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Abstract

In order for machine learning to be trusted in many applica-
tions, it is critical to be able to reliably explain why the ma-
chine learning algorithm makes certain predictions. For this
reason, a variety of methods have been developed recently to
interpret neural network predictions by providing, for exam-
ple, feature importance maps. For both scientific robustness
and security reasons, it is important to know to what extent
can the interpretations be altered by small systematic pertur-
bations to the input data, which might be generated by ad-
versaries or by measurement biases. In this paper, we demon-
strate how to generate adversarial perturbations that produce
perceptively indistinguishable inputs that are assigned the
same predicted label, yet have very different interpretations.
We systematically characterize the robustness of interpreta-
tions generated by several widely-used feature importance
interpretation methods (feature importance maps, integrated
gradients, and DeepLIFT) on ImageNet and CIFAR-10. In all
cases, our experiments show that systematic perturbations can
lead to dramatically different interpretations without chang-
ing the label. We extend these results to show that interpreta-
tions based on exemplars (e.g. influence functions) are simi-
larly susceptible to adversarial attack. Our analysis of the ge-
ometry of the Hessian matrix gives insight on why robustness
is a general challenge to current interpretation approaches.

Introduction
Predictions made by machine learning algorithms play an
important role in our everyday lives and can affect decisions
in technology, medicine, and even the legal system (Rich
2015; Obermeyer and Emanuel 2016). As algorithms be-
come increasingly complex, explanations for why an algo-
rithm makes certain decisions are ever more crucial. For ex-
ample, if an AI system predicts a given pathology image to
be malignant, then a doctor may need to know what features
in the image led the algorithm to this classification. Simi-
larly, if an algorithm predicts an individual to be a credit risk,
then the lender (and the borrower) might want to know why.
Therefore having interpretations for why certain predictions
are made is critical for establishing trust and transparency
between users and the algorithm (Lipton 2016).
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Having an interpretation is not enough, however. The ex-
planation itself must be robust in order to establish human
trust. Take the pathology predictor; an interpretation method
might suggest that a particular section in an image is impor-
tant for the malignant classification (e.g. that section could
have high scores in saliency map). The clinician might then
focus on that section for investigation or treatment or even
look for similar features in other patients. It would be highly
disconcerting if in an extremely similar image, visually in-
distinguishable from the original and also classified as ma-
lignant, a very different section is interpreted as being salient
for the prediction. Thus, even if the predictor is robust (both
images are correctly labeled as malignant), that the interpre-
tation is fragile would still be problematic in deployment.
Furthermore, if the interpretation is used to guide interven-
tions (e.g. location of a biopsy) by the doctor, then an inter-
pretation that is not robust against adversarial perturbations
may prove to be a security concern.

Our contributions. It is well known that the predicted la-
bels of deep neural networks are susceptible to adversar-
ial attacks (Goodfellow, Shlens, and Szegedy 2014; Ku-
rakin, Goodfellow, and Bengio 2016; Papernot et al. 2016;
Moosavi-Dezfooli, Fawzi, and Frossard 2016). In this pa-
per, we introduce the notion of adversarial perturbations to
neural network interpretation. More precisely, we define the
interpretation of neural network to be fragile if, for a given
image, it is possible to generate a perceptively indistinguish-
able image that has the same prediction label by the neu-
ral network, yet is given a substantially different interpre-
tation. We systematically investigate two classes of inter-
pretation methods: methods that assign importance scores
to each feature (this includes simple gradients (Simonyan,
Vedaldi, and Zisserman 2013), DeepLift (Shrikumar, Green-
side, and Kundaje 2017), and integrated gradients (Sun-
dararajan, Taly, and Yan 2017)), as well as a method that as-
signs importances to each training example: influence func-
tions (Koh and Liang 2017). For these interpretation meth-
ods, we show how to design targeted perturbations that can
lead to dramatically different interpretations across test im-
ages (Fig. 1). Our findings highlight the fragility of inter-
pretations of neural networks, which has not been carefully
considered in the literature. Fragility limits how much we
can trust and learn from the interpretations. It also raises a
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Figure 1: Adversarial attack against feature-importance maps. We generate feature-importance scores, also called saliency
maps, using three popular interpretation methods: (a) simple gradients, (b) DeepLIFT, and (c) integrated gradients. The top
row shows the the original images and their saliency maps and the bottom row shows the perturbed images (using the center
attack with ε = 8, as described in Section 2) and corresponding saliency maps. In all three images, the predicted label does not
change from the perturbation; however, the saliency maps of the perturbed images shifts dramatically to features that would not
be considered salient by human perception.

significant new security concern. Especially in medical or
economic applications, users often take the interpretation of
a prediction as containing causal insight (“this image is a
malignant tumor because of the section with a high saliency
score”). An adversary could minutely manipulate the input
to draw attention away from relevant features or onto his/her
desired features. Such attacks might be especially hard to
detect as the actual labels have not changed.

While we focus on image data here because most interpre-
tation methods have been motivated by images, the fragility
of neural network interpretation could be a much broader
problem. Fig. 2 illustrates the intuition that when the deci-
sion boundary in the input feature space is complex, as is the
case with deep networks, a small perturbation in the input
can push the example into a region with very different loss
contours. Because the feature importance is closely related
to the gradient which is perpendicular to the loss contours,
the importance scores can also be dramatically different. We
provide additional analysis of this in Section 4.

1 Related Works and Preliminaries
Related works (Szegedy et al. 2013) first demonstrated
the possibility of fooling neural networks into making dif-
ferent predictions for test images that are visually indistin-
guishable. (Goodfellow, Shlens, and Szegedy 2014) intro-
duced the one-step Fast Gradient Sign Method (FGSM) pre-
diction attack which was followed by more effective itera-
tive attacks (Kurakin, Goodfellow, and Bengio 2016). To
quantify the perturbation size, metrics such as `2 (Moosavi-
Dezfooli, Fawzi, and Frossard 2016; Szegedy et al. 2013),
`0 (number of perturbed pixels) (Papernot et al. 2016), and
`∞ (Goodfellow, Shlens, and Szegedy 2014) have been in-
troduced. As it tightly controls how much individual input

features can change, we followed the popular practice and
adopted `∞. There has also been a line of work showing
that networks that are robust against adversarial attacks to
its predictions also have improved interpretability (Ross and
Doshi-Velez 2017; Dong et al. 2017). The focus of all of
these works is on adversarial attacks against the prediction;
in contrast our work focuses on attacks on the interpretation
without changing the prediction.

Interpretation methods for neural networks Interpre-
tation of neural network predictions is an active research
area. Post-hoc interpretability (Lipton 2016) is one family
of methods that seek to “explain” the prediction without
considering the details of black-box model’s hidden mech-
anisms. These include methods to explain predictions in
terms of the features of the test example, as well as in terms
of the contribution of training examples to the test time pre-
diction. These interpretations have gained increasing popu-
larity, as they confer a degree of insight to human users of
what the neural network might be doing (Lipton 2016). We
describe several widely-used interpretation methods in what
follows.

Feature importance interpretation This first class of
methods explains predictions in terms of the relative impor-
tance of features of an input test sample. Given the sam-
ple xt ∈ Rd and the network’s prediction l, we define the
score of the predicted class Sl(xt) to be the value of the
pre-softmax layer’s l-th neuron. We take l to be the class
with the highest score; i.e. the predicted class. feature im-
portance methods seek to find the dimensions of input data
point that strongly affect the score, and in doing so, these
methods assign an absolute feature importance score to each

3682



𝛻𝑥𝐿(𝒙𝒕 + 𝜹)

This training point has 

a large influence on the 

loss at 𝒙𝒕 + 𝜹
𝛻𝑥𝐿(𝒙𝒕)

This training point has a large influence on the loss at 𝒙𝒕

𝒙𝒕

Figure 2: Intuition for why interpretation is fragile. Con-
sider a test example xt ∈ R2 (solid black circle) that is
slightly perturbed to a new position xt + δ in input space
(dashed black dot). The contours and decision boundary cor-
responding to a loss function (L) for a two-class classifi-
cation task are also shown, allowing one to see the direc-
tion of the gradient of the loss with respect to the input
space. Neural networks with many parameters have deci-
sion boundaries that are roughly piecewise linear with many
transitions(Goodfellow, Shlens, and Szegedy 2014). We il-
lustrate that points near the transitions are especially fragile
to interpretability-based analysis. A small perturbation to the
input changes the direction of ∇xL from being in the hori-
zontal direction to being in the vertical direction, directly af-
fecting feature-importance analyses. Similarly, a small per-
turbation to the test image changes which data point (before
perturbation: solid blue, after perturbation: dashed blue),
when up-weighted, has the largest influence on L, directly
affecting exemplar-based analysis.

input feature. We normalize the scores for each image by
the sum of the feature importance scores across the features.
This ensures that any perturbations that we design change
not the absolute feature saliencies (which may preserve the
ranking of different features), but their relative values. We
summarize three different ways to compute normalized fea-
ture importance score, denoted by I(xt).

• Simple gradient method Introduced in (Baehrens et
al. 2010) and applied to deep neural networks in (Si-
monyan, Vedaldi, and Zisserman 2013), the simple gra-
dient method applies a first order linear approxima-
tion of the model to detect the sensitivity of the score
to perturbing each of the input dimensions. Given in-
put xt ∈ Rd, the score is defined as: I(xt)j =

|∇xSl(xt)j |/
∑d
i=1|∇xSl(xt)i|.

• Integrated gradients A significant drawback of the sim-
ple gradient method is the saturation problem discussed
by (Shrikumar, Greenside, and Kundaje 2017; Sundarara-
jan, Taly, and Yan 2017). Consequently, Sundararajan,
Taly, and Yan introduced the integrated gradients method
where the gradients of the score with respect to M scaled
versions of the input are summed and then multiplied by
the input. Letting x0 be the reference point and ∆xt =
xt − x0, the feature importance vector is calculated by:

I(xt) =
∣∣∣∆xt

M

∑M
k=1∇xSl

(
k
M∆xt + x0

)∣∣∣ , which is
then normalized for our analysis. Here the absolute value
is taken for each dimension.

• DeepLIFT DeepLIFT is an improved version of layer-
wise relevance propagation (LRP) method (Bach et al.
2015). LRP methods decompose the score Sl(xt) back-
wards through the neural network. DeepLIFT (Shrikumar,
Greenside, and Kundaje 2017) defines a reference point in
the input space and propagates relevance scores propor-
tionally to the changes in the neuronal activations from
the reference. We use DeepLIFT with the Rescale rule;
see (Shrikumar, Greenside, and Kundaje 2017) for details.

Sample importance interpretation A complementary
approach to interpreting the results of a neural network is
to explain the prediction of the network in terms of its train-
ing examples, {(xi, yi)}. Specifically, to ask which training
examples, if up-weighted or down-weighted during training
time, would have the biggest effect on the loss of the test
example (xt, yt). (Koh and Liang 2017) proposed a method
to calculate this value, called the influence, defined by the
equation: I(zi, zt) = −∇θL(zt, θ̂)

>H−1

θ̂
∇θL(zi, θ̂),where

zi = (xi, yi) , zt = (xt, yT ), and L(z, θ̂) is the prediction
loss of (training or test) data point z in network with param-
eters θ̂. Hθ̂ = 1

n

∑n
i=1∇2

θL(zi, θ̂) is the empirical Hessian
of the network calculated over the training examples. We
calculate the influence over the entire training set I(·, zt).

Metrics for interpretation similarity We consider two
natural metrics for quantifying the similarity between inter-
pretations for two different images:

• Spearman’s rank order correlation: Because interpre-
tation methods rank all of the features or training exam-
ples in order of importance, it is natural to use the rank
correlation (Spearman 1904) to compare the similarity be-
tween interpretations.

• Top-k intersection: In many settings, only the most im-
portant features are of explanatory interest. In such set-
tings, we can compute the size of intersection of the k
most important features before and after perturbation.

2 Methods: Generating Perturbations
Problem statement For a given neural network N with
fixed weights and a test data point xt, the feature importance
and sample importance methods produce an interpretation
I(xt; N ). For feature importance, I(xt; N ) is a vector of
feature scores; for influence function I(xt; N ) is a vector of
scores for training examples. Our goal is to devise efficient
and visually imperceptible perturbations that change the in-
terpretability of the test input while preserving the predicted
label. Formally, we define the problem as:

arg max
δ

D (I(xt; N ), I(xt + δ; N ))

subject to: ||δ||∞ ≤ ε,
Prediction(xt + δ; N ) = Prediction(xt; N )
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where D(·) measures the change in interpretation (e.g. how
many of the top-k pixels are no longer the top-k pixels of
the feature importance map after the perturbation) and ε > 0
constrains the norm of the perturbation. In this paper, we
carry out three kinds of input perturbations.

Random sign perturbation As a baseline, each pixel is
randomly perturbed by ±ε. This is used as a baseline with
which to compare our adversarial perturbations against both
feature importance and sample importance methods.

Iterative attacks against feature importance methods
In Algorithm 1, we define three adversarial attacks against
feature importance methods, each of which consists of tak-
ing a series of steps in the direction that maximizes a dif-
ferentiable dissimilarity function between the original and
perturbed interpretation. (1) The top-k attack seeks to per-
turb the feature importance map by decreasing the relative
importance of the k initially most important input features.
(2) For image data, feature importance map’s center of mass
often captures the user’s attention. The mass-center attack
is designed to result in the maximum spatial displacement of
the center of mass. (3) If the goal is to have a semantically
meaningful change in feature importance map, targeted at-
tack aims to increase the concentration of feature importance
scores in a pre-defined region of the input image.

Gradient sign attack against influence functions We
can obtain effective adversarial images for influence func-
tions without resorting to iterative procedures. We linearize
the equation for influence functions around the values of
the current inputs and parameters. If we further constrain
the L∞ norm of the perturbation to ε, we obtain an optimal
single-step perturbation:

δ = εsign(∇xt
I(zi, zt)) =

− εsign(∇xt
∇θL(zt, θ̂)

>H−1

θ̂
∇θL(zi, θ̂)︸ ︷︷ ︸

independent of xt

) (1)

The attack we use consists of applying the negative of the
perturbation in (1) to decrease the influence of the 3 most
influential training images of the original test image1. Of
course, this affects the influence of all of the other training
images as well.

We follow the same setup for computing the influence
function as was done in (Koh and Liang 2017). Because the
influence is only calculated with respect to the parameters
that change during training, we calculate the gradients only
with respect to parameters in the final layer of our network
(InceptionNet, see Section 3). This makes it feasible for us
to compute (1) exactly, but it gives us the perturbation of the
input into the final layer, not the first layer. So, we use stan-
dard back-propagation to calculate the corresponding gradi-
ent for the input test image.

1In other words, we generate the perturbation given by:
−εsign(

∑3
i=1∇xt∇θL(zt, θ̂)>H−1

θ̂
∇θL(z(i), θ̂)), where z(i) is

the ith most influential training image of the original test image.

Algorithm 1 Iterative feature importance Attacks
Input: test image xt, maximum norm of perturbation ε,
normalized feature importance function I(·), number of
iterations P , step size α
Define a dissimilarity function D to measure the change
between interpretations of two images:

D(xt,x) =


−

∑
i∈B

I(x)i for top-k attack∑
i∈A

I(x)i for targeted attack

||C(x)−C(xt)||2 for mass-center attack,

whereB is the set of the k largest dimensions of I(xt),A
is the target region of the input image in targeted attack,
and C(·) is the center of feature importance massa.
Initialize x0 = xt
for p ∈ {1, . . . , P} do

Perturb the test image in the direction of signed gradi-
entb of the dissimilarity function:

xp = xp−1 + α · sign(∇xD(xt,x
p−1))

If needed, clip the perturbed input to satisfy the norm
constraint: ||xp − xt||∞ ≤ ε

end for
Among {x1, . . . ,xP }, return the element with the largest
value for the dissimilarity function and the same predic-
tion as the original test image.

aThe center of mass is defined for a W ×H image as: C(x) =∑
i∈{1,...,W}

∑
j∈{1,...,H} I(x)i,j [i, j]

T

bIn ReLU networks, this gradient is 0. To attack interpretability
in such networks, we replace the ReLU activation with its smooth
approximation (softplus) when calculating the gradient and gener-
ate the perturbed image using this approximation. The perturbed
images that result are effective adversarial attacks against the orig-
inal ReLU network, as discussed in Section 3.

3 Experiments and Results
Data sets and models For attacks against feature impor-
tance interpretation, we used ILSVRC2012 (ImageNet clas-
sification challenge data) (Russakovsky et al. 2015) and
CIFAR-10 (Krizhevsky 2009). For the ImageNet classifi-
cation data set, we used a pre-trained SqueezeNet model in-
troduced by (Iandola et al. 2016).

For both data sets, the results are examined on feature im-
portance scores obtained by simple gradient, integrated gra-
dients, and DeepLIFT methods. For DeepLIFT, we used the
pixel-wise and the channel-wise mean images as the CIFAR-
10 and ImageNet reference points respectively. For the inte-
grated gradients method, the same references were used with
parameter M = 100. We ran all iterative attack algorithms
for P = 300 iterations with step size α = 0.5.

To evaluate our adversarial attack against influence func-
tions, we followed a similar experimental setup to that of the
original authors: we trained an InceptionNet v3 with all but
the last layer frozen (the weights were pre-trained on Ima-
geNet and obtained from Keras). The last layer was trained
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on a binary flower classification task (roses vs. sunflowers),
using a data set consisting of 1,000 training images2. This
data set was chosen because it consisted of images that the
network had not seen during pre-training on ImageNet. The
network achieved a validation accuracy of 97.5%.

Results for attacks against feature importance scores
From the ImageNet test set, 512 correctly-classified im-
ages were randomly sampled for evaluation. Examples of
the mass-center attack against feature importance scores ob-
tained by the three mentioned methods are presented in
Fig. 1. Examples of targeted attacks, whose goal is to change
the semantic meaning of the interpretation are depicted in
Fig. 5 .

In Fig. 3, we present results aggregated over all 512 im-
ages. We compare different attack methods using top-1000
intersection and rank correlation methods. In all the images,
the attacks do not change the original predicted label of the
image nor does it significantly change the prediction confi-
dence. Random sign perturbation already causes decreases
in both top-1000 intersection and rank order correlation. For
example, with L∞ = 8, on average, there is less than 30%
overlap in the top 1000 most salient pixels between the orig-
inal and the randomly perturbed images across all three of
interpretation methods.

Both the mass-center and top-K attack algorithms have
similar effects on feature importance of test images when
measured on the basis of rank correlation or top-1000 in-
tersection. Not surprisingly, we found that the mass-center
attack was more effective than the top-k attack at resulting
in the most perceptive change. Average numerical results are
not obtainable for the targeted attack as it is designed for se-
mantic change and requires a target area of attack in each
image. Comparing the effectiveness of attacks among the
three different feature importance methods, we found that
the integrated gradients method was the most difficult one to
generate adversarial examples for. Similar results were ob-
tained the CIFAR-10 (Krizhevsky 2009) data set.

Results for adversarial attacks against sample impor-
tance scores. We evaluate the robustness of influence
functions on a test data set consisting of 200 images of roses
and sunflowers. Fig. 4(a) shows a representative test image
to which we have applied the gradient sign attack. Although
the prediction of the image does not change, the most influ-
ential training examples change entirely.

In Fig. 4(b,c), we compare the random perturbations and
gradient sign attacks for the test set. It shows that gradi-
ent sign-based attacks are significantly more effective at de-
creasing the rank correlation, as well as distorting the top-5
influential images. For example, on average, with a perturba-
tion of magnitude ε = 8, only 2 of the top 5 most influential
training images remain in the top 5. The influences of the
training images before and after an adversarial attack are es-
sentially uncorrelated. However, we find that even random
attacks can have a small but non-negligible effect on influ-

2adapted from: https://goo.gl/Xgr1a1

ence functions, on average reducing the rank correlation to
0.8 (ε ≈ 10).

4 Hessian Analysis
In this section, we explain the effectiveness of adversarial
attacks on interpretations in terms of the high dimensional-
ity and non-linearities in deep networks. High dimension-
ality is also a reason why adversarial examples are effec-
tive at changing prediction labels (Goodfellow, Shlens, and
Szegedy 2014).

Let S(x;w) denote the score function of interest and
x ∈ Rd be the input vector. First order approximation of
sensitivity of a gradient-based interpretation to perturbations
in the input is δ ∈ Rd is: ∇xS(x + δ) − ∇xS(x) ≈ Hδ,
where H is the Hessian matrix Hi,j = ∂S

∂xi∂xj
. In the most

simple case of having a linear model S = w>x, the fea-
ture importance vector is robust as it is completely indepen-
dent of x (∇xS = w). Thus, some non-linearity is required
for adversarial attacks against interpretation. The simplest
model susceptible to interpretation adversarial attacks is a
set of weights followed by a non-linearity (e.g. softmax):
S = g(w>x).

The first order approximation of change in feature impor-
tance map due to a small input perturbation: x → x + δ
will be equal to : H · δ = ∇2

xS · δ. In particular, the rel-
ative change in the importance score of the ith feature is
(∇2

xS · δ)i/(∇xS)i. For our simple model, this relative
change is:

(ww>δg′′(w>x))i
(wg′(w>x))i

=
w>δg′′(w>x)

g′(w>x)
, (2)

where we have used g′(·) and g′′(·) to refer to the first and
second derivatives of g(·). Note that g′(w>x) and g′′(w>x)
do not scale with the dimensionality of x because in general,
x andw are `2-normalized or have fixed `2-norm due to data
preprocessing and weight decay regularization. However, if
δ = εsign(w), then the relative change in the feature impor-
tance grows with the dimension, since it is proportional to
the `1-norm of w. For a high dimensional input the relative
effect of the perturbation can be substantial. Note also that
this perturbation is exactly the sign of the first right singular
vector of the Hessian ∇2

xS, which is appropriate since that
is the vector that has the maximum effect on the gradient of
S.

Notice that for this simple network, the direction of ad-
versarial attack on interpretability, sign(w) is the same as
the adversarial attack on prediction which means that per-
turbing interpretability perturbs prediction. For more com-
plex networks, this is not the case, as we show empirically
in Fig. 6, demonstrating that it is possible to perturb the in-
terpretation without changing the class label.

5 Discussion
This paper demonstrates that interpretation of neural net-
works can be fragile in the sense that two similar inputs
with the same predicted label can be given very different
interpretations. We develop perturbations to illustrate this
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(c).Figure 3: Comparison of adversarial attack algorithms on feature-importance methods. Across 512 correctly-classified
ImageNet images, we find that the top-k and center attacks perform similarly in top-1000 intersection and rank correlation
measures, and are far more effective than the random sign perturbation at demonstrating the fragility of interpretability, as
characterized through top-1000 intersection (top) as well as rank order correlation (bottom).
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Figure 4: Gradient sign attack on influence functions . (a) An imperceptible perturbation to a test image can significantly
affect sample importance interpretability. The original test image is that of a sunflower that is classified correctly in a rose vs.
sunflower classification task. The top 3 training images identified by influence functions are shown in the top row. Using the
gradient sign attack, we perturb the test image (with ε = 8) to produce the leftmost image in the bottom row. Although the
image is even more confidently predicted as a sunflower, influence functions suggest very different training images by means of
explanation: instead of the sunflowers and yellow petals that resemble the input image, the most influential images are pink/red
roses. (b) Average results for applying random (green) and gradient sign-based (orange) perturbations to 200 test images are
shown. Random attacks have a gentle effect on interpretability while a gradient perturbation can significantly affect the rank
correlation and (c) the 5 most influential images. Although the image is even more confidently predicted to be a sunflower,
influence functions suggest very different training images by means of explanation: instead of the sunflowers and yellow petals
that resemble the input image, the most influential images are pink/red roses. The plot on the right shows the influence of each
training image before and after perturbation. The 3 most influential images (targeted by the attack) have decreased in influence,
but the influences of other images have also changed.
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Figure 5: Targeted attack against feature importance map. Image is correctly classified as “trailer truck”. For all methods,
the devised perturbation with ε = 8 was able to semantically meaningfully change the focus of saliency map to the “cloud”
above the truck. (The cloud area was captured using SLIC (Achanta et al. 2012) superpixel segementation.) (top) as well as
rank order correlation (bottom).
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Figure 6: Orthogonality of prediction and interpretation
fragile directions (a) The histogram of the angle between
the steepest direction of change in (a) feature importance
and (b) samples importance and the steepest prediction score
change direction.

fragility and propose evaluation metrics as well as insights
on why fragility occurs. Fragility of neural network interpre-
tation can be orthogonal to fragility of the prediction, as we
demonstrate with perturbations that substantially change the
interpretation without changing the predicted label, but both
types of fragility arise at least in part from high dimension-
ality, as we discuss in Section 4.

Our main message is that robustness of the interpretation
of a prediction is an important and challenging problem, es-
pecially as in many applications (e.g. many biomedical and
financial settings), users are as interested in the interpreta-
tion as in the prediction itself. Our results raise concerns on
how interpretations of neural networks can be manipulated.
Especially in settings where the importance of individual or
a small subset of features are interpreted, we show that these
importance scores can be sensitive to even random perturba-
tion. More dramatic manipulations of interpretations can be
achieved with our targeted perturbations. This is especially
true for the simple gradients method, DeepLIFT, and in-

fluence functions, but also the integrated gradients method.
These results raise potential security concerns. We do not
suggest that interpretations are meaningless, just as adver-
sarial attacks on predictions do not imply that neural net-
works are useless. Interpretation methods do need to be used
and evaluated with caution while applied to neural networks,
as they can be fooled into identifying features that would not
be considered salient by human perception.

Our results demonstrate that the interpretations (e.g.
saliency maps) are vulnerable to perturbations, but this does
not imply that the interpretation methods are broken by
the perturbations. This is a subtle but important distinction.
Methods such as saliency measure the infinitesimal sensi-
tivity of the neural network at a particular input x. After a
perturbation, the input has changed to x̃ = x + δ, and the
saliency now measures the sensitivity at the perturbed input.
The saliency correctly captures the infinitesimal sensitivity
at the two inputs; it’s doing what it is supposed to do. The
fact that the two resulting saliency maps are very different is
fundamentally due to the network itself being fragile to such
perturbations, as we illustrate with Fig. 2.

Our work naturally raises the question of how to defend
against adversarial attacks on interpretation. Because inter-
pretation fragility arises as a consequence of high dimen-
sionality and non-linearity (see section 4), we believe that
techniques that discretize inputs, such as thermometer en-
coding (Buckman et al. 2018), and train neural networks in
a way to constrain the non-linearity of the network (Cisse et
al. 2017a), may be useful in defending against interpretation
attacks.

While we focus on image data (ImageNet and CIFAR-
10), because these are the standard benchmarks for popular
interpretation tools, this fragility issue can be wide-spread in
biomedical, economic and other settings where neural net-
works are increasingly used. Understanding interpretation
fragility in these applications and developing more robust
methods are important agendas of research.
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