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Abstract

Random Fourier features are a powerful framework to ap-
proximate shift invariant kernels with Monte Carlo integra-
tion, which has drawn considerable interest in scaling up
kernel-based learning, dimensionality reduction, and infor-
mation retrieval. In the literature, many sampling schemes
have been proposed to improve the approximation perfor-
mance. However, an interesting theoretic and algorithmic
challenge still remains, i.e., how to optimize the design of ran-
dom Fourier features to achieve good kernel approximation
on any input data using a low spectral sampling rate? In this
paper, we propose to compute more adaptive random Fourier
features with optimized spectral samples (wj’s) and feature
weights (pj’s). The learning scheme not only significantly re-
duces the spectral sampling rate needed for accurate kernel
approximation, but also allows joint optimization with any
supervised learning framework. We establish generalization
bounds using Rademacher complexity, and demonstrate ad-
vantages over previous methods. Moreover, our experiments
show that the empirical kernel approximation provides effec-
tive regularization for supervised learning.

Introduction
Despite the immense popularity of kernel-based learning al-
gorithms (Schölkopf and Smola 2002), the expensive eval-
uation of nonlinear kernels has prohibited their applica-
tion to large datasets. Low-rank kernel approximation is
a powerful tool in alleviating the memory and computa-
tional cost of large kernel machines (Williams and Seeger
2001; Drineas and Mahoney 2005; Fowlkes et al. 2004;
Halko, Martinsson, and Tropp 2011; Mahoney 2011; Ku-
mar, Mohri, and Talwalkar 2012; Si, Hsieh, and Dhillon
2014). These methods adopt various sampling schemes on
the rows/columns of the kernel matrix to obtain an efficient,
low-rank decomposition, which in turn serves as a highly
compact “empirical” kernel map that can reduce the cost of
kernel machines from cubic to linear scale.

Random Fourier features, a highly innovative feature map
pioneered by Rahimi and Recht (2008), has attracted sig-
nificant interest, which will also be the focus of our work.
Rather than decomposing the kernel matrix directly, the
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method resorts to the Fourier transform of positive semi-
definite and shift-invariant kernels and obtains explicit fea-
ture maps using Monte Carlo approximation of the Fourier
representation. The features can then be written as the cosine
(or sine) of the inner product between the input data and ran-
dom spectral samples drawn from a density specified by the
characteristic function. For example, the characteristic func-
tion for Gaussian kernel is still Gaussian, hence the spectral
samples should follow a Gaussian distribution.

In recent years, there has been continuing effort in de-
signing optimal sampling schemes in computing Fourier
features for accurate approximation. Le et al. (2013) pro-
posed Fastfood, a feature map that is faster to compute
thanks to a combination of diagonal Gaussian matrices and
the Hadamard transform. Yang et al. (2014) showed that
integral approximation using low-discrepancy quasi-Monte
Carlo (QMC) sequence has a faster convergence than ran-
dom Monte Carlo samples, and achieves lower error espe-
cially for high-dimensional data. Shen et al. (2017) pro-
posed to apply moment matching on the spectral samples
so that their empirical distribution is closer to the intended
Gaussian. Besides shift-invariant kernels, approximate fea-
ture maps have also been considered for other nonlinear ker-
nels, such as additive kernels (Vedaldi and Zisserman 2012),
and polynomial kernels using spherical sampling (Penning-
ton, Felix, and Kumar 2015). Despite these recent advances,
open challenges still exist. First, most of the existing works
ignore the impact of the input data distribution on the de-
sign of the feature map. Instead, the main dependency con-
sidered is the relation between the kernel and its charac-
teristic function. Second, better kernel approximation with
random Fourier features may not always translate to bet-
ter generalization performance. Despite reported improve-
ments in regression/classification, it has been found that
such improvements do not correlate well with the improve-
ments in the quality of kernel features (Avron et al. 2016;
Chang et al. 2017).

In this paper, we argue that a good Fourier feature map
should adapt to input data distribution. For example, the op-
timal sampling scheme in the spectral domain will ideally be
different when approximating the kernel on data from differ-
ent distributions, in order to achieve a desired accuracy with
low sampling rate. To illustrate this, we use importance sam-
pling (Barber 2012) as a motivating example in approximat-
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ing the kernel Fourier transform, and demonstrate that the
optimal proposal density should be adaptive to the input dis-
tribution. Based on these observations, we propose a novel
method to learn adaptive Fourier features, in which the spec-
tral samples and their corresponding feature weights are op-
timized jointly through minimization of the empirical kernel
approximation loss (EKAL). We also propose two approxi-
mators of the EKAL, so that an efficient iterative algorithm
can be designed, reducing the overall time/space complexity
to scale linearly with input sample size and dimension.

We want to emphasize some fundamental differences be-
tween our method and existing randomized algorithms. In
those methods, a sampling probability is computed to se-
lect useful matrix columns often involving costly operations
in the input space (e.g. SVD for leverage scores (Mahoney
2011) or computing norms of all matrix columns (Kumar,
Mohri, and Talwalkar 2012). In comparison, we do not re-
sort to any sampling strategy but instead explicitly optimize
the spectral basis and weights in the Fourier space; besides,
our approach is significantly cheaper and the cost of obtain-
ing the basis can be as low as sub-linear. Recently (Bach
2017) proposed to select spectral samples by computing a
discrete probability distribution over a large number of ref-
erence points. Note that their goal is functional approxima-
tion in the RKHS, while ours is kernel matrix approxima-
tion; besides, sampling in a high-dimensional space can be
quite challenging, while optimizing the spectral basis based
on explicit objective function can be computationally more
tractable and more convenient.

We establish rigorous generalization bounds tailored
to the minimizers of the EKAL approximators, using
Rademacher average and McDiarmid’s inequality. Unlike
the loss function in a typical statistical learning problem,
EKAL contains a small set of pairwise kernel evaluations
that are not all independent. We overcome this challenge
by creating independent games in statistically dependent
rounds based on round-robin tournament scheduling. Our
bounds can be easily translated to guarantees for supervised
learning, using results that connect low-rank kernel approxi-
mation and learning accuracy (Cortes, Mohri, and Talwalkar
2010). These theoretical findings are complemented by nu-
merical experiments, which show the clear advantage of our
learned Fourier features over previous ones in kernel ap-
proximation. Indeed, our method is the first to fully exploit
the input data to significantly improve the quality of Fourier
features, bridging the gap between data-driven methods and
fixed-basis methods. Besides effectively reducing the di-
mension of the kernel map (i.e., spectral sampling rate) to
achieve desired accuracy, our method can also be incorpo-
rated in any supervised learning framework. In particular,
we employ EKAL minimization as a regularization to build-
ing linear prediction models with learned Fourier features,
leading to improved generalization performance.

Our main contributions include: (1) Theoretical justifi-
cation of learning data-driven Fourier features using im-
portance sampling as an example. (2) Joint optimization
of spectral samples and feature weights in minimizing two
types of EKAL approximators; generalization error bound
for both. (3) Hybrid loss with both unsupervised kernel regu-

larization and supervised prediction loss to improve the per-
formance in classification/regression. (4) Extensive experi-
mental results both in kernel approximation and in super-
vised learning tasks.

Random Fourier Features
Monte Carlo Method with Uniform Weights
Given a shift-invariant kernel function k, we wish to con-
struct a feature map Z(x) whose pairwise inner-product ap-
proximates the kernel by k(x1−x2) ≈ 〈Z(x1),Z(x2)〉. By
doing this, the kernel matrix K defined on {x`}N`=1 can then
be approximated by a low-rank decomposition ZZ>, where
Kst = k(xs − xt) and the s-th row of Z is Z(xs).

Rahimi and Recht (2008) pioneered the use of Fourier
transform in solving this problem, by noting that any PSD
shift invariant kernel k can be reconstructed using the
Fourier basis sampled under the probability density defined
by the characteristic function of k,

k(x1 − x2) =

∫
Rd

eiw
>(x1−x2)p(w)dw. (1)

The density p(w) is the Gaussian PDF N(0, σ−2I) for
Gaussian kernel k(x1 − x2) = exp(−‖x1 − x2‖2/(2σ2)).
Suppose the feature map is defined as

Z(x) :=
1√
r

[
eiw

>
1 x, eiw

>
2 x, ..., eiw

>
r x
]
, (2)

where {wj}rj=1 are d-dimensional spectral samples drawn
independently from p(w). It can then be observed that
〈Z(x1),Z(x2)〉 = 1

r

∑r
j=1 e

iw>
j (x1−x2), which is an unbi-

ased estimator of the Fourier representation of the kernel1,
and such a Monte Carlo approximation will asymptotically
converge to the true integral (1) (Rahimi and Recht 2008).

Importance Sampling with Non-Uniform Weights
The sampling probability p(w) in Monte Carlo method is
the characteristic function of the kernel. For a given ker-
nel, p(w) is fixed regardless of the distribution of the input
samples. However, given the input samples xi’s, we believe
that its distribution P (x) should also have an impact on the
sampling probability p(w). In particular, the optimal p(w)
should be adaptive to P (x) in terms of accurately approxi-
mating kernel matrix defined on P (x), using as few spectral
samples (wj’s) as possible.

In order to see this, we consider the use of importance
sampling, which is widely used in Bayesian inference to re-
duce the variance of approximations. Since k is real, one can
rewrite the real part of Fourier representation as

k(x1 − x2) =

∫
Rd

cos(w>(x1 − x2))
p(w)

q(w)
q(w)dw.

1Since the kernel is real, one can remove the imaginary parts
of (1) and (2). The real Fourier representation and features are
k(x1 − x2) =

∫
Rd cos

(
w>(x1 − x2)

)
p(w)dw and Z(x) :=

1√
r

[
cos(w>1 x), . . . , cos(w>r x), sin(w>1 x), . . . , sin(w>r x)

]
.
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Here, q(w) is an importance-weighted proposal density. If
wj’s are drawn from the distribution q(w), then we can ap-
proximate the above integral with

∑r
j=1 pj cos(w>j (x1 −

x2)), where pj = p(wj)/(r · q(wj)) satisfies E[pj ] =
1/r. The above finite sample estimate is the inner product
〈Z̃(x1), Z̃(x2)〉 between weighted Fourier features:2

Z̃(x) :=
[√
p1 cos(w>1 x), ...,

√
pr cos(w>r x),

√
p1 sin(w>1 x), ...,

√
pr sin(w>r x)

]
. (3)

The optimal importance distribution minimizes the fol-
lowing expected error, which depends on input distribution:

min
q(w)

Ex1,x2
Ewj

∣∣〈Z̃(x1), Z̃(x2)〉 − k(x1 − x2)
∣∣2. (4)

For example, in the case x1 − x2 is drawn from a Gaussian
distribution, we can prove the following.
Claim 1. If k(x1 − x2) = exp(−‖x1 − x2‖2/(2σ2)), and
x1−x2 follows a Gaussian distributionN(0, σ2

0I), then the
optimal q(w) satisfies

q(w) ∝
(
e−σ

2‖w‖2 + e−(σ
2+2σ2

0)‖w‖
2
)1/2

.

Claim 1 shows that the optimal q(w) depends on the input
distribution P (x) (particularly on σ0). It follows that, in the
finite sample estimate, the choice of samples wj’s should
also be data-dependent. Meanwhile, the corresponding fea-
ture weighting pj = p(wj)/(r ·q(wj)) appears non-uniform
and should depend on the input data distribution as well.

In practice, the underlying input distribution P (x) is un-
known, hence solving (4) for the optimal importance distri-
bution q(w) is intractable. Therefore, instead of designing
the optimal q(w), we propose to learn wj’s (spectral sam-
ples) and pj’s (corresponding feature weights) directly by
minimizing the finite-sample kernel approximation error.

Adaptive Fourier Features
Empirical Kernel Approximation Loss
In this section, we explain how wj’s and pj’s in weighted
Fourier features (3) can be learned efficiently from data.
Suppose the input data x` belong to a compact set X . To
simplify the notation, we define function f : X − X → R,
parametrized by {wj , pj}rj=1:

f(x1 − x2) :=

r∑
j=1

pj cos
(
w>j (x1 − x2)

)
.

The goal for kernel approximation is to learn the optimal
wj ∈ W (1 ≤ j ≤ r) and p ∈ ∆r−1 that minimizes the
mean squared error Ex1,x2

[(k(x1 − x2)− f(x1 − x2))2]. If
we restrict our attention to approximating the kernel matrix
on a dataset {x`}N`=1, the loss function is the mean squared
error over the empirical distribution over the dataset:

L(f) :=
1

N2

N∑
s=1

N∑
t=1

(f(xs − xt)− k(xs − xt))
2
.

2Uniformly weighted Fourier features Z(x) is a special case of
Z̃(x): q(w) = p(w) and hence pj = 1/r.

In this objective, we intend to optimize both wj’s and
their weights pj’s. Such an optimization will adapt the re-
sulting Fourier features to the input data, hence making them
more likely to obtain desired approximation accuracy with
minimal sampling rate in the spectral domain.

Evaluating k(xs − xt) over the whole sample is expen-
sive and unnecessary. An important contribution of our work
is to approximately evaluate the loss function L(f) using a
small number n of landmark data points (n � N ), similar
to the idea of sketching for regression (Avron, Sindhwani,
and Woodruff 2013; Woodruff and others 2014). We use the
following two strategies to choose landmark points and com-
pute empirical kernel approximation loss (EKAL):

Random sampling: We randomly sample n points from
the dataset with equal probability without replacement, i.e.,
choose {x`1 , . . . ,x`n} ⊂ {x1, . . . ,xN}, and compute

Ls(f) :=
1

n2

n∑
s=1

n∑
t=1

(
f(x`s − x`t)− k(x`s − x`t)

)2
.

K-means clustering: We choose the landmark points as
the cluster centers of the k-means algorithm. Suppose the s-
th cluster has Ns members, whose centroid is xcs (1 ≤ s ≤
n,
∑n
s=1Ns = N ). Thus EKAL with clustering is:

Lc(f) :=

n∑
s=1

n∑
t=1

NsNt
N2

(
f(xcs − xct)− k(xcs − xct)

)2
.

Iterative Algorithm
We write a unified objective function subsuming both the
sampling-based loss function Ls(f) and the clustering-
based loss function Lc(f), as follows

min
wj , p�0

n∑
s=1

n∑
t=1

q2sq
2
t

(∑
j

pj cos
(
w>j (xs − xt)

)
−k(xs − xt)

)2
+ λ‖p‖2,

where the squared landmark weights are q2s = 1/n for
Ls(f), and q2s = Ns/N for Lc(f). Our goal is to optimize
wj’s and pj’s by minimizing the EKAL with weight decay
on p = [p1, p2, . . . , pr]

> � 0.
Let X = [x1,x2, . . . ,xn]> ∈ Rn×d denote the landmark

points, W = [w1w2, ...,wr] ∈ Rd×r the spectral samples,
K ∈ Rn×n the kernel matrix on the landmark points, and
q = [q1, q2, . . . , qn]> ∈ Rn the landmark weights. We use
A�B and A�2 to denote the entrywise product and the en-
trywise square, respectively. Then the above objective func-
tion can be equivalently written as follows:

min
W,p�0

∥∥∥(cos(XW) diag(p) cos(XW)>

+ sin(XW) diag(p) sin(XW)>

−K
)
� qq>

∥∥∥2
F

+ λ‖p‖2.

(5)

The iterative algorithm is summarized in Algorithm 1.
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Solving for feature weights p: Define C := cos(XW)
and S := sin(XW). We solve a quadratic programming
(QP): minp�0 p

>Ap− 2b>p, where

A =
(
C> diag2(q)C

)�2
+
(
C> diag2(q)S

)�2
+
(
S> diag2(q)C

)�2
+
(
S> diag2(q)S

)�2
+ λI,

b = diag
(
C> diag2(q)K diag2(q)C

)
+ diag

(
S> diag2(q)K diag2(q)S

)
.

This is a simple non-negative QP with an 2r × 2r Hessian.
Solving for spectral samples W: When p is fixed, one

can solve for W via gradient descent. Define

R :=
(
Cdiag(p)C> + Sdiag(p)S> −K

)
� qq>.

Then the gradient of loss L with respect to W can be com-
puted as follows:

∇CL = 2(R� qq>)Cdiag(p),

∇SL = 2(R� qq>)S diag(p),

∇WL = X> (−S�∇CL+ C�∇SL) .

(6)

Algorithm 1 Learning Fourier Features

Input: X ∈ Rn×d
Output: W(T ) ∈ Rd×r, p(T ) ∈ Rr
Parameters: learning rate µ, number of iterations T , S
Initialize W(0) and p(0) using random Fourier features
for t = 1, 2, . . . , T do
p(t) ← arg minp�0 L(W(t−1),p) + λ‖p‖2

// Solve a QP for p
W(t) ←W(t−1)

for s = 1, 2, . . . , S do
W(t) ←W(t) − µ · ∇WL(W(t),p(t))

end for
// Update W via gradient descent

end for

The time complexity for the QP isO(nr2+n2r+r3), and
that for computing the gradient∇W isO(n2r+dnr), which
reduce to O(r3) and O(r3 + dr2) if n = O(r). Overall, the
time complexity is O(TS(r3 + dr3)), with T, S being the
number of iterations, and r, n� N .

Very recently, Chang et al. (2017) also proposed a data-
driven approach to learn weights for random features. Their
motivation is to sacrifice the unbiasedness of the estimator
with the hope to lower the variance. In comparison, we build
both theoretic and algorithmic linkage between Fourier fea-
tures and data distribution, and our framework allows joint
optimization of samples and weights.

Generalization Error Analysis
In this section, we establish generalization error bounds
for minimizing two types of EKAL approximators, i.e.,
the sampling-based Ls(f) and the clustering-based Lc(f).

These results guarantee that learned Fourier features can
approximate the kernel not only over selected landmark
points but also the entire data. Suppose spectral sam-
ples wj belong to a compact sets W . In addition, p =
[p1, p2, . . . , pr]

> resides in the standard simplex ∆r−1 =
{p : pj ≥ 0,

∑r
j=1 pj = 1} (since E[

∑r
j=1 pj ] =

Ew∼q[p(w)/q(w)] = 1). Note that such simplex constraint
can be easily relaxed to any compact constraint set. Define
the set of all functions F = {f : wj ∈ W,p ∈ ∆r−1}.

Our theoretical analysis of EKAL with sampling departs
slightly from the last section. To create independence be-
tween landmark samples that simplifies our statistical argu-
ment, we sample n landmark points {x`s}ns=1 from {x`}N`=1
with replacement, and minimize the empirical loss

Ln(f) :=
2

n(n− 1)

∑
1≤s<t≤n

(
f(x`s − x`t)− k(x`s − x`t)

)2
.

The additional loss incurred by learning on a small set of
sampled landmarks is bounded. From Proposition 1, it ap-
pears that n = O(dr) landmark points are required to
achieve small generalization error, while empirical experi-
ments show that n = O(r) landmarks suffice (Figure 2).

Proposition 1. With probability at least 1− δ,

sup
f∈F
|Ln(f)− L(f)| ≤ 4

√
2 log(1/δ)

n

+ 16

√
(dr + r − 1)(log n+ 2 log(3rWdX + 9))

n
,

where rW = supw∈W ‖w‖ is the radius of W , and dX =
supx1,x2∈X ‖x1 − x2‖ is the diameter of X .

Proof Sketch. To be more legible, the double subscripts in
{x`s}ns=1 are dropped in favor of {x`}n`=1. We define the
collection of sampled landmarks Xn := {x`}n`=1, and
Ω(Xn) := supf∈F |Ln(f) − L(f)|. We first bound the ex-
pectation of Ω(Xn) using a variation of the symmetriza-
tion trick (Gine and Zinn 1984). Unlike the empirical loss
of a classic learning problem, the terms in Ln(f) are not
all independent. We think of the n(n − 1)/2 terms as
the “games” in a round-robin tournament (Lucas 1883).
Without loss of generality, we assume that n is even. We
break the right-hand side into n − 1 (not independent
but identically distributed) rounds with n/2 independent
games in each round. Then by symmetry, EΩ(Xn) ≤ 4

n ·

E supf∈F

∣∣∣∑n/2
j=1 zj

(
f(x2j−1−x2j)− k(x2j−1−x2j)

)2∣∣∣,
where {zj}n/2j=1 are i.i.d. Rademacher random variables.

Next, we bound the Rademacher average by constructing
an ε-net ofF , such that for every f ∈ F there exists f ′ in the
net that satisfies supx1,x2∈X |f(x1 − x2)− f ′(x1 − x2)| ≤
2
√

1/n. By Massart’s Lemma (Massart 2000),

EΩ(Xn) ≤ 8

√
2 log(3rWdX

√
n)dr(9

√
n)r−1

n
+

16√
n
.

(7)
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By McDiarmid’s inequality (McDiarmid 1989),

Pr [Ω(Xn) ≥ EΩ(Xn) + t] ≤ exp

(
−nt

2

32

)
. (8)

Proposition 1 follows from

sup
f∈F
|Ln(f)− L(f)| ≤ EΩ(Xn) +

(
Ω(Xn)− EΩ(Xn)

)
,

where EΩ(Xn) and Ω(Xn) − EΩ(Xn) are bounded in (7)
and (8), respectively.

Next, we show that the additional loss incurred by the fea-
tures learned from the cluster centers approaches zero when
the quantization error of k-means diminishes. The kernels
we consider are Lipschitz continuous. For example, the Lip-
schitz constant for k(x) = e−‖x‖

2/(2σ2) is Lk = e−1/2/σ.

Proposition 2. supf∈F |Lc(f)− L(f)| ≤ 8ρ · (rW + Lk),
where ρ = max` ‖x` − xcj(`)‖ is the quantization error of
k-means, rW = supw∈W ‖w‖ is the radius ofW , and Lk =
supx1,x2∈X−X |k(x1) − k(x2)|/‖x1 − x2‖ is the Lipschitz
constant of the kernel k.

Proof Sketch. Since |k(·)| ≤ 1 and |f(·)| ≤ 1, we have

sup
f∈F
|Lc(f)− L(f)|

≤ 4 max
s,t

sup
f∈F

∣∣∣f(xs − xt)− f(xcj(s) − xcj(t))
∣∣∣

+ 4 max
s,t

∣∣∣k(xs − xt)− k(xcj(s) − xcj(t))
∣∣∣,

where xcj(s) is the centroid of the cluster containing xs. We
then bound the two terms using the Lipschitz continuity of
the feature map and the kernel, respectively.

Using the relation between low-rank kernel approxima-
tion and learning accuracy (Cortes, Mohri, and Talwalkar
2010), one can easily translate the above results to stability
bounds of supervised learning algorithms, in terms of Ln(f)
(or Lc(f)) and the choice of landmarks.

Target-Aware Fourier Features
In the literature, the Fourier features are mainly designed
for numerically approximating the kernel matrix. However
better kernel approximation may not always lead to better
generalization (Avron et al. 2016). Therefore, it’s desirable
to improve the Fourier features with supervised information.
To achieve this, we propose a hybrid loss, which is the com-
bination of unsupervised loss (kernel approximation) and su-
pervised loss (classification or regression error), as

min
W,p�0
α,β

1

N

N∑
j=1

c
(
g(xj ;W,α, β), yj

)
+ γ‖α‖2

+η ·
(
L(W,p) + λ‖p‖2

)
.

(9)

Here, the first line is the prediction error on labeled samples
{xj , yj}Nj=1, with weight decay on α ∈ R2r. The predictor

g(xj ;W,α, β) is chosen as a linear function over learned
Fourier features (and thus corresponds to a nonlinear func-
tion in the input space):

g(xj ;W,α, β) = α>[cos(W>xj); sin(W
>xj)] + β, (10)

c(g(xi), yi) can be (g(xi)−yi)2 for regression, or hinge loss
max(0, 1− yi · g(xi)) for classification.

The second line L(W,p) + λ‖p‖2 is the unsupervised
regularization term, which is the finite-sample kernel ap-
proximation error as defined in (5). Here, the spectral sam-
ples W not only appear in the predictor g in (10), but also
faithfully reconstruct the kernel matrix as specified in (5).
Therefore, the “unsupervised” kernel approximation loss
imposes highly informative regularization on computing the
model g, which can notably improve the generalization per-
formance as we shall discuss in more detail in the experi-
ments section.

Algorithm 2 Learning Fourier Features with Supervision

Input: X ∈ Rn×d
Output: W(T ) ∈ Rd×r, p(T ) ∈ Rr, α(T ), β(T )

Parameters: learning rate µ, number of iterations T , S
Initialize W(0) and p(0) using random Fourier features
for t = 1, 2, . . . , T do
α(t), β(t) ← training linear machine

// Update α, β via gradient descent
p(t) ← arg minp�0 L(W(t−1),p) + λ‖p‖2

// Solve a QP for p
W(t) ←W(t−1)

for s = 1, 2, . . . , S do
W(t) ←W(t) − µ ·

(
1
N

∑N
j=1∇Wcj + η · ∇WL

)
end for

// Update W via gradient descent
end for

Table 1: Benchmark datasets

Dataset Task Input
Dimension

Sample
Size

Wine Regression 11 4898
Parkinson Regression 16 5875

CPU Regression 21 8192
Adult Classification 123 48842

Covtype Classification 54 58101
MNIST Classification 784 14780

Optimization procedures are in Algorithm 2. Each iter-
ation of our optimization procedure has three steps. First,
given W, linear model g can be obtained using any off-the-
shelf linear machines. Its parameters (weights α, bias β)
do not need to be fully optimized in each iteration; empir-
ically, a few steps of gradient descent suffice. Second, fea-
ture weights p are optimized by QP in (5). Third, spectral
samples W are updated via gradient descent. The gradi-
ent of EKAL ∇WL is derived in (6); and that for the loss
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Input data xi’s Weights pj’s Input data xi’s Weights pj’s

Figure 1: Some toy 2d samples xi’s (input space) and corresponding color-coded weights pj’s (spectral domain). The spectral
samples wj’s are chosen as a grid for better visualization. Our approach generates data-dependent weighting.
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Figure 2: Relative errors (y-axis) v.s. #landmarks n (x-axis)
for varying dimension r; n expressed as multiples of r.

cj := c(g(xj), yj) is

∇Wcj = ∇g(xj)c(g(xj), yj) · xj

·
(
− sin(W>xj)�α1 + cos(W>xj)�α2

)>
,

where α1, α2 ∈ Rr denote the first r entries (cosine part)
and the second r entries (sine part) of α, respectively. Hence
the gradient descent update for W is W ← W − µ ·(

1
N

∑N
j=1∇Wcj +η ·∇WL

)
. Overall, the time complexity

of each gradient descent step for α, β, and W is O(Ndr),
which is linear in the sample size.

Recently, Sinha and Duchi (2016) proposed to learn fea-
ture weights pj’s by kernel alignment; Yu et al. (2015) con-
sidered optimizing spectral samples wj’s using classifica-
tion loss. There are two key differences between our work
and theirs. First, previous works learn either pj’s or wj’s,

while we adjust both. Second, we employ a hybrid loss in-
corporating EKAL minimization as a novel regularization to
the learned model, leading to improved generalization.

Experiments
This section reports empirical evaluations in numerical ker-
nel matrix approximation and supervised learning tasks. We
denote our Fourier features learned by minimizing EKAL
(Algorithm 1) with sampling and clustering as SAMPLE and
CLUSTER, respectively. In supervised learning tasks, we
minimize hybrid loss with sampling-based EKAL and name
it SUPERVISE. We have compared with the following meth-
ods for constructing Fourier features:
◦ MC: Standard Monte Carlo sampling for random Fourier

features (Rahimi and Recht 2008)
◦ FASTFOOD: Fast sampling using Hadamard matrices (Le,

Sarlós, and Smola 2013).
◦ HALTON, SOBOL, LATTICE, DIGIT: 4 low-discrepancy

sequences used in QMC sampling (Yang et al. 2014).
◦ MM: The moment matching approach (Shen, Yang, and

Wang 2017).
◦ WEIGHT: Learning feature weights for kernel approxima-

tion via linear ridge regression (Chang et al. 2017).
◦ ALIGN: Kernel learning via alignment maximization

(Sinha and Duchi 2016).
The benchmark datasets used are listed in Table 1. For

simplicity, we convert Covtype and MNIST to binary clas-
sification (type 1 vs. not type 1, and digit 0 vs. digit 1). All
data samples are split into training/test sets (2 : 1), unless
provided in the original data. We tune the parameters via
cross validation on training set. Input data is normalized to
have zero mean and unit variance in each dimension, and the
Gaussian kernel width 2σ2 is chosen as the dimension d of
the input data, equal to E[‖x1−x2‖2/2] after normalization.

Two-Dimensional Toy Examples
In Figure 1, we plot some toy examples to demonstrate the
intrinsic connection between Fourier features (in particular
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Table 2: Relative kernel approximation errors. The errors of LATTICE for MNIST are missing because the code provided by
(Yang et al. 2014) cannot generate a lattice sequence of dimension larger than 250.

Dataset r MC FASTFOOD HALTON SOBOL LATTICE DIGIT MM WEIGHT SAMPLE CLUSTER

Wine
50 0.31 0.34 0.24 0.27 0.28 0.23 0.25 0.24 0.14 0.13
100 0.19 0.25 0.18 0.20 0.19 0.15 0.17 0.15 0.08 0.08
200 0.13 0.16 0.11 0.14 0.13 0.11 0.13 0.10 0.05 0.05

Parkinson
50 0.16 0.13 0.10 0.18 0.12 0.08 0.14 0.10 0.05 0.04
100 0.08 0.14 0.09 0.12 0.07 0.05 0.09 0.05 0.03 0.02
200 0.06 0.08 0.05 0.09 0.06 0.04 0.05 0.03 0.02 0.01

CPU
50 0.17 0.18 0.14 0.18 0.14 0.13 0.13 0.14 0.11 0.09
100 0.13 0.13 0.11 0.12 0.11 0.09 0.09 0.10 0.07 0.05
200 0.08 0.10 0.07 0.09 0.07 0.06 0.06 0.06 0.04 0.03

Adult
50 0.27 0.29 0.27 0.28 0.28 0.26 0.89 0.26 0.23 0.25
100 0.19 0.22 0.18 0.20 0.20 0.18 0.24 0.19 0.14 0.16
200 0.14 0.16 0.13 0.14 0.14 0.11 0.10 0.13 0.10 0.11

Covtype
50 0.23 0.25 0.22 0.22 0.23 0.21 0.19 0.22 0.16 0.14
100 0.16 0.18 0.15 0.16 0.16 0.13 0.12 0.14 0.09 0.07
200 0.11 0.12 0.10 0.12 0.11 0.09 0.09 0.09 0.05 0.04

MNIST
50 0.17 0.21 0.17 0.18 – 0.21 1.25 0.17 0.14 0.26
100 0.13 0.15 0.13 0.13 – 0.13 1.10 0.12 0.09 0.24
200 0.09 0.10 0.09 0.08 – 0.09 0.84 0.08 0.06 0.10

Table 3: Generalization error for regression (RMSE) and classification (%). Shaded methods use labels in computing features.

Dataset MC FASTFOOD HALTON SOBOL LATTICE DIGIT MM WEIGHT ALIGN SAMPLE CLUSTER SUPERVISE
Wine 0.712 0.697 0.697 0.707 0.709 0.703 0.716 0.710 0.703 0.706 0.703 0.697

Parkinson 6.931 6.929 6.963 6.898 6.959 6.997 6.946 6.950 6.895 6.957 6.931 6.432
CPU 7.238 6.632 7.196 7.471 6.455 7.415 7.664 7.533 6.889 7.495 7.060 3.687

Adult 16.02 15.91 16.01 15.90 15.94 15.87 15.75 16.10 15.94 15.98 15.96 15.64
Covtype 19.37 19.94 19.39 19.63 19.39 19.95 19.78 19.67 19.46 19.52 19.32 19.78
MNIST 0.757 0.757 0.567 0.615 – 0.709 0.378 0.851 0.662 0.757 0.735 0.378

their weights pj’s) and input data distribution P (x). For vi-
sualization purpose, wj’s are chosen from a uniform grid
and only pj’s are optimized (in real-data experiments, wj’s
and pj’s are optimized together). Note that the color-coded
weight map can be deemed intuitively as an “distribution
sensitive” importance distribution in the spectral domain.

Kernel Approximation Experiments

We use the relative error ‖K̃ −K‖F/‖K‖F to quantify the
performance of kernel approximation, where K is the exact
kernel, and K̃ the approximate one by Algorithm 1.

Number of Landmarks in EKAL-Approximators. We
first explore the number of landmarks in the EKAL-
approximators that guarantees accurate result on the entire
data. For number of features r = 50, 100, and 200, we
run SAMPLE and CLUSTERp with number of landmarks
n = r/25, r/5, r, and 5r. Errors are shown in Figure 2.
Clearly, one achieves relatively small generalization error
for n as small as r. So we fix n = r for the rest experiments.

Relative Approximation Errors. We reportp relative
kernel approximation errors of all competing algorithms on
six benchmark datasets for r = 50, 100, 200 (Table 2). In
each dataset, at least one of our two methods, SAMPLE and
CLUSTER, achieves the lowest error. This demonstrates the

advantage learned Fourier features in kernel approximation.
Usually, CLUSTER performs better than SAMPLE, mean-

ing that landmarks chosen as cluster centers yield better ker-
nel approximation. However, when the number of landmarks
n is lower than the input dimension (n ≤ 200 < 784 = d
for MNIST), CLUSTER becomes worse than SAMPLE. This
is because when the number of clusters is too small, the clus-
ter centers can be undesirably far from the actual input sam-
ples. In such a case, replacing the cluster centers with their
closest samples proves an effective cure. Due to the space
limit, we defer the empirical study of the performance of the
modified EKAL approximator (that uses the closest samples
to the cluster centers as landmarks) to an extended version
of this paper. Indeed, such modification improves the perfor-
mance of CLUSTER in high-dimensional cases, and achieves
competitive performance against both CLUSTER and SAM-
PLE for all datasets.

Supervised Learning Experiments
We perform supervised learning tasks of regression and clas-
sification; in both cases, a linear predictor is applied directly
on learned Fourier features, leading to a nonlinear counter-
part in the input space. For regression, we use ridge regres-
sion and report root mean square error (RMSE); for classifi-
cation, we use `2-regularized SVM and report classification
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error. All the experiments use n = r = 200.
The regression or classification results on six benchmark

datasets are reported in Table 3. When comparing meth-
ods that do not use label information in constructing the
Fourier features (methods not shaded in Table 3), the results
are inconclusive, i.e., any method performs better on certain
tasks and worse on others. Overall, the unsupervised features
learned by our methods (SAMPLE and CLUSTER) are quite
comparable to others. When labels are used in constructing
the Fourier features, our method (SUPERVISE) attains lowest
generalization error on most datasets, demonstrating its su-
periority over both unsupervised feature construction meth-
ods and recently proposed, supervised method (ALIGN).

Conclusion
In this paper, we propose a novel framework for learning
Fourier features that adapt to input data. Both spectral sam-
ples and weights are optimized jointly, which can be further
engaged in any supervised learning framework. Extensive
theoretical/empirical results demonstrate advantages of our
method. In the future, we will study theoretic connections
between the proposed Fourier features and explicit kernel
low-rank decomposition.
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