention a
few. The notion of explanation is also one of the most con-
troversial subject of the recently introduced GDPR (General
Data Protection Regulation).

To summarize, the main contributions of this work are the
following:

• a new large margin preference learning method based on
game theoretical concepts that naturally offers feature and
rule selection capability. The proposed framework is gen-
eral enough to deal with different kinds of features and
rules that are very useful when interpretability is desired;

• an efficient approximated algorithm for large scale game
matrices with potentially infinite number of columns, al-
lowing the application of the method to online scenar-
ios (OFS). Empirical evidence shows that the number
of selected columns by the algorithm is typically or-
ders of magnitude less than the total number of available
columns;

• an extensive set of experiments is reported to assess both
the effectiveness and the quality of the feature/rule selec-
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tion of our method. Results demonstrate that the algorithm
is able to provide sparse solutions that are suitable when
the explanation of the decision is required/desirable.
The reminder of this paper is structured as follows: next

section will introduce all the background knowledge needed
to fully understand the notions discussed afterwards. Then,
the main contributions of this paper will be described. Fi-
nally, all the performed experiments are reported and thor-
oughly discussed. For more details about the experiments
and the datasets please refer to the supplementary material.

Background
Preference Learning
Preference learning (PL) is a machine learning subfield in
which the goal is to learn a preference model from observed
item preferences. The constructed model has to predict pref-
erences for previously unseen items. Label ranking is one of
the three main PL tasks (Fürnkranz and Hüllermeier 2010):
given a set of input patterns xi ∈ X , i ∈ [1, . . . , n], and a
finite set of labels Y ≡ {y1, y2, . . . , ym} the goal is to learn
a scoring function gθ : X × Y → R which assigns a score
for each instance-label pair (x, y). Label ranking represents
a generalization of a classification task, since gθ implicitly
defines, for an instance x, a total order over Y . In the con-
text of PL, the training set used to build the model consists
of a set of pairwise preferences yi �x yj , i 6= j, i.e., for the
pattern x, yi is preferred to yj . In the case of classification,
in which a pattern x is associated to a unique label yi, the
set of preferences is {yi �x yj | 1 ≤ j 6= i ≤ m}.

In this work we focus on linear preference mod-
els (Tsochantaridis et al. 2004; Aiolli and Sperduti 2004;
2010) of the form gθ(x, y) = wᵀψ(x, y), where θ ≡ w is
the parameters vector and ψ : X × Y → Rd·m, X ≡ Rd,
Y ≡ {1, . . . ,m} is a joint representation of instance-label
pairs. In order to properly rank the labels w.r.t. each item,
given a preference yi �x yj then gθ(x, yi) > gθ(x, yj)
should hold, and thus

wᵀψ(x, yi) > wᵀψ(x, yj)⇒ wᵀ(ψ(x, yi)− ψ(x, yj)) > 0,

which can be interpreted as the margin (a.k.a. confidence)
of the preference. Intuitively, large margins correspond to
good generalization capability of the ranker (Schapire et
al. 1997). We assume an instance-label joint representa-
tion defined as ψ(x, y) = x ⊗ emy , where the symbol ⊗
indicates the Kronecker product and emy is the y-th vec-
tor of the canonical basis of Rm. Thus, given a preference
yi �x yj we construct its corresponding representation by
z = ψ(x, yi)− ψ(x, yj) = x⊗ (emyi − emyj ), z ∈ Rd·m. The
f -th m-dimensional chunk of a preference z is indicated by

z[f ] = (z(f−1)·m, z(f−1)·m+1, . . . , zf ·m−1) ∈ Rm.

At classification time, given a new pattern x, the predicted
label ŷ is computed by selecting the label that maximizes the
score gθ(x, y), that is, ŷ = arg maxy∈Y gθ(x, y).

Game Theory
Game theory is a branch of mathematics that studies the
strategic interaction between rational decision-makers. For

the purposes of this paper, we focus on two-players zero-
sum games, which are by definition non-cooperative games.
The strategic form of a two-players zero-sum game is de-
fined by a matrix M, dubbed payoff matrix or game matrix.
The game takes place in rounds in which the two-players, the
row player P and the column player Q, play simultaneously:
the row player picks a row and the column player picks a
column of M ∈ RP×Q, where P and Q are the number
of available strategies for P and Q respectively. Each matrix
entry Mi,j represents the loss of P, or equivalently the pay-
off of Q, when the strategies i and j are played by the two-
players. The goal of the player P is to define a strategy that
minimizes its expected loss V . Conversely, the player Q aims
at finding a strategy that maximizes its payoff. Typically, the
players strategies are randomized over the rows/columns of
the game matrix: player P selects a row according to a prob-
ability distribution p over the rows, and, similarly, player
Q selects a column according to a probability distribution
q over the columns. These strategies are usually referred to
as mixed strategies. For presentation purposes we refer to
the vectors p and q as stochastic vectors, that is p ∈ SP

and q ∈ SQ, where SP = {p ∈ RP+ | ‖p‖1 = 1} and
SQ = {q ∈ RQ+ | ‖q‖1 = 1}. The optimal pair of strate-
gies (p∗,q∗), i.e., the saddle-point (a.k.a. Nash equilibrium)
of M, has a well-know formulation (von Neumann 1928),
that is
V ∗ = p∗ᵀMq∗ = min

p
max
q

pᵀMq = max
q

min
p

pᵀMq,

where V ∗ is the value of the game. It is well known that
the saddle-point solution of the equation above can be found
using linear programming with a number of variables pro-
portional to the number of (pure) strategies. It is evident
that for high dimensional game matrices the computational
complexity can become prohibitive. A way to overcome this
computational issue is to rely on approximated solutions. An
adaptive approach to compute an approximate saddle-point
strategy using multiplicative weights has been proposed by
Freund et al. (Freund and Schapire 1999; 1996). This al-
gorithm, called Adaptive multiplicative weights (AMW), is
guaranteed to come close to the minimum loss achievable
by any fixed strategy. More recently, an incremental version
of AMW (i-AMW) has also been proposed in (Bopardikar
and Langbort 2014). A randomized approach is presented
in (Bopardikar et al. 2010), where each player chooses its
best mixed strategy on a sampled set of rows/columns, that
is, the game matrix is a submatrix of the whole payoff ma-
trix. Authors prove that when the submatrix is sufficiently
large the achieved approximation is good with high proba-
bility.

The fictitious play algorithm (Brown 1951) (a.k.a. Brown-
Robinson learning process) is one of the first methods for
computing approximate saddle-point strategies. Fictitious
play starts with a random initial pure strategy for the player
P. Then, in turn, each player picks its next pure strategy as
the best response, assuming the opponent picks uniformly
at random one among its previous choices. In other words,
at each round both players try to infer the opponent mixed
strategy from its previous picks. The pseudo-code of Fict-
Play adapted to our purposes is reported in Alg. 1.
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Algorithm 1: FictPlay: Fictitious Play algorithm

Input: M ∈ RP×Q: matrix game,
Te: number of iterations

Output: p,q: row/column player strategy,
V : the value of the game

1 r ← randint[1, P ]
2 sp,vp ← 0,0

3 sq,vq ←Mr,:, e
P
r

4 for t← 1 to Te do
5 q̂ ← arg max sq , sp ← sp + M:,q̂

6 p̂← arg min sp, sq ← sq + Mp̂,:

7 vq ← vq + eQq̂ , vp ← vp + ePp̂
8 end
9 p← vp/‖vp‖1, q← vq/‖vq‖1, V ← pᵀMq

10 return p,q, V

In the algorithm, Mr,: and M:,c indicate the r-th row and
the c-th column of the matrix M, respectively.

A game theoretic perspective of PL
In this section we introduce the main theoretical contribu-
tion of the paper. Specifically, we propose a new learning ap-
proach for label ranking based on game theory. We assume
to have a set of training preferences of the form (y+ �x y−)
which can be easily transformed to their corresponding vec-
torial representation as previously described. We consider an
hypothesis spaceH composed by linear functions, i.e.,H ≡
{z 7→ wᵀz | w, z ∈ Rd·m}.We say that a preference z is
satisfied w.r.t. an hypothesis w iff wᵀz > 0, that is, whether
the margin of the preference ρ(z) = wᵀz is strictly posi-
tive. Such margin represents the confidence of the hypoth-
esis w over the preference z. According to the maximum
margin principle, we aim to select w such that it maximizes
the minimum margin over the training preferences. Thanks
to the Representer Theorem (Kimeldorf and Wahba 1971;
Hofmann, Scholkopf, and Smola 2008) we know that the
optimal w can be defined as a convex combination of the
training preferences, that is w ∝

∑
j αjzj ,α ∈ SP . Thus,

we can rewrite the margin of a preference z as

ρ(z) =
∑
j

αjz
ᵀ
j z

.
=
∑
j

αj
∑
f

µfzj [f ]ᵀz[f ]

=
∑
j

∑
f

αjµfzj [f ]ᵀz[f ] =
∑
(j,f)

q(j,f)zj [f ]ᵀz[f ],

where the dot-product zᵀj z is generalized by giving different
weights to the features according to a distribution µ over the
features, and q such that q(j,f) = αjµf is a new distribution
over all the possible preference-feature pairs.

Now, let us call p the distribution over the training prefer-
ences, then the expected preference margin w.r.t. the distri-
bution p is defined by

ρ̄(p,q) =
∑
i

pi
∑
(j,f)

q(j,f)zj [f ]ᵀzi[f ] = pᵀMq, (1)

where Mi,(j,f) = zi[f ]ᵀzj [f ].
If we take a closer look at Eq. (1), we can easily grasp the

strong relation between such a preference learning problem
and the game theory setting. In particular, let us consider
a two-players zero-sum game where the row player P (the
nature) picks a distribution over the whole set of training
preferences (i.e., rows) aiming at minimizing the expected
margin. Simultaneously, the opponent player Q (the learner)
picks a distribution over the set of preference-feature pairs
(i.e., columns) aiming at maximizing the expected margin
(payoff). So, the value of the game, that is the maximal min-
imum margin solution is given by

V = ρ̄(p∗,q∗) = min
p

max
q

pᵀMq.

Thus, it turns out that the distribution q maximizing the
minimum margin in the training set can be found as the
saddle-point solution of the game matrix M.

Approximating the optimal strategies
Dimensionally speaking the game matrix M in Eq. (1)
can be huge, in particular, this is the case for its num-
ber of columns as it is equal to the number of all possible
preference-feature pairs. Thus, solving the game using stan-
dard off-the-shelf algorithms from game theory is impracti-
cal. In this section we propose a new method to overcome
this issue by solving the game incrementally.

The main idea is to iteratively consider only a subset of
columns of the whole game matrix, in such a way that, at
each iteration, the suboptimal computed solution becomes
closer and closer to the optimal one. Formally, let us suppose
to have a game matrix M and let denote with (p∗,q∗, V ∗)
its corresponding optimal solution. At each iteration we con-
sider a subset of columns of M, that is Mt = MΠt where
Πt ∈ {0, 1}Q×B are left-stochastic (0,1)-matrices, i.e. ma-
trices whose entries belong to the set {0, 1} and whose
columns add up to one. B is the number of columns consid-
ered at each iteration, B � P . Let (p∗t ,q

∗
t , V

∗
t ) be the so-

lution for the matrix Mt computed at iteration t. At the end
of each iteration, the columns of Mt corresponding to null
entries in q∗t are replaced by new columns randomly drawn
from the whole set of columns. We can show that the value
of the game at each iteration increases monotonically and it
is upper bounded by the optimal margin, that is the value of
the game when considering the full matrix M. Specifically,
let us assume to be at iteration t + 1: a new left-stochastic
(0,1)-matrix Πt+1 is considered, which is Πt where every
column corresponding to null entries in q∗t are substituted
with a new random stochastic vector eQh for a random col-
umn h. Thus, it can be shown that

V ∗t = p∗ᵀt Mtq
∗
t = p∗ᵀt MΠtq

∗
t (2)

≤ p∗ᵀt+1MΠtq
∗
t (3)

= p∗ᵀt+1MΠt+1q
∗
t (4)

≤ p∗ᵀt+1Mt+1q
∗
t+1 = V ∗t+1 (5)

and
∀t, V ∗t = p∗ᵀt MΠtq

∗
t ≤ p∗ᵀM Πtq

∗
t︸ ︷︷ ︸

q̂t

≤ p∗ᵀMq∗ = V ∗.
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Equivalence (2) is trivial since Mt = MΠt by definition.
Inequality (3) holds because the strategy p∗t+1 is suboptimal
for Mt. In (4) we simply replace columns of the game ma-
trix corresponding to null entries of q∗t which does not affect
the value. Finally, inequality (5) is true because q∗t is subop-
timal for Mt+1, and similar considerations can be done for
the last series of inequalities. The pseudo-code of the full al-
gorithm (PRL: Preference and Rule Learning algorithm) is
given in Algorithm 2.

Algorithm 2: PRL: Preference and Rule Learning
Input: P: set of training preferences

Fgen : random feature generator
B: size of the working set
T : number of epochs
Te: number of iterations of FictPlay

Output: Q: working set of hypothesis
q: mixed strategy in Q

1 random initialization of the set Q such that |Q| = B
2 compute the matrix game M on the basis of P (rows)

and Q (cols)
3 for t← 1 to T do
4 p,q, v ← FictPlay(M, Te)
5 if t < T then
6 foreach (j, f) | q(j,f) = 0 do
7 (j′, f ′)← pick(P), Fgen()
8 update Q: replace (j, f) with (j′, f ′)
9 update columns of M w.r.t. Q:

10 let k the position of (j′, f ′) in Q,
11 for all i ∈ P , Mi,k = zi[f ]ᵀzj′ [f ]
12 end
13 end
14 end
15 return q,Q

It is worth to notice that the algorithm does not require any
prior knowledge about M, and the number of columns can
be also infinite. Thus, a natural approach for dealing with
potentially infinite game matrices is to use an online column
generation approach.

Online feature/rule generation
One of the most important steps of the PRL is the generation
of new columns. Since a game matrix column is defined by
a preference-feature pair we need to define how such fea-
tures are generated. In this work we focus on two features
generation schemes: polynomial feature generation, and rule
generation. In the algorithm we referred to a generic feature
generator scheme with the function Fgen.

Polynomial features generation This scheme generates
features that are taken from the space of features of a poly-
nomial kernel. In particular, we focus on homogeneous poly-
nomial features of a given degree. For example, given an n-
dimensional instance x some possible polynomial features
of degree 3 are: x1x2xn, x21x3 and x3n. Note that, when

the input variables are binary-valued such monomials cor-
respond to logical conjunctions.

Rules generation A rule is a logical condition over an in-
put variable. The introduction of rules can be useful when it
comes to interpret the model. Let us make some examples.
In the case of binary valued input variables a rule is simply
its truth value. When dealing with continuous variables, a
rule is a relation involving the values of the variables. For
instance, by defining a threshold like x ≥ 5, or equalities
such as x = 3.2. Such thresholds can be chosen on the ba-
sis of a heuristic or randomly from the set of unique values
of the variable. In order to create more complex rules, it is
also possible to combine them. In particular, given two rules,
their product represents, from a logical stand point, the con-
junction of the two conditions. In the remainder we will refer
to the arity of this combination as the degree of the rule.

Evaluation
In this section we describe and discuss the set of experiments
performed to assess the effectiveness of PRL. Specifically,
we performed two different sets of experiments: the first set
aims to evaluate the degree of interpretability of PRL, while
the second set focuses on the assessment of the performance
and the quality of the feature selection. In all the experi-
ments the number of iterations Te of FictPlay has been set to
106, while the number T of epochs of PRL has been set to
103. The complete set of experiments as well as a thorough
analysis of the obtained results is reported in the supplemen-
tary material. The PRL implementation is open source and
freely available at https://github.com/makgyver/PRL. In the
following sections we present the most relevant and interest-
ing results.

Model interpretation
In the first set of experiments, we employed PRL to select
the most relevant features for interpreting the model. The
aim is to use these features to explain the decision. We run
PRL on four benchmark datasets:

tic-tac-toe is a dataset containing 958 ending posi-
tions of the game tic-tac-toe, and the task is to classify
whether the × is the winner;

breast-cancer is the well known Breast Cancer Wis-
consin Diagnostic Dataset, where the task is to classify a
tumor as malignant or benign. For more details about the
dataset please refer to (Hayashi and Nakano 2015);

poker dataset contains 25010 poker hands and the task is
to classify the value of the hand, e.g., pair, full house and
so on (10 classes). In our experiments, three binary clas-
sification tasks have been derived from the original multi-
class dataset as described in the following section;

mnist is a (well known) dataset of handwritten digits. The
task consists in classifying the digits (10 classes).

The datasets have been pre-processed as in the following:
tic-tac-toe has been converted into a binary-valued
dataset through one-hot encoding, obtaining 27 binary in-
put variables for each instance. Both breast-cancer
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and mnist did not require any pre-processing. For every
datasets, instances with missing values have been removed.
For the poker dataset we defined a hierarchy of features.
The goal was showing that, increasing the expressiveness of
the features, PRL is still able to identify the smallest set of
features/rules able to explain the classification. The hierar-
chy can be summarized as follows:

Level 1 The features are a simple enumeration of the cards.
An hand is represented with a binary vector of dimension
52 in which an entry is equal to 1 iff the corresponding
card is in the hand;

Level 2 Features which are a counting aggregation of the
suits and the ranks of the cards in the hand are added. Suits
are represented as a four dimensional vector, while ranks
as a 13 dimensional vector. Note that the Ace is assumed
of rank 1, while J=11, Q=12, and K=13;

Level 3 This level contains 5 additional features that are a
further aggregation of the features in the first and sec-
ond level, namely: number of different ranks, number of
different suits, number of cards of the most popular suit,
number of cards of the most popular rank, and maximum
difference between ranks.

Note that, at each level of the hierarchy the features of the
previous level are kept in the representation. For extensive
details about the construction of the hierarchy please refer
to the supplementary material.

The tic-tac-toe dataset The tic-tac-toe dataset has
been used as a toy testbed in which the positive class
(i.e., win for ×) can be expressed with a single DNF rule.
This experiment aims to show that PRL is able to iden-
tify such explaining rules. Since we have a-priori knowl-
edge about the game, we trained PRL using polynomial
features of degree 3. In the case of binary valued data,
polynomial features correspond to conjunctions, and hence
they are suited for our purposes. Experiments have been
performed using a 70-30% training and test split divi-
sion. After the training the 10 features with the highest
weights were: x8x17x26, x2x11x20, x2x14x26, x8x14x20,
x20x23x26, x11x14x17, x2x5x8, x5x14x23, x̃313 and x̃325.
Features with a ∼ on top are the ones which characterize
a negative preference (no win for ×). The main observation
about these features is that the first 8 are in fact the available
three-in-a-row for the crosses, while the last two features
represent a naught in the central and in the bottom right cell.
The former is reasonable since it is more likely to win by
occupying the central square, the latter is instead not very
significant. Overall, the algorithm has been able to identify
all the conditions that determine a win for the cross.

The poker dataset Akin to the tic-tac-toe, in the
poker dataset the classes can be described by means of
logical rules. However, in this case the rules are generally
much more complex. As described earlier, a three levels hi-
erarchy of features has been defined, with the aim of testing
whether the algorithm is able to recognize the smallest set of
useful features to explain the classification. The main idea is
that the algorithm should be able to retrieve the easiest rules

which explain the classification when more expressive fea-
tures are also available.

In order to have more control on the tasks, and to highlight
the different difficulty in recognizing hand values such as a
straight, we defined the following three binary classification
tasks: TOK (Three Of a Kind) versus rest, Flush versus rest,
and Straight versus rest. Besides the rule extraction test, we
also compared the balanced accuracy (BACC) of PRL w.r.t.
a standard SVM with polynomial kernel. We employed the
BACC because the dataset is highly imbalanced, i.e., posi-
tive class ≤ 2%. The balanced accuracy is defined as:

BACC =
1

2

(
TP

P
+
TN

N

)
× 100,

where TP stands for true positives (P = positives), and TN
for true negatives (N = negatives).

The hyper-parameter C of SVM has been validated in the
set {10−3, . . . , 104}, and the degree in the range [1,3] via
3-fold cross validation. PRL has been trained using rules of
degree 1 on the set of relations {=}. Experiments have been
performed using a 80-20% training and test split division.

The achieved results are reported in Table 1.

Method # Level TOK Flush Straight
SVM 1 50.00 50.00 50.00
PRL 1 48.08 59.03 49.97

SVM 2 50.00 50.00 50.00
PRL 2 100.00 77.75 51.29
SVM 3 99.99 96.43 50.00
PRL 3 100.00 100.00 100.00

Table 1: Balanced accuracy (%) on the poker dataset. The
highest accuracies in all classification tasks, and in all levels,
are highlighted in bold.

The first observation worth to be mentioned is that PRL
using the third level of features has been able to identify,
for all the tasks, the rules which explain the classification,
achieving perfect accuracy. A remarkable difference w.r.t.
the SVM can be noticed in the Straight classification, which
is the hardest task. SVM simply classifies any instance as
negative (TP = 0), with the same behaviour in all the tasks
both at the second and at the first level of the hierarchy. Con-
cerning the third level, SVM had one false negative in the
TOK task and one false positive in the Flush, achieving a
BACC of 99.99% and 96.43%, respectively.

Let us now analyze the rules extracted by PRL in each
task. We can observe that none of the tasks can be explained
with simple rules in the first level of the hierarchy. In fact,
at level 1, the algorithm struggles in all the tasks achieving
a BACC around 50% like SVM, with the exception of the
Flush in which it achieves a 59%. In the second level, in-
stead, there are features expressive enough to explain both
the TOK and the Flush, while the Straight remains a quite
hard task. Specifically, an hand contains a TOK anytime one
of the rank has a cardinality = 3. However, this rule also
includes the full house as a false positive. Similarly, a flush
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can be described with a suit of cardinality 5, but this also in-
cludes the straight flush and the royal flush as false positives.
In both these tasks, PRL found the just mentioned rules. It
is interesting to note that the method has been able to avoid
the full house mistake by adding rules for the negative class
(i.e., not a flush). In particular, these rules state that there is a
rank with cardinality = 2, which is enough to say that there
is no TOK in the hand. With the features contained in the
third and final level of the hierarchy it is possible to define
all the considered classes:

TOK # of ranks = 3, # of cards of the most popular rank =
3;

Straight # of ranks = 5, max difference between ranks = 4,
# of suits 6= 1;

Flush # of suits = 1, max difference between ranks 6= 4.

At this level, PRL was able to identify all the correct rules
achieving a BACC of 100% in all the tasks.

Remark: whenever each class can be defined by simple
rules, we showed that PRL is able to identify them all. How-
ever, when there are classes which cannot be easily char-
acterized, PRL fails in finding reasonable rules, as for ex-
ample in the poker. In this case, the positive class (e.g.,
Flush) is defined by simple rules, but there are no easy
ways to express its opposite. Thus, PRL will return, with
the highest weights, the rules that explain the positive class.
All the remaining rules (with small weights) will be asso-
ciated with negative preferences, but with very small cover-
age and hence with small generalization capabilities. To ad-
dress this issue, we allow the feature generation mechanism
to pick new pairs consisting of rules which are always true.
When such feature is selected and associated with a nega-
tive preference it will give a bias to the negative class. In this
way, when the positive rules are not satisfied the decision of
the classifier will be the negative class. This additional fea-
ture has been used in all experiments concerning the poker
dataset.

The breast-cancer dataset The Wisconsin Breast
Cancer dataset (breast-cancer) is a standard
UCI (Lichman 2013) dataset that contains 682 hospi-
tal patients values captured via a Fine-needle aspiration
test. Each patient is described by 9 attributes concerning
breast tumoral cells. The task consists in classifying a tumor
between benign or malignant. The classes distribution is
35% benign, and 65% malignant.

Unlike the previous datasets, breast-cancer is a real-
world dataset which cannot be explained with simple rules,
hence it is not possible to compare the retrieved rules w.r.t.
a given ground truth. For this reason we compared the rules
extracted by PRL with the ones extracted by the rule ex-
traction methods described in (Hayashi and Nakano 2015).
We directly applied the rules to the entire dataset and the
achieved accuracies have been compared. All the methods
have been trained using a 90-10% training and test split. This
evaluation procedure has been chosen because we only had
at our disposal, for each model, the set of extracted rules
after a 10-fold cross validation procedure. We trained PRL

using rules of degree 2 on the set of relations {≥,≤}. In
Table 2 the achieved results are summarized.

Method # Rules Accuracy (%)
SSV 3 86.36
GASVM 2 90.03
C-MLP2LN 5 96.92
QSVM-G 12 96.48
ReRXJ48 4 94.28

PRL only 4th 1 92.67
PRL@5 5 96.12
PRL@10 10 97.95

Table 2: Accuracy of the rules extracted by the different al-
gorithms. The highest accuracy is highlighted in bold.

As evident from the table PRL achieves the best accuracy
using the 10 most relevant rules. Nevertheless, even using
fewer rules (i.e., 5) it is able to achieve very good results
even though methods such as C-MLP2LN and QSVM-G had
slightly higher accuracies. Another interesting observation is
that by using the 4th most relevant rule alone the proposed
method achieves more than 92% of accuracy. However, it is
also worth to notice that the first three rules are not enough
to get good results, as highlighted in Figure 1.

0 20 40

40

60

80

100

# rules

A
cc
u
ra
cy

(%
)

Figure 1: Plot of the accuracy w.r.t. the number of considered
rules during the classification.

The figure shows the accuracy achieved by considering a
limited set of rules (1 up to 50). The algorithm is able to
overcome 95% of accuracy quite rapidly (first four rules)
and then it increases almost monotonically until reaching
99.56% using 50 rules. However, 50 rules are not a reason-
able number when it comes to interpret a classification, and
thus in Table 2 we only mentioned the accuracies up to 10
rules. More details about the extracted rules are reported in
the supplementary material.

The mnist dataset The mnist dataset is one of the most
widely used dataset for the hand-written digit classification
task. The digits are stored in a grey scale 28 by 28 pixel
matrix, where each pixel can assume a value between 0 and
255 (0-1 normalized). The task is to recognize the digit rep-
resented by an instance.

As for breast-cancer, the classification of the
mnist digits cannot be explained with simple rules. The
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(a) 0 versus 9

(b) 4 versus 6

Figure 2: Visualization of the most relevant polynomial fea-
tures of degree 2. The polynomial features are visualized as
segments limited by the involved input variables. The left
hand side plot shows the features relevant to discriminate
the (a) 0 from the 9 and (b) 4 from the 6. Viceversa in the
right hand side plots.

goal here is to use the most relevant features for interpret-
ing, in a human fashion, which are the visual characteristics
that are leveraged by the model to discriminate each class
w.r.t. another. Experiments have been performed using poly-
nomial features of degree 2. Figure 2 illustrates two exam-
ples of the most relevant features used by the model to dis-
tinguish: (a) 0 from a 9 (left) and viceversa (right); (b) 4
from a 6 (left) and viceversa (right).

The features are represented as segments between the two
involved variables (i.e., pixels) in each monomial (i.e., rule).
In the background the average digit of that class is depicted.

From the first plots (Figure 2a) it is clear that in order to
discriminate a 0 from a 9 the most important characteristics
for the algorithm are the “big” curvature for the 0, and the
smaller one for the 9. Similarly, in Figure 2b the same kind
of features are important to characterize the 6 w.r.t. the 4,
while the 4 is mainly recognized by its horizontal dash.

The complete set of features for every pair of classes have
been omitted for space reasons, and can be found in the sup-
plementary material.

Feature Selection
This set of experiments aims to assess the effectiveness of
PRL on datasets with many noisy and redundant features.
The chosen testbeds have been the datasets of the NIPS
2003 Feature selection challenge (Guyon et al. 2005). All
the datasets are freely available at the NIPS 2003 Feature se-
lection challenge site, http://clopinet.com/isabelle/Projects/
NIPS2003/. Further details about the datasets are reported
in the supplementary material and in (Guyon et al. 2005;
Johnson 2009). A common characteristic of these datasets
is the huge number of features they have compared to the

number of training instances. All the datasets consist of bi-
nary classification tasks.

We compared PRL with a standard soft-margin SVM.
Given the huge number of features of the target datasets,
the linear kernel turned out to be a good kernel for these
tasks, with the exception of madelon in which the degree 2
polynomial was the best performing kernel for SVM. The C
hyper-parameter of the SVM has been validated in the set of
values {10−4, . . . , 105} using a 3-fold cross validation pro-
cedure. Experiments have been performed using a 70-30%
training and test split. In Table 3 the results achieved by both
methods as well as the number of relevant features accord-
ing to PRL are summarized. In these experiments, the size
B of the working set has been set to 2000. As evident from

Dataset SVM PRL # Relevant/Total feat.
dorothea 91.88 92.69 476/100k
gisette 96.71 97.19 900/5k
madelon 60.10 62.75 1225/250k

Table 3: Accuracy results achieved by SVM and PRL. The
last column indicates the number of support preference-
feature pairs used by PRL. The best results are highlighted
in bold.

the table, the proposed method is able to achieve better per-
formance than SVM. It is worth to mention that, generally
the number of features used by PRL is orders of magnitude
less than the number of original features.

Conclusions and future work
This paper has proposed a new preference learning frame-
work for classification based on game theoretic concepts.
The learning problem is defined as a two-players zero-sum
game for which we have given an incremental solution w.r.t.
the columns of the game matrix. We provided theoretical
guarantees about the convergence of the algorithm as well as
an extensive set of experiments demonstrating its effective-
ness. We also showed the capabilities of PRL in identifying
explanation rules for interpreting the classification.

In this work we only use PRL in classification contexts.
In the future we would like to test our method on other PL
settings, including instance and label ranking tasks. From a
computational point of view, the algorithm can be further
improved starting from the column generation policy. In the
future we aim to explore new approaches to select in a smart
way the columns which have good chances of being included
in the strategy. Moreover, we also intend to relax the formu-
lation in order to get a soft margin version of the algorithm.

Finally, another point of improvement is represented by
the random feature generation. A possible future path in this
direction can be to explore feature generation methods such
as the one proposed in (Rahimi and Recht 2007). The same
algorithm can also be applied to other applications which are
based on a large number of explicit features such as classifi-
cation of structured data (e.g., graphs) or relational learning.
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