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Abstract

Finding biologically plausible alternatives to back-propagation
of errors is a fundamentally important challenge in artificial
neural network research. In this paper, we propose a learning
algorithm called error-driven Local Representation Alignment
(LRA-E), which has strong connections to predictive coding, a
theory that offers a mechanistic way of describing neurocom-
putational machinery. In addition, we propose an improved
variant of Difference Target Propagation, another procedure
that comes from the same family of algorithms as LRA-E.
We compare our procedures to several other biologically-
motivated algorithms, including two feedback alignment algo-
rithms and Equilibrium Propagation. In two benchmarks, we
find that both of our proposed algorithms yield stable perfor-
mance and strong generalization compared to other competing
back-propagation alternatives when training deeper, highly
nonlinear networks, with LRA-E performing the best overall.

Behind the modern achievements in artificial neural network
research is back-propagation of errors (Rumelhart, Hinton,
and Williams 1986) (or “backprop”), the key training al-
gorithm used in computing updates for the parameters that
define the computational architectures applied to problems
ranging from computer vision to speech recognition. How-
ever, though neural architectures are inspired by our current
understanding of the human brain, the connections to the ac-
tual mechanisms of systems of natural neurons are often very
loose, at best. More importantly, backprop faces some of the
strongest neuro-biological criticisms, argued to be a highly
implausible way in which learning occurs in the human brain.

Among the many problems with back-propagation, some
of the most prominent are: 1) the “weight transport problem”,
where the feedback weights that carry back error signals must
be the transposes of the feedforward weights, 2) forward and
backward propagation utilize different computations, and
3) the error gradients are stored separately from the activa-
tions. These problems, as originally argued in (Ororbia II
et al. 2017; Ororbia et al. 2018), largely center around one
critical component of backprop–the global feedback pathway
needed for transporting error derivatives across the system.
This pathway is necessary given the design of modern su-
pervised learning systems–a loss measures error between
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a model’s output units and a target, e.g., class label, and
the global pathway relates how the internal processing el-
ements affect this error. When considering modern theo-
ries of the brain (Grossberg 1982; Rao and Ballard 1999;
Huang and Rao 2011), which posit that local computations
occur at multiple levels of a somewhat hierarchical structure,
this global pathway should not be necessary to learn effec-
tively. Furthermore, this pathway makes training very deep
networks difficult–due to many multiplications that underly
traversing along the global feedback pathway, error gradients
explode/vanish (Pascanu, Mikolov, and Bengio 2013). To
fix this, gradients are kept within reasonable magnitudes by
requiring layers to behave sufficiently linearly. However, this
remedy creates other highly undesirable side-effects, e.g.,
adversarial samples (Ororbia II, Kifer, and Giles 2017), and
prevents usage of neuro-biological mechanisms such as lat-
eral competition and discrete-valued/stochastic activations
(since the pathway requires precise knowledge of function
derivatives (Bengio et al. 2015)).

If we remove this global feedback pathway, we create a
new problem–what are the learning signals for the hidden pro-
cessing elements? This problem is one of the main concerns
of the recently introduced Discrepancy Reduction family of
learning algorithms (Ororbia II et al. 2017). In this paper,
we will develop two learning algorithms within this family–
error-driven Local Representation Alignment and adaptive
noise Difference Target Propagation. In experiments on two
classification benchmarks, we will show that these two algo-
rithms generalize better than a variety of other biologically
motivated learning approaches, all without employing the
global feedback pathway required by back-propagation.

Coordinated Local Learning Algorithms
Algorithms within the Discrepancy Reduction (Ororbia II et
al. 2017) family offer computational mechanisms for two key
steps when learning from patterns. These steps include:

1. Search for latent representations that better explain the
input/output, also known as target representations. This
creates the need for local (higher-level) objectives that will
guide current latent representations towards better ones.

2. Reduce, as much as possible, the mismatch between a
model’s currently “guessed” representations and target
representations. The sum of the internal, local losses is
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also defined as the total discrepancy in a system, and can
also be thought of as a sort of pseudo-energy function.

This general process forms the basis of what we call coor-
dinated local learning rules. Computing targets with these
kinds of rules should not require an actual pathway, as in
back-propagation, and instead make use of top-down and
bottom-up signals to generate targets. This idea is particu-
larly motivated by the theory of predictive coding (Panichello,
Cheung, and Bar 2013) (which has started to impact mod-
ern machine learning applications (Li and Liu 2018)), which
claims that the brain is in a continuous process of creating
and updating hypotheses (using error information) to predict
the sensory input. This paper will explore two ways in which
this hypothesis updating (in the form of local target creation)
might happen: 1) through error-correction in Local Represen-
tation Alignment (LRA-E), and 2) through repeated encoding
and decoding as in Difference Target Propagation (DTP). It
should also be noted that one is not restricted to only using
neural building blocks–LRA-E could be used to train stacked
Gradient Boosted Decision Trees (GBDTs), which would be
faster than in (Feng, Yu, and Zhou 2018), which employed a
form of target propagation to calculate local updates.

The idea of learning locally, in general, is slowly be-
coming prominent in the training of artificial neural net-
works, with recent proposals including decoupled neural
interfaces (Jaderberg et al. 2016) and kickback (Balduzzi,
Vanchinathan, and Buhmann 2015) (which was derived
specifically for regression problems). Furthermore, (Whit-
tington and Bogacz 2017) demonstrated that neural mod-
els using simple local Hebbian updates (within a predic-
tive coding framework) could efficiently conduct super-
vised learning. Far earlier approaches that employed local
learning included the layer-wise training procedures that
were once used to build models for unsupervised learn-
ing (Bengio et al. 2007), supervised learning (Lee et al.
2014), and semi-supervised learning (Ororbia II et al. 2015;
Ororbia II, Giles, and Reitter 2015). The key problem with
these older algorithms is that they were greedy–a model was
built from the bottom-up, freezing lower-level parameters as
higher-level feature detectors were learnt.

Another important idea underlying algorithms such as
LRA and DTP is that learning is possible with asymmetry–
which directly resolves the weight-transport problem (Gross-
berg 1987; Liao, Leibo, and Poggio 2016), another strong
neuro-biological criticism of backprop. This is even possible,
surprisingly, if the feedback weights are random and fixed,
which is at the core of two algorithms we will also compare
to–Random Feedback Alignment (RFA) (Lillicrap et al. 2016)
and Direct Feedback Alignment (DFA) (Nøkland 2016). RFA
replaces the transpose of the feedforward weights in backprop
with a similarly-shaped random matrix while DFA directly
connects the output layer’s pre-activation derivative to each
layer’s post-activation. It was shown in (Ororbia II et al. 2017;
Ororbia et al. 2018) that these feedback loops would be better
suited in generating target representations.

Local Representation Alignment
To concretely describe how LRA is practically implemented,
we will specify how LRA is applied to a 3-layer feedforward

network, or multilayer perceptron (MLP). Note that LRA
generalizes to models with more layers (L ≥ 3).

The pre-activities of the MLP at layer ` are denoted as
h` while the post-activities, or the values output by the non-
linearity φ`(·), are denoted as z`. The target variable used
to correct the output units (zL) is denoted as yL

z (yL
z = y,

or yL
z = x if we are learning auto-associative functions).

Connecting one layer of neurons z`−1, with pre-activities
h`−1, to another layer z`, with pre-activities h`, are synaptic
weights W`. The propagation equations for computing pre-
activtion and post-activation values for layer ` are:

h` = W`z
`−1, z` = φ`(h

`) (1)

Before computing targets or updates, we first must define the
set of local losses, one per layer of neurons except for the
input neurons, that constitute the measure of total discrep-
ancy inside the MLP, {L1(y1

z, z
1),L2(y2

z, z
2),L3(y3

z, z
3)}.

With losses defined, we can then explicitly formulate the
error units e` for each layer as well, since any given layer’s
error units correspond to the first derivative of that layer’s
loss with respect to that layer’s post-activation values. For
the MLP’s output layer, we could assume a categorical dis-
tribution, which is appropriate for 1-of-k classification tasks,
and use the following negative log likelihood loss:

L`(y
`
z, z

`) = −1

2

|z|∑
i=1

y`
z[i] log z`[i],

e` = e`(y
`
z, z

`) =
−y`

z

(z` + ε)
, (2)

with ε added for numerical stability. The loss is computed
over all dimensions |z| of the vector z (a dimension is indexed
by integer i). Note that for this loss, we assume that z is a vec-
tor of probabilities computed using the softmax function as
the output nonlinearity, z3 = exp(h3)∑

i exp(h
3
i )

. For hidden layers,
we can choose from a wider variety of loss functions. In this
paper, we experimented with assuming either a Gaussian or
Cauchy distribution over the hidden units. For the Gaussian
distribution (L2 norm), we have the following:

L`(z,y) =
1

(2σ2)

|z|∑
i=1

(yi − zi)
2

e` = e`(y
`
z, z

`) =
−(y`

z − z`)

σ2
(3)

where σ2 represents fixed scalar variance (we set σ2 = 1/2).
For the Cauchy distribution (or log-penalty), we obtain:

L`(z,y) =

|z|∑
i=1

log(1 + (yi − zi)
2)

e` = e`(y
`
z, z

`) =
−2(y`

z − z`)

(1 + (y`
z − z`)2)

. (4)

For the activation function used in calculating the hidden
post-activities, we use the hyperbolic tangent, or φ`(v) =
exp(2v)−1
exp(2v)+1 . Using the Cauchy distribution proved particularly
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useful in our experiments because it encourages sparse repre-
sentations and aligns nicely with the biological considerations
of sparse coding (Olshausen and Field 1997) and predictive
sparse decomposition (Kavukcuoglu, Ranzato, and LeCun
2010) as well as the lateral competition (Rao and Ballard
1999) that naturally occurs in groups of neural processing ele-
ments. These are relatively simple local losses for measuring
the agreement between representations and targets and future
work should entail developing even better metrics.

Algorithm 1 LRA-E: Target and update computations.

// Procedure for computing error units & targets
Input: sample (y,x), β, & Θ = {W1,W2,W3, E2, E3}
function COMPUTETARGETS((y,x),Θ)

// Run feedforward weights to get activities
h1 = W1x, z1 = φ1(h1)
h2 = W2z

1, z2 = φ2(h2)
h3 = W3z

2, z3 = φ3(h3)

y3
z ⇐ y, e3 =

−y3
z

z3 . Or use: e3 = −(y3
z − z3)

y2
z ← φ2

(
h2 − β(E3e3)

)
, e2 = −2(y2

z − z2)

y1
z ← φ1

(
h1 − β(E2e2)

)
, e1 = −2(y1

z − z1)

Λ = (z3, z2, z1,h3,h2,h1, e3, e2, e1)
Return Λ

// Procedure(s) for computing weight updates
Input: sample (y,x), γ, & calculations Λ
function CALCUPDATES-V1((y,x),Θ,Λ)

∆W3 = (e3 ⊗ φ′3(h3))(z2)T

∆W2 = (e2 ⊗ φ′2(h2))(z1)T

∆W1 = (e1 ⊗ φ′1(h1))(x)T

∆E3 = γ(∆W3)T

∆E2 = γ(∆W2)T

Return
(
∆W3,∆W2,∆W1,∆E3,∆E2

)
function CALCUPDATES-V2((y,x),Θ,Λ)

∆W3 = e3(z2)T

∆W2 = e2(z1)T

∆W1 = e1(x)T

∆E3 = γ(∆W3)T

∆E2 = γ(∆W2)T

Return
(
∆W3,∆W2,∆W1,∆E3,∆E2

)

With local losses specified and error units implemented,
all that remains is to define how targets are computed and
what the parameter updates will be. At any given layer z`,
starting at the output units (in our example, z3), we calculate
the target for the layer below z`−1 by multiplying the error
unit values at ` by a set of synaptic error weights E`. This
projected displacement, weighted by the modulation factor
β,1 is then subtracted from the initially found pre-activation
of the layer below h`−1. This updated pre-activity is then
run through the appropriate nonlinearity to calculate the final

1In this paper, β = 0.1, found with only minor prelim. tuning.

target y`−1
z . This computation amounts to:

e` = −2(y`
z − z`), ∆h`−1 = E`e` (5)

y`−1
z ← φ`−1

(
h`−1 − β(∆h`−1)

)
. (6)

Once the targets for each layer have been found, we can
then use the local loss L`(y`

z, z
`) to compute updates to the

weights W` and its corresponding error weights E`.
2 The

update calculation for parameters at layer ` would be:

∆W` = (e` ⊗ φ′`(h`))(z`−1)T , ∆E` = γ(∆W`)
T , (7)

or, ∆W` = e`(z`−1)T , ∆E` = γ(∆W`)
T (8)

where ⊗ indicates the Hadamard product and γ is a decay
factor (a value that we found should be set to less than 1.0)
meant to ensure that the error weights change more slowly
than the forward weights. An attractive property of LRA
is that the derivatives of the pointwise activation functions
can be dropped, yielding the second variation of the update
rule, as long as the activation function is monotonically non-
decreasing in its input (for stochastic activation functions,
the output distribution for a larger input should stochasti-
cally dominate the output distribution for a smaller input).
This is also satisfying from a biological perspective since it
is unlikely that neurons would utilize point-wise activation
derivatives in computing updates (Hinton and McClelland
1988). The update for error weights is simply proportional
to the transpose of the update computed for the matching
forward weights, which is a computationally fast and cheap
rule we propose inspired by (Rao and Ballard 1997).

In Algorithm 1, the equations in this section are
combined to create the full procedure for training a
3-layer MLP (using either CALCUPDATES-V1(·) or
CALCUPDATES-V2(·) to compute weight updates), as-
suming Gaussian local losses and their respective error units.
The model is defined by Θ = {W1,W2,W3, E2, E3} (biases
c` omitted for clarity). We will refer to Algorithm 1 as LRA-E
(which easily extends to L > 3).

In Figure 1(a), we compare the updates calculated by LRA-
E (as well as DFA and our proposed DTP-σ, described later)
with those given by back-propagation, after each mini-batch,
by plotting the angles over the first 20 epochs of learning
for a 3-layer MLP (256 units per layer) trained with stochas-
tic gradient descent (SGD) with mini-batches of 50 image
samples using a categorical output loss and Gaussian lo-
cal losses. As long as the angle of the updates computed
from LRA are within 90 degrees of the updates obtained by
back-propagation, LRA will move parameters towards the
same general direction as back-propagation (which greedily
points in the direction of steepest descent) and will still find
good local optima. In Figure 1(a), this does indeed appear
to be the case for the MLP example. The angle, fortunately,
while certainly non-zero, never deviates too far from the di-
rection pointed by back-propagation and remains relatively
stable throughout the learning process. (Observe that DFA
and DTP -σ have, interestingly enough, update angles that
are quite similar to LRA-E.) Alongside Figure 1(a), in Fig-
ure 1(b), we plot our neural model’s total internal discrepancy,

2Except for W1, which has no corresponding error weights E1.
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Figure 1: In Figure 1(a), we compare the updates calculated by LRA-E, DFA, and DTP-σ against backprop (BP). In Figure 1(b),
we show how total discrepancy for an LRA-trained MLP evolves during training on Fashion MNIST, alongside the output loss.

D(y,x) (or V DD), which is a simple linear combination of
all of the internal local losses for a given data point. Ob-
serve that while the (validation) output loss (V L) continually
decreases, V DD does not always appear to do so. We conjec-
ture that this “bump”, which appears at the start of learning,
is the result of the evolution of LRA-E’s error weights, which
are used to directly control the target generation process.
So even though backprop and LRA-E might start down the
same path in error space (or on the loss surface), as indicated
by the initially low angle between updates, this trajectory
is not ideal for LRA’s units/targets. This means that error
weights will change more rapidly at training’s start, resulting
in targets that vary quite a bit (raising internal loss values).
However, once the error weights start to converge to an ap-
proximate transpose of the feedforward weights, the process
of correction becomes easier and V DD desirably declines.

Improving Difference Target Propagation
As mentioned earlier, Difference Target Propagation (DTP)
(and also, less directly, recirculation (Hinton and McClel-
land 1988; O’Reilly 1996)), like LRA-E, also falls under
the same family of algorithms concerned with minimizing
internal discrepancy, as shown in (Ororbia II et al. 2017;
Ororbia et al. 2018). However, DTP takes a very different
approach to computing alignment targets–instead of transmit-
ting messages through error units and error feedback weights
as in LRA-E, DTP employs feedback weights to learn the
inverse of the mapping created by the feedforward weights.
However, (Ororbia et al. 2018) showed that DTP struggles to
assign good local targets as the network becomes deeper, i.e.,
more highly nonlinear, facing an initially promising albeit
brief phase in learning where generalization error decreases
(within the first few epochs) before ultimately collapsing (un-
less very specific initializations are used). One potential cause
of this failure could be the lack of a strong enough mechanism
to globally coordinate the local learning problems created
by the encoder-decoder pairs that underlie the system. In
particular, we hypothesize that this problem might be coming

from the noise injection scheme, which is local and fixed, of-
fering no adaptation to each specific layer and making some
of the layerwise optimization problems more difficult than
necessary. Here, we will aim to remove this potential cause
through an adaptive layerwise corruption scheme.

Assuming we have a target calculated from above y`
z , we

consider the forward weightsW` connecting the layer z`−1 to
layer z` and the decoding weights E` that define the inverse
mapping between the two. The first forward propagation
step is the same as in Equation 1. In contrast to LRA-E’s
error-driven way of computing targets, we consider each pair
of neuronal layers, (z`, z`−1), as forming a particular type
of encoding/decoding cycle that will be used in computing
layerwise targets. To calculate the target y`−1

z , we update the
original post-activation z`−1 using a linear combination of
two applications of the decoding weights as follows:

y`−1
z = z`−1 −

(
φ`−1(E`z

`) + φ`−1(E`y
`
z)
)

(9)

where we see that we decode two times, one from the origi-
nal post-activation calculated from the feedforward pass of
the MLP and another from the target value generated from
the encoding/decoding process from the layer pair above,
e.g. (z`+1, z`). This will serve as the target when training
the forward weights for the layer below W`−1. To train the
inverse-mapping weights E`, as required by the original ver-
sion of DTP, zero-mean Gaussian noise, ε ∼ N (0, σ2) with
fixed standard deviation σ, is injected into z`−1 followed
by re-running the encoder and the decoder on this newly
corrupted activation vector. Formally, this is defined as:

ŷ`−1
z = z`−1 + ε, ẑ`−1 = φ`−1(E`φ`(W`ŷ

`−1
z )) (10)

This process we will refer to as DTP. In our proposed, im-
proved variation of DTP, or DTP-σ, we will take an “adap-
tive” approach to the noise injection process ε. To develop
our adaptive noise scheme, we have taken some insights from
studies of biological neuron systems, which show there are
varying levels of signal corruption in different neuronal lay-
ers/groups (D. and Yngve 1926; Tomko and Crapper 1974;
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Tolhurst, Movshon, and Dean 1983; Shadlen and Newsome
1998). It has been argued that this noise variability enhances
neurons’ overall ability to detect and transmit signals across
a system (Shu et al. 2003; Kruglikov and Dertinger 1994;
Shadlen and Newsome 1998) and, furthermore, that the pres-
ence of this noise yields more robust representations (Cordo
et al. 1996; Shadlen and Newsome 1998; Faisal, Selen, and
Wolpert 2008). There also is biological evidence demon-
strating that an increase in the noise level across successive
groups of neurons is thought to help in local neural com-
putation (Shadlen and Newsome 1998; Sarpeshkar 1998;
Laughlin, de Ruyter van Steveninck, and Anderson 1998).

In light of this, the standard deviation σ of the noise pro-
cess should be a function of the noise across layers, and an
interesting way in which we implemented this was to make
σ` (the standard deviation of the noise injection at layer `)
a function of the local loss measurements. At the top layer,
we can set σL = α (a small, fixed value such as α = 0.01
worked well in our experiments). The standard deviation for
the layers below would be a function of where the noise
process is within the network, indexed by `. This means that:

σ` = σ`+1 − L`(y
`−1
z , z`−1) (11)

noting that the local loss chosen for DTP is a Gaussian loss
(but with the input arguments flipped–the target value is now
the corrupted initial encoding and the prediction is the clean,
original encoding, or L`(z = y`−1

z ,y = z`−1)).
The updates to the weights are calculated by differentiat-

ing each local loss with respect to the appropriate encoder
weights, or ∆W`−1 =

∂L(z`−1,y`−1
z )

∂W`−1
, or with respect to the

decoder synaptic weights ∆E` =
∂L(ẑ`,ŷ`

z)
∂E`

. Note that the or-
der of the input arguments to each loss function for these two
partial derivatives is important for obtaining the correct sign
to multiply the gradients by, and, furthermore, to stay aligned
with the original formulation of DTP (Lee et al. 2015a), .

As we will see in our experimental results, DTP-σ is a
much more stable learning algorithm (especially with respect
to the original DTP), especially when training deeper/wider
networks. DTP-σ benefits from a stronger form of over-
all coordination among its internal encoding/decoding sub-
problems through the pair-wise comparison of local loss
values that drive the hidden layer corruption.

A Comment on the Efficiency of LRA-E and DTP

Note that LRA-E, while a bit slower than backprop per update
(given its use of the error weights to generate hidden layer
targets), is much faster than DTP and DTP-σ. Specifically, if
we focus on matrix multiplications used to find targets, which
make up the bulk of the computation underlying both pro-
cesses, LRA-E only requires 2(L− 1) matrix multiplications
while DTP and DTP-σ require 4(L− 3) + L multiplications.
In particular, DTP has a very expensive target generation
phase, requiring 2 applications of the encoder parameters (1
of these is from the network’s initial feedfoward pass) and
3 applications of the decoder parameters to create targets to
train the forward weights and inverse-mapping weights.

Experimental Results
In this section, we present experimental results of training
MLPs using a variety of learning algorithms.

MNIST: This dataset 3 contains 28×28 images with gray-
scale pixel feature values in the range of [0, 255]. The only
preprocessing applied to this data is to normalize the pixel
values to the range of [0, 1] by dividing them by 255.

Fashion MNIST: This database (Xiao, Rasul, and Vollgraf
2017) contains 28x28 grey-scale images of clothing items,
meant to serve as a much more difficult drop-in replacement
for MNIST itself. Training contains 60000 samples and test-
ing contains 10000, each image is associated with one of 10
classes. We create a validation set of 2000 samples from the
training split. Preprocessing was the same as on MNIST.

For both datasets and all models, over 100 epochs, we cal-
culate updates over mini-batches of 50 samples. Furthermore,
we do not regularize parameters any further, e.g., drop-out
(Srivastava et al. 2014) or weight penalties. All feedfoward
architectures for all experiments were of either 3, 5, or 8 hid-
den layers of 256 processing elements. The post-activation
function used was the hyperbolic tangent and the top layer
was chosen to be a maximum-entropy classifier (i.e., a soft-
max function). The output layer objective for all algorithms
was to minimize the categorical negative log likelihood.

Parameters were initialized using a scheme that gave best
performance on the validation split of each dataset on a per-
algorithm basis. Though we wanted to use very simple ini-
tialization schemes for all algorithms, in preliminary experi-
ments, we found that the feedback alignment algorithms as
well as DTP (and DTP-σ) worked best when using a uniform
fan-in-fan-out scheme (Glorot and Bengio 2010). (Ororbia et
al. 2018) confirms this result, originally showing how these
algorithms often are unstable or fail to perform well using
initializations based on simple uniform or Gaussian distri-
butions. For LRA-E, however, we initialized the parameters
using a zero-mean Gaussian distribution (variance of 0.05).

The choice of the parameter update rule was also somewhat
dependent on the learning algorithm employed. Again, as
shown in (Ororbia et al. 2018), it is difficult to get good, stable
performance from algorithms, such as the original DTP, when
using simple SGD. As done in (Lee et al. 2015b), we used the
RMSprop (Tieleman and Hinton 2012) adaptive learning rate
with a global step size of λ = 0.001. For Backprop, RFA,
DFA, and LRA-E, we were able to use SGD (λ = 0.01).

Classification Performance
In this experiment, we compare all of the algorithms dis-
cussed earlier. These include back-propagation (Backprop),
Random Feedback Alignment (RFA) (Lillicrap et al. 2014),
Direct Feedback Alignment (DFA) (Nøkland 2016), Equilib-
rium Propagation (Scellier and Bengio 2017) (Equil-Prop)
and the original Difference Target Propagation (Lee et al.
2015a) (DTP). Our algorithms include our proposed, im-
proved version of DTP (DTP-σ) and the proposed error-
driven Local Representation Alignment (LRA-E).

The results of our experiments are presented in Tables
1 and 2. Test and training scores are reported for the set

3Available at the URL: http://yann.lecun.com/exdb/mnist/.
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3 Layers 5 Layers 8 Layers
Model Train Test Train Test Train Test
Backprop 1.78 3.02 2.4 2.98 2.91 3.02
Equil-Prop 3.82 4.99 7.59 9.21 89.96 90.91
RFA 3.01 3.13 2.99 3.4 3.59 3.76
DFA 4.07 4.17 3.71 3.88 3.81 3.85
DTP 0.74 2.8 4.408 4.94 10.89 10.1
DTP-σ (ours) 0.00 2.38 0.00 2.57 0.00 2.56
LRA-E (ours) 0.86 2.20 0.16 1.97 0.08 2.55

Table 1: MNIST supervised classification results.

3 Layers 5 Layers 8 Layers
Model Train Test Train Test Train Test
Backprop 12.08 14.89 12.1 12.98 11.55 13.21
Equil-Prop 14.72 14.01 16.56 20.97 90.12 89.78
RFA 11.99 12.74 12.09 12.89 12.03 12.71
DFA 13.04 13.41 12.58 13.09 11.59 13.01
DTP 13.6 15.03 21.078 19.66 21.838 17.58
DTP-σ (ours) 7.5 13.95 6.34 12.99 6.5 13.01
LRA-E (ours) 11.25 13.51 9.84 12.31 9.74 12.69

Table 2: Fashion MNIST supervised classification results.

SGD Adam RMSprop
Model Train Test Train Test Train Test
LRA, MNIST 0.86 2.20 0.00 1.75 0.69 2.02
LRA, Fashion MNIST 11.25 13.51 5.38 12.42 12.67 14.90

Table 3: Effect of the update rule on LRA when training a 3-layer MLP on MNIST.

(a) DFA. (b) Equil-Prop. (c) DTP-σ. (d) LRA-E.

Figure 2: Visualization of the topmost hidden layer of a 5-layer MLP trained by DFA, Equil-Prop, DTP-σ, and LRA-E.

of model parameters that had lowest validation error. Ob-
serve that LRA-E is the most stable and consistently well-
performing algorithm compared to the other backprop alter-
natives, closely followed by our DTP-σ. More importantly,
algorithms like Equil-Prop and DTP appear to break down
when training deeper networks, i.e., the 8-layer MLP. Note
that while DTP was used to successfully train a 7-layer net-
work of 240 units (using RMSprop) (Lee et al. 2015a), we
followed the same settings reported for networks deeper than
7 and in our experiments uncovered that the algorithm begins
to struggle as the layers are made wider, starting with the
width of 256. However, this problem is rectified using DTP-σ,
leading to much more stable performance and even to cases
where the algorithm completely overfits the training set (as in

the case of 3 and 5 layers for MNIST). Nonetheless, LRA-E
still performs best with respect to generalization across both
datasets, despite using a naı̈ve initialization scheme. Table
3 shows the results of using update rules other than SGD
for LRA-E, e.g., Adam (Kingma and Ba 2014) or RMSprop
(Tieleman and Hinton 2012) for a 3-layer MLP, (global step
size 0.001 for both algorithms). We see that LRA-E is com-
patible with other learning rate schemes and reaches better
generalization performance when using them.

Figure 2 displays a t-SNE (Maaten and Hinton 2008) vi-
sualization of the top-most hidden layer of a learned 5-layer
MLP using either DFA, Equil-Prop, DTP-σ, and LRA-E on
Fashion MNIST samples. Qualitatively, we see that all learn-
ing algorithms extract representations that separate out the
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(a) 5-layer MLP. (b) 8-layer MLP

Figure 3: Validation accuracy of DTP vs our proposed DTP-σ, as a function of epoch.

data points reasonably well, at least in the sense that points
are clustered based on clothing type. However, it appears that
LRA-E representations yield more strongly separated clus-
ters, as evidenced by somewhat wider gaps between them,
especially around the pink, blue, and black colored clusters.

Finally, DTP, as also mentioned in (Ororbia et al. 2018),
appears to be quite sensitive to its initialization scheme. For
both MNIST and Fashion MNIST, we trained DTP and our
proposed DTP-σ with three different settings, including ran-
dom orthogonal (Ortho), fan-in-fan-out (Gloro), and simple
zero-mean Gaussian (G) initializations. Figure 3 shows the
validation accuracy curves of DTP and DTP-σ as a function
of epoch for 5 and 8 layer networks with various weight ini-
tializations. As shown in Figure 3, DTP is highly unstable
as the network gets deeper while DTP-σ is not. Furthermore,
DTP-σ’s performance appears to be less dependent on the
weight initialization scheme. Thus, our experiments show
promising evidence of DTP-σ’s generalization improvement
over the original DTP. Moreso, as indicated by Tables 1 and
2, DTP-σ can, overall, perform nearly as well as LRA-E.

Conclusions
In this paper, we proposed two learning algorithms: error-
driven Local Representation Alignment and adaptive noise
Difference Target Propagation. On two classification bench-
marks, we show strong positive results when training deep
multilayer perceptrons. With respect to other types of neural
structures, e.g., locally connected ones, we would expect our
proposed algorithms to work well, especially LRA-E, since
the target computation/error unit mechanism is agnostic to
the underlying building blocks of the feedforward model
(which permits extension to models such as residual net-
works). Future work will include adapting these algorithms
to larger-scale tasks requiring more complex architectures.
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