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Abstract

How can we control for latent discrimination in predictive
models? How can we provably remove it? Such questions are
at the heart of algorithmic fairness and its impacts on society.
In this paper, we define a new operational fairness criteria, in-
spired by the well-understood notion of omitted variable-bias
in statistics and econometrics. Our notion of fairness effec-
tively controls for sensitive features and provides diagnostics
for deviations from fair decision making. We then establish
analytical and algorithmic results about the existence of a fair
classifier in the context of supervised learning. Our results
readily imply a simple, but rather counter-intuitive, strategy
for eliminating latent discrimination. In order to prevent other
features proxying for sensitive features, we need to include
sensitive features in the training phase, but exclude them in
the test/evaluation phase while controlling for their effects.
We evaluate the performance of our algorithm on several real-
world datasets and show how fairness for these datasets can
be improved with a very small loss in accuracy.

1 Introduction

Nowadays, many sensitive decision-making tasks rely on
automated statistical and machine learning algorithms. Ex-
amples include targeted advertising, credit scores and loans,
college admissions, prediction of domestic violence, and
even investment strategies for venture capital groups. There
has been a growing concern about errors, unfairness, and
transparency of such mechanisms from governments, civil
organizations and research societies (White House 2016;
Barocas and Selbst 2016; ProPublica 2018). That is, whether
or not we can prevent discrimination against protected groups
and attributes (e.g., race, gender, etc). Clearly, training a
machine learning algorithm with the standard aim of loss
function minimization (i.e., high accuracy, low prediction
error, etc) may result in predictive behaviors that are un-
fair towards certain groups or individuals (Hardt et al. 2016;
Liu et al. 2018; Zhang and Bareinboim 2018).

In many real-world applications, we are not allowed to use
some sensitive features. For example, EU anti-discrimination
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law prohibits the use of protected attributes (directly or indi-
rectly) for several decision-making tasks (Ellis and Watson
2012). A naive approach towards fairness is to discard sen-
sitive attributes from training data. However, if other (seem-
ingly) non-sensitive variables are correlated with the pro-
tected ones, the learning algorithm may use them to proxy
for protected features in order to achieve a lower loss.! We
call this a latent form of discrimination. Mitigating this kind
of latent discrimination has received considerable attention
in the machine learning community and interesting heuris-
tic algorithms have been proposed (e.g., Zemel et al. (2013)
and Kamiran and Calders (2009)). Since this type of dis-
crimination is latent, most previous works fail to provide an
operational description of this notion and usually resort to
descriptive statements.

The first contribution of this paper is to propose a new op-
erational definition of fairness, called EL-fairness (it stands
for explicit and latent fairness), that controls for sensitive
features. This definition rules out explicit discrimination in
the conventional way by treating individuals with similar
non-sensitive features similarly. It also provides a detection
mechanism for observing latent discrimination of a classi-
fier by comparing simple statistics within protected-feature
groups to the ones provided by the optimum unconstrained
classifier (trained on the full data set).

Proxying or omitted variable bias (OVB) occurs when a
feature which is correlated with some other attributes is left
out. In many models, for example, linear regression, it is
well known that provided enough data, keeping the sensitive
feature controls for OVB which enables us to separate its
effect from other correlated attributes (Seber and Lee 2012).
Building on our notion of EL-fairness and existing methods
to remove/reduce the proxying effect or OVB (e.g., Zliobaité
and Custers (2016)), we develop a procedure for obtaining
fair classifiers. In particular, we show that in order to elimi-
nate latent discrimination one needs to consider the sensitive
features in the training phase (in order to obtain reliable
statistics to control for such features) and then mask them in
evaluation/test phase. This way, we can ensure that correlated
variables do not proxy the sensitive features and, more impor-

'In Section 6 we observe that in many datasets: (i) the admission
rate is hugely against the protected groups, and (ii) there are several
features that are tightly correlated with the sensitive attribute.



tantly, decisions are not made based on protected attributes.
Furthermore, such a train-then-mask approach achieves EL-
fairness with almost no additional computational cost as the
training phase is intact.

More specifically, in this paper we make two algorithmic
contributions: (i) keep the sensitive feature during the training
phase to control for OVB, and (ii) find an EL-fair classifier
with the maximum accuracy by choosing the parameters of
our algorithm properly. We use this idea to control for OVB
in a general class of separable functions.?

As a final note, we should point out that our notion of
fairness is robust against double discrimination. This is a
peculiar situation (that happens surprisingly often) where a
minority group outperforms the rest of the population despite
discrimination. We show that our proposed procedure still re-
moves the bias against the protected group in such scenarios,
while group-fairness based notions do not.

The rest of this paper is organized as follows. In Section 2,
we review the related literature. In Section 3, we define our
notion of EL-fairness. In Section 4, we characterize the exis-
tence and properties of the optimal fair classifier and explain
the train-then-mask algorithm. In Section 5, we discuss the re-
lation of EL-fairness with double-unfairness and separability.
In Section 6, we perform an exhaustive set of empirical stud-
ies to establish that our proposed approach reliably reduces
latent discrimination with little loss in accuracy.

2 Related Work

This paper brings together pieces of literature from econo-
metrics and machine learning. It is well known in both
fields that if a variable is omitted from an analysis (on pur-
pose or because it is unobservable), it might distort the
results of the analysis in case it is correlated with vari-
ables that are not omitted (Greene 2003; Dwork et al. 2018;
Kamiran and Calders 2009; Dwork et al. 2012; Hardt et
al. 2016). In the econometrics literature, this concern arises
mainly in the context of causal inference where the main
objective is to estimate a treatment effect. There, if there is
a factor that (i) impacts the outcome, (ii) is omitted from
the analysis, and (iii) is correlated with the treatment, it can
bias the estimated treatment effect, since (part of) the effect
of the unobserved variable may be picked up by the estima-
tion process as the effect of the treatment. This is generally
called the Omitted Variable Bias (Greene 2003). The typical
solution is to incorporate such variables as controls in the
statistical model. This is an integral part of empirical and
experimental research in multiple fields such as economet-
rics, marketing, and medicine (Sudhir 2001; Clarke 2005;
Scheffler, Brown, and Rice 2007; Hendel and Nevo 2013;
Ghili 2016).

However, the same strategy (i.e., controls) has not been
explicitly used in the context of fairness in machine learning.
This, partly stems from the fact that the objective functions
are more complicated in the real world applications that ma-
chine learning algorithms aim to solve. On the one hand, it is

Note that linear and logistic regressions are two simple mem-
bers of this general class which we define later.
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not desirable if omitting a sensitive feature leads to latent dis-
crimination, since correlated (and seemingly) non-sensitive
features now can act as proxies for the sensitive one (Hardt
et al. 2016; Pedreshi, Ruggieri, and Turini 2008). Unlike the
causal inference literature, however, this problem may not
be resolved by incorporating the sensitive feature in the anal-
ysis. This would eliminate latent discrimination but would
come at the larger expense of explicit discrimination, i.e.,
the model might treat similar individuals of two different
groups differently. The approaches suggested in the fairness
literature to deal with this problem have either been mainly
based on relabeling the data (Kamiran and Calders 2009) or
based on mapping the data to a set of prototypes (Dwork
et al. 2012). These approaches attempt to eliminate latent
discrimination by directly or indirectly entering a notion of
group fairness into the objective function of the optimization
problem. That is, for instance, they try to achieve high admis-
sion accuracy but restrict the ratio of the number of admitted
individuals form the unprotected group over admitted ones
form the protected group.

More recently, Kilbertus et al. (2017) and Nabi and Sh-
pitser (2018) framed the problem of fairness based on sen-
sitive features in the language of causal reasoning in order
to resolve the effect of proxy variables. Their focus is on
the theoretical analysis of cases in which the full causal rela-
tionships among all (sensitive and nonsensitive) features are
precisely known. In addition, Zhang and Bareinboim (2018)
proposed a causal explanation formula to quantitatively eval-
uate fairness. We should point out that while the structure of
causality could be learned by data generating models (e.g., in
some special cases under certain linearity assumptions), our
approach does not require such information.

Furthermore, several studies (such as the works of Hu
and Chen (2018) and Liu et al. (2018)) consider the long-
term effect of classification on different groups in the pop-
ulation. For another instance, Jabbari et al. (2017) investi-
gated the long-term price of fairness in reinforcement learn-
ing. Similarly, Gillen et al. (2018) considered the fairness
problem in online learning scenarios where the main objec-
tive is to minimize a game theoretic notion of regret. Also,
fairness is studied in many other machine learning settings,
including ranking (Celis, Straszak, and Vishnoi 2018), per-
sonalization and recommendation (Celis and Vishnoi 2017;
Kamishima et al. 2018; Burke, Sonboli, and Ordonez-Gauger
2018), data summarization (Celis et al. 2018), targeted adver-
tisement (Speicher et al. 2018), fair PCA (Samadi et al. 2018),
empirical risk minimization (Donini et al. 2018; Hashimoto
et al. 2018), privacy preserving (Ekstrand, Joshaghani, and
Mehrpouyan 2018) and a welfare-based measure of fairness
(Heidari et al. 2018). Finally, due to the massive size of
today’s datasets, practical algorithms with fairness criteria
should be able to scale. To this end, Grgic-Hlaca et al. (2018)
and Kazemi, Zadimoghaddam, and Karbasi (2018) have de-
veloped several scalable methods with the aim of preserving
fairness in their predictions.

Our approach has important implications for other notions
of fairness such as group fairness and individual fairness.
It is well-known that there are inherent trade-offs among
different notions of fairness and therefore satisfying multiple



fairness criteria simultaneously is not possible (Kleinberg,
Mullainathan, and Raghavan 2017; Pleiss et al. 2017). For
example, all methods that aim at solving the issue of proxying
(including ours) do not satisfy the calibration property.

3 Setup and Problem Formulation

Let X € X C R“! be a random variable with £ + 1 di-
mensions X through X,. That is, each sample draw x’ has
¢ + 1 real-valued components xj through xj where the di-
mensions are possibly correlated. Dimension X is binary
and represents the status of the sensitive feature. For example,
when the sensitive feature is gender, 1 represents female and
0 represents male. In this paper, we consider the binary clas-
sification problem, where we assume that there is a binary
label 37 for each data point x?, i.e., the set of possible labels
y* is denoted by I € {0, 1}. We are given n training samples
2l .o 2" where 2¢ = (x',y%) € X x ).

Mathematically, a classifier is a function & : R‘T! — [0, 1]
from a set of hypothesis (possible classifiers) H, where each
input sample x € R**! is mapped to a value in the interval
[0,1]; a data point x is classified to 1 if h(x) > 1/2, and
to 0 otherwise. The ultimate goal of a classification task is
to optimize some loss function £L(y, h(x)) over all possible
functions h € H, when applied to the training set. We denote
by h* the classifier that minimizes this loss function.? In
other words, h™* is the most accurate classifier from the set
‘H of functions, where all information—including sensitive
feature xo—is used to achieve the highest accuracy.* Next, we
turn to our fairness definition, articulating first the explicit
dimension, then the latent one.

Definition 1 (Explicit Discrimination). Classifier h exhibits
no explicit discrimination if for every pair (x',x?) € X2
such that (x},...,x}) = (x3,...,X2), regardless of x} and
X2 (i.e., the status of the sensitive features) we have h(x') =

h(x?).

Definition 1 captures the simple and conventional way of
thinking about explicit discrimination: a fair classifier should
treat two similar individuals (irrespective of their sensitive
features) similarly. Latent discrimination is, however, less
trivial to formally capture. Thus, we diagnose latent discrimi-
nation based on a subtle indirect implication that it has. We
first give the formal definition and then discuss the diagnostic
intuition behind it.

Definition 2 (Latent Discrimination). Classifier h exhibits
no latent discrimination if for every pair (x',x%) € X2 such
that x} = x2 (i.e., pairs with similar sensitive features) we
have:

h*(x) = h*(x?) = h(x")
h*(x') > h*(x?) = h(x')

(

= h(x*), and €
> h(

). @

3We do not make any assumption regarding how the class H
and/or loss function £ should be chosen. Our approach guarantees
that given a class and loss function, we can always design an EL-fair
classifier.

“Through the whole paper, we define h* to be the classifier from
class A that minimizes the empirical loss. In many practical settings,
we can find A" in polynomial time.

X2
X2
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In words, Definition 2 says that flipping the order of the
classes of two individuals of the same group compared to h*
is a sign of latent discrimination. To see the intuition behind
this definition, consider h, representing the most accurate
classifier that satisfies Definition 1 (i.e., it minimizes the loss
function subject only to explicit non-discrimination). Here,
by minimizing the loss function, we would ideally like to get
as close as possible to 2%, but that is not generally possible
given the constraint that the information about x; may not
be used. Thus, the minimizer would potentially treat the
other ¢ features differently than 2* does in order to proxy for
the missing x attribute. This proxying, however, inevitably
changes how the classifier treats individuals within the same
group, possibly by flipping the orders between some pairs.
This is exactly what we call latent discrimination that we
would like to control for. Definition 2 formalizes this idea
in a very operational manner. Indeed, in Definition 2 we
argue that the optimal unconstrained classifier provides a
non-discriminatory ordering between individuals within each
group. In other words, if h*(x!) > h*(x?) for xj = x2,
we can conclude x! is more qualified than x2. If a classifier
h changes this ordering, then it could be a sign of latent
discrimination. We are now equipped with the following
definition for fairness.

Definition 3 (EL-fair). Classifier h is “EL-fair” if it exhibits
neither explicit nor latent discrimination as described in
Definitions 1 and 2.

Note that 2* might not be EL-fair because it could suffer
from explicit discrimination as it uses all features.

4 Characterization of Optimal Fair Classifier

With a formal definition of fairness in hand, we turn to the
next natural step:

What are the characteristics of an optimal classifier that
satisfies EL-fairness condition?

While there is not a trivial answer to this question, in this sec-
tion we show, however, that our notion of fairness lends itself
into a practical algorithmic framework with the following
properties. First, the computation of the optimal fair classifier
is straightforward. In fact, it is not more complicated than
computing the optimal unconstrained classifier h*. Second,
it provides an intuitive interpretation in line with the idea of
controlling for different factors traditionally used in fields
such as statistics and econometrics. Our first theoretical re-
sult establishes the existence of an EL-fair classifier. Then,
in Theorem 2, we characterize the optimal classifier under
fairness constraints of Definition 3. Finally, in Theorems 3
and 4, we outline the properties of a simple algorithm that
computes the optimal EL-fair classifier.

Theorem 1. An EL-fair classifier exists if the set H (set of
all possible functions in our model) includes at least one
constant function.

Note that (almost) all practical models used in machine
learning (e.g., logistic, linear, neural net, etc) allow for con-
stant functions, therefore, they include an EL-fair classifier.
We next turn to the characterization of the optimal fair clas-
sifier. But before that, we need to give a definition that (i) is



necessary for the statement of the theorem; and (ii) as we ar-
gue in Section 3, is conceptually crucial to the understanding
of individual fairness.

Definition 4 (A separable classifier). Classifier h is “separa-
ble in the sensitive feature” if there are continuous functions
g:R? = Rand K : R — R such that: ¥x € X we have
h(X) =g (X07K(X17 e 7X€)) .

A wide range of classifiers satisfy this intuitive defini-
tion. For instance, any logistic model can be represented by
choosing an appropriate linear function for K and choos-
. _ eFltE2 . .
ing g(z1,22) = m Later in the paper, we discuss the
close ties between the notions of separability and individual
fairness. For now, we state our main result.

Theorem 2. Suppose the unconstrained optimal classifier h*
satisfies the definition of separability with a given g. Denote
by hg,;, the optimal classifier (in terms of accuracy) subject
to EL-fairness criteria as described in Definition 3. There is

a1* € R such that for all x = (x¢, X1, ...,X¢) € X :
o ifhi(x) > % then h*(0,x1,- -+ ,x¢) + 7% > 3.
o ifhf,(x) < % then h*(0,%x1, -+ ,X¢) + 7 < %

Theorem 2 demonstrates that for a properly chosen 7*,

there is an h*(0, X1, ..., x¢) + 7" that mimics the optimal fair
classifier hf,;, by recommending all the decisions that hf,;,
would recommend. In Theorem 3 we prove that, under a mild
assumption, such an h*(0,xy, ..., X¢) + 7* classifier is also
EL-fair.

Theorem 3. If the function h* € H is separable in the
sensitive feature X, i.e., there is a function g : R2 — R such
that h*(x) = g(xo0, K(X1,...,X¢)), and the function g is
strictly monotone in its second argument, then all classifiers
of the form h* = h*(0,xy,--- ,%x¢) + T are EL-fair.

Thus, the only further step to find the optimal EL-fair
classifier, in addition to computing h*, is to search for 7.
Theorem 4 shows that when the function g is monotone, then
searching for 7* is quite straightforward.

Theorem 4. Assume that the function h* is separable, i.e.,
there is a function g : R?> — R such that h*(x) =
9(x0, K(x1,...,X¢)) and the function g is strictly monotone
in its second argument. Furthermore, assume 7* is the value
of T such that it maximizes the classification accuracy of
hE: & h*(0,%q,- -+ ,%¢) + 7. The function h.. is the optimal
EL-fair classifier.

The above property makes the search for an optimal EL-
fair classifier practical. That is, no matter how large the
dataset is, as long as h* can be computed, hf,;. can be too. We
call this approach the train-then-mask algorithm for eliminat-
ing latent discrimination. Algorithm 1 describes train-then-
mask.

In spite of the fact that our formal definition of fairness is
indirect, that is it turns to within-group variation to capture a

concept that is essentially only meaningful between groups,

>Note that the use of threshold !/2 is only for the purpose of
exposition. All our theoretical results will hold if the threshold is
chosen adaptively.
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Algorithm 1 The Train-Then-Mask Algorithm

1: Compute the optimal classifier h*(xg, X1, - ,X¢) over
all available features xg, X1, - -+ , and X,.

2: Keep the sensitive feature x; fixed (e.g., define xy = 0)
for all data points.
3: Find the value of 7* such that it maximizes the accuracy

of h*(0,x1,- -+ ,X¢) + 7* over the validation set.

Theorem 2 provides an intuitive characterization. Basically,
to prevent other variables from proxying a sensitive feature,
we must control for the sensitive feature when estimating
the parameters that capture the importance of other nonsensi-
tive variables. Crucially, the sensitive feature should not be
left out of the model before training. In contrast, we do not
want the sensitive feature to impact our prediction/evaluation
when all else is equal (to ensure individual or explicit fair-
ness). This is why the sensitive feature does eventually need
to be excluded after training. Theorems 2 to 4 connect the
less intuitive Definition 3 to this simple and established algo-
rithmic procedure.

Generalization to a set of sensitive features: In many
applications, there might be more than one sensitive feature
(e.g., both gender and race might be present). It is straight-
forward to generalize our framework for such cases. All of
the definitions, theorems, algorithms, and interpretations re-
main intact if instead of xg € R we assume xg € R™ for
some m € N, where m is the number of sensitive features.
Thus, our framework accommodates multiple sensitive fea-
tures. More specifically, to apply our method we first train
the model on all features. In the prediction step, we keep all
the sensitive attributes fixed for all data points (e.g., if the
sensitive features are age and gender we assume all people
are young and female). The value of 7* is then chosen in the
way to maximize the accuracy on the validation set.

5 Discussion

In this section, we further discuss several important features
of our proposed fairness notion and the algorithmic solution.
In particular, (i) we overview the relationship with the impor-
tant concept of group fairness, and (ii) we further elaborate
on the significance of the separability property. We also ar-
gue that separability is a central notion in understanding the
individual fairness property.

5.1 Relationship with Group Fairness

Unlike other suggested solutions to the problem of proxy-
ing, our approach does not incorporate some notion of group
fairness to alleviate this issue. For example Kamiran and
Calders (2009) suggested massaging the training set in or-
der to exhibit group fairness, or Zemel et al. (2013) directly
incorporated group fairness into the loss function. Although
in Section 6 we show that our model performs well on the
group fairness measure, it has not been directly incorporated
into the objectives of our model. The reason we avoid mix-
ing group fairness with the problem of proxying (which is
essentially a matter of individual fairness) is the potential for



what we call double unfairness, a concept which we discuss
below.

Double unfairness can happen when the protected group
performs better than the unprotected group in spite of the
discrimination. For instance, consider a dataset on college
admissions with two groups A (the protected group) and B
(the unprotected group): (i) A person from group .4, on aver-
age, has a lower chance of admission to the college compared
to a person from group B with the same SAT score and ex-
tracurricular activities; (ii) Nevertheless, group A does better
than group B on the SAT by a wide enough margin that on
average the admission rate for A is higher than that for B.
The following synthesized dataset (see Table 1) illustrates an
example for this potential scenario.

Table 1: Toy example: for the sensitive attribute, 1 represents
the protected group A and 0 represents group B.

ID Admission SAT Extracurricular

1600
1500
1500
1400
1400
1300
1200
1200

Sensitive

OO\ AW =
OO == O =
RN Y e e I e

It can be seen, from Table 1, that the admission process
has been unfair to applicants from the protected group .A.
Candidates 4 and 5 are identical with the sole exception that
candidate 4 is from group A and 5 is from group . Candidate
4 has been denied but 5 has been admitted.® On the other hand,
group A performs better than group B since they have an
acceptance rate of 3/4 while that of group B is only /2. Thus,
group A does on average 50% better. Intuitively, if we are to
alleviate the discrimination against the protected group, we
should expect a classifier that gives even a higher edge than
50% to them.

One can verify the danger of proxying in this toy example
when the sensitive feature is omitted, by giving a higher (pos-
itive) weight to extracurricular activities compared to SAT
score. This would happen because SAT has a higher correla-
tion with the sensitive feature. Our approach does not allow
for such weight adjustments since, by Theorem 2, it controls
for the sensitive feature when training the rest of the weights.
In doing so, train-then-mask gives a higher edge than the
original 50% to group A in terms of admission ratio. This
provides an advantage over approaches that tackle the prob-
lem of proxying by forcing a notion of group fairness. For
instance, the methodology by Kamiran and Calders (2009)
would first massage the data by relabeling applicant 3 to de-
nied (or applicant 7 to admitted) and then train the classifier.

8 A more precise way to detect unfairness against the protected
group would be to run a model (such as linear regression) on the data
and observe that the coefficient on the sensitive feature is negative.
This means that, on aggregate, candidates from the protected group
are treated worse than similar candidates from the other group.

3676

The algorithm would do this to equate the admission rates
between the two groups. Thus, this algorithm tries to get the
acceptance rates of group A closer to that of B. This, clearly,
will only further discriminate candidates from the protected
group. Similar concerns exist about other approaches that
somehow employ a notion of group fairness to address prox-

ying.

5.2 Separability and Individual Fairness

At the heart of the sufficient conditions for Theorem 2 is
the separability of function f between the sensitive features
and all other features. What separability roughly says is that
using a separable classifier, one can rank two individuals
of the same group without knowing what their (common)
sensitive feature is. In this section, we argue that our notion
of fairness introduces separability as a central concept in
the understanding of individual fairness; and sheds light on
important future research directions.

Note that the separability of h* is a sufficient (and not
a necessary) condition for the existence of an optimal EL-
fair classifier. In Theorem 5, we show that under a slightly
stronger notion of fairness, if there is a fair classifier then the
separability property is also necessary.

Definition S (Strictly EL-fair). Classifier h satisfies strong
fairness criteria if it satisfies Definitions 1 and 2 but instead
of Eq. (2) in Definition 2, it satisfies: h*(x') > h*(x?) =
h(x') > h(x?).

Theorem 5. Suppose there is a classifier that satisfies the
strictly EL-fairness notion. Then, the function h* is separable
in the sense of definition 4, and the corresponding function g :
R? — R of the separable representation is strictly monotone
in its second argument.

To see the intuition, consider an 2™ that does not satisfy the
separability and monotonicity properties: suppose the impact
of a nonsensitive feature x; on the outcome of h*depends
on Xy, e.g., for the protected group (i.e., when x¢9 = 1)
larger values of x; results in a higher chance of positive
classification (and vice versa). This means that the ordering
implied under xo = 0 is different from the ordering under
x1 = 1. As a result, there is no classifier that satisfies the
required corresponding orderings withing both groups.

The concept of separability provides a lens through which
we can systematically think about some of the recent papers
on fairness. For instance, Dwork et al. (2018) propose a de-
coupling technique which, although focused mainly on group
fairness, is motivated precisely by the fact that the weight
of a factor on the outcome might have different signs for
different groups. It is important to note that we do not claim
one should only use separable models (even if not appropriate
in the context) to ensure EL-fairness. Indeed, we argue that
under the non-separability assumption: (i) our method for
detecting latent discrimination does not work, and (ii) by
using currently existing methods several other problems arise
(explained in other works such as (Dwork et al. 2018)).

We close this discussion by mentioning a few open ques-
tions. The first is to consider a novel methodology for mea-
suring the degree of non-separability for general classifiers.
Another important question is to detect latent discrimination



in non-separable environments and to design algorithms to
ensure EL-fairness in these cases. Finally, we need a mea-
sure to identify the extent of proxying and a strategy that
efficiently trades off accuracy with fairness.

6 Experiments

In this section, we compare the performance of the train-
then-mask algorithm to a number of baselines on real-world
scenarios. In our experiments, we compare train-then-mask
(i) to the unconstrained optimum classifier (i.e., the one that
tries to maximize the accuracy without any fairness con-
straints), (ii) to a model in which only the sensitive feature
has been removed from training procedure (note that this
algorithm might suffer from the latent discrimination), (iii) to
the trivial majority classifier which always predict the most
frequent label, (vi) to a data massaging algorithm introduced
by Kamiran and Calders (2009), and (v) to the algorithm
for maximizing a utility function subject to the fairness con-
straint introduced by Zemel et al. (2013). In our experiments
we consider linear SVMs (separable) (Scholkopf and Smola
2002) and neural networks (non-separable) for the family
of classifiers H. To find the value of 7* for our optimal fair
classifier, we use a validation set; we take the value of 7*
such that it maximizes the accuracy over validation set and
then we report the result of classification over the test set.
Datasets: We use the Adult Income and German Credit
datasets from UCI Repository (Asuncion and Newman 2007;
Blake and Merz 1998), and COMPAS Recidivism Risk
dataset (ProPublica 2018). Adult Income dataset contains
information about 13 different features of 48,842 individu-
als and the labels identifying whether the income of those
individuals is over 50K a year. The German Credit dataset
consists of 1,000 people described by a set of 20 attributes
labeled as good or bad credit risks. The COMPAS dataset
contains personal information (e.g., race, gender, age, and
criminal history) of 3,537 African-American and 2,378 Cau-
casian individuals. The goal of the classification tasks in these
datasets is to predict, respectively, the income status, credit
risks and whether a convicted individual commit a crime
again in the following two years.

Measures: We use the following measures to evaluate the

performance of algorithms. Accuracy measures the quality
of prediction of a classifier over the test set. It is defined by

Acc.=1— w, where n is the number of samples
in the test set, 3’ and §j° are the real and predicted labels of

a test sample ' Admittance measures the ratio of samples
assigned to the positive class in each group. It is defined by

Admit; = Z”O—“’ and Admity = Z%. Group dis-
Za xf i —1 Zv x" 0

crimination measures the difference between the proportion
of positive classifications within each one of the protected
and unprotected groups, i.e., Gpjser, = |Admit; — Admity|.
Latent discrimination is defined as the ratio of pairs that vio-
lates Definition 2 to the total number of pairs in each group.
More precisely, we have

‘h*(xi) > B (x9), h(x?) < h(x9)|i # j,x} = xg‘
Z'i'xi= 1 Z'i:x'i= 1 '
(Fih=0T) + (Tt )

Lpiser. =
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Consistency measures a (rough) notion of individual fair-
ness by assuming the prediction for data samples that are
close to each other should be (almost) similar. More pre-
cisely, it provides a quantitative way to compare the classi-
fication prediction of a model for a given sample x’ to the
set of its k- nearest neighbors (denoted by kNN (x%)), i.e.,
KNN-Pred(x') = ngekNN(xl)y]'

We should mentlon that the admittance ratios in all these
datasets are always lower for the protected groups. For ex-
ample, in the Adult Income dataset, while the income status
of 31% of the male population is positive, this value is 11%
for females. In addition, in all these datasets there are several
attributes that are highly correlated with the sensitive feature.
For example, in German Credit dataset, the correlation of
the sensitive feature, i.e., “age”, with “Present employment
since”, “Housing” and “Telephone” features are 0.24, 0.28
and 0.21, respectively.

We first consider the linear SVM classifiers which are sep-
arable. As shown in Table 2, train-then-mask represents the
best performance in terms of removing the latent discrim-
ination (see Lpis: ). Indeed, both discrimination measures
are lower under train-then-mask than it is under the uncon-
strained model or the model in which the sensitive feature
has been omitted. This demonstrates that train-then-mask
indeed helps with the issue of proxying. More precisely, we
observe that omitting the sensitive feature has lower accuracy
but also lower discrimination compared to the unconstrained
classifier.

We also observe that train-then-mask performs very well
in reducing the group discrimination at the expense of a very
little decrease in the accuracy. To see this, let us compare
train-then-mask to the data massaging technique (Kamiran
and Calders 2009). Under the Adult Income dataset, train-
then-mask achieves higher accuracy than data-massaging but
yields also higher Gp;s... Under the German Credit dataset,
it does better on both the accuracy and group discrimination
fronts. These results, combined with the intuitive interpreta-
tion of our algorithm, as well as its straightforward computa-
tion, suggests that train-then-mask as an algorithm can be eas-
ily employed to alleviate (explicit and latent) discrimination
in various datasets. This observation further demonstrates
that although Definition 3 does not seem directly related to
discrimination between groups, it does capture a symptom of
latent discrimination.

We should point out that in our applications (and a lot of
practical ones) the sensitive feature does indeed increase the
accuracy of the model. Note that, for example, in the Adult
Income dataset the accuracy of admitting all individuals, i.e.,
the trivial baseline classifier, is 0.756; thus going from 0.826
to 0.824 is not “negligible”. Our main claim is not that we
do not lose much accuracy. We argue that train-then-mask,
compared to other approaches that aim at resolving proxying,
does well. It sometimes offers both a higher accuracy and a
lower discrimination than other approaches (i.e., it dominates
them) and it is never dominated in our experiments by any
other approach.

To investigate the effect of our algorithm on discrimination
for non-separable classifiers we consider a neural network
with three hidden layers. In Table 2, we observe that our



Table 2: Comparison between the performance of different algorithms on Adult, German and COMPAS datasets. Data massage
algorithm refers to the method presented by (Kamiran and Calders 2009). The results of algorithms with the best performance on
Acc., Gpiser, and Ly, are represented in blue. The unconstrained model, as we expect, in almost all cases is the most accurate
classifier. Train-then-mask shows the best performance in terms of removing the latent discrimination (i.e., Lpjscr.), while its
accuracy is also close to the unconstrained model and even better in one case. In addition, while the main goal of Train-then-mask
is to remove the effect of the latent discrimination, it also performs better than the other algorithms in terms of reducing the
group discrimination. Note that for the algorithm of (Zemel et al. 2013) and Majority the discrimination metrics do not provide
any meaningful information, because their outputs for all instances are always constant. We left out the Lp;. for the optimal
unconstrained classifier 1™ since this metric measures the latent discrimination with respect to h* itself.

Adult dataset German dataset COMPAS dataset
Algorithm Acc. Adm; Admg Gpjer Lpiser. Acc. Adm; Admg  Gpiser  Lpiser. Acc. Adm; Admg Gpiser Lpiser
Unconstrained model 7* (SVM)  0.825  0.078  0.248  0.170 - 075 060 086 026 - 0768 027 062 035 -
Omit sensitive feature (SVM) ~ 0.824  0.080 0.243 0.163 0016 073 064 087 023 0016 0765 034 056 022 0.005
Train-then-mask (SVM) 0.823  0.096 0.188 0.092 0.00 074 061 080 019 0.000 0766 044 064 020 0.000
Data massage (SVM) 0807 0183 0236 0.053 0.109 073 063 083 020 0114 0747 035 058 023 0025
(Zemel et al. 2013) 0756  0.000 0.00 0.000 0.000 067 100 100 000 0000 0509 100 100 000 0.000
Majority 0756 0.000 0.000 0.000 0.000 067 1.00 100 000 0000 0509 100 100 000 0.000
Unconstrained model h* (NN) 0.825 0.093 0.266 0.173 - 072 0.62 0.85 0.23 - 0.767 0.25 0.60 0.35 -
Omit sensitive feature (NN) 0.824 0092 0259 0.167 0083 0.69 067 084 017 0325 0741 042 067 025 0095
Train-then-mask (NN) 0.823  0.091 0192 0.101 0.058 073 060 076 016 0264 0740 031 053 022 0.076
Data massage (NN) 0.808 0.183 0247 0.064 0.146 070 062 081 019 0391 0738 039 063 024 0.098
algorithm performs well in reducing the discrimination while we compare the consistency in the output of our fair classi-
maintaining the accuracy for neural network classifiers.” It fiers, i.e., for each sample x’, we compare the value of 7 to
is important to point out that in neural networks because the KNN-Pred(x?). In Fig. 2, we observe that, not only for two
classifiers are not separable and it is possible to have higher data samples x' and x? such that (x{, ..., x}) = (x7, ..., X3)
levels of proxying, the latent discrimination (i.e., Lpjs.) s the prediction is exactly the same (explicit individual fair-
also increased in comparison to the SVM classifier. Note that ness), for data samples which are close to each other (based
even though our theory holds only for separable classifiers, on their Euclidean distances in the feature space) the predic-
we find that our notion of fairness is relevant in other practical tions remain close.
scenarios where classifiers are not separable. Multiple Sensitive Features: In this part, we use an SVM
Effect of Threshold 7: In Theorem 3, we showed that classifier to evaluate the performance of our algorithm over
under certain conditions for all value of 7, the function multiple sensitive features. In the first experiment, we con-
h*(0,x1,- -+ ,x¢) + 7 is fair based on Definition 3. Theo- sider “sex” and “race” as two sensitive features in Adult
rem 4 argues that the value of 7* that maximizes the accuracy Income dataset. In the prediction step, we assume all peo-
has the same classification outcome as the optimal fair clas- ple are “female” and “black”. The accuracy is 0.824 with
sifier. However, if in an application one is more interested Adm; = 0.091, Admy = 0.174 and Gpjser. = 0.083 for
in lowering discrimination than in accuracy, she may choose “sex”. For the second experiment, in the German Credit
values of 7 other than 7* in order to fine-tune the accuracy- dataset, we consider “Personal status and sex” along with
discrimination trade-off according to the specifics of the appli- the “age™ as sensitive attributes. Also, in the training step,
cation. Fig. 1 illustrates this point on the Adult Income, Ger- we assume all individuals are “young” and “female and sin-
man Credit, and COMPAS Recidivism Risk datasets. Each gle”. The accuracy is 0.71 with Adm; = 0.78, Admg = 0.86
sub-figure consists of points in the accuracy-discrimination and Gpiser. = 0.08 for “age”. For these experiments, when
space where each point comes from a specific choice of 7. we naively omit the sensitive features Gpis. are, respec-
The orange part of each curve (circles) is the Pareto frontier. tively, 0.170 and 0.196 for Adult Income and German Credit
That is, one cannot choose a 7 that does better on both accu- datasets.
racy and discrimination fronts than an orange colored point.
Whereas any blue points (triangles) correspond to choices 7 Conclusion
of 7 that are dominated by one other choice of 7 on both It is well established in the literature that simply omitting the
fronts. The black point (square) corresponds to the value of sensitive feature from the model will not necessarily give a
7* with the maximum accuracy on the validation set. Note fair classifier. This is because often, nonsensitive features are
that accuracy and discrimination values reported in Table 2 correlated with the sensitive one and can act as proxies of that
are for this choice of 7*. feature, bringing about latent discrimination. In spite of the
Consistency and Individual Fairness: In this part, we pro- consensus on the importance of latent discrimination and the
vide experimental evidence to support our claim regarding the attempts to eliminate it, no formal definition of it has been
individual fairness of our proposed classifier. For this reason, provided based on the notion of within-group fairness. Our
main observation for providing an operational definition of
"Note that the algorithm of Zemel et al. (2013) does not depend latent discrimination relied on diagnosing this phenomenon
on the choice of the family of classifiers H. by examining its symptoms. We argue that changing the
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Figure 1: The trade-off between accuracy and fairness for different values of 7. The orange points represent the Pareto frontier
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test set. We set 7 = 0 in this experiment. Note that any other value of 7 shifts both axes equally.

order of the values assigned to two samples within the same
group compared to the optimal unconstrained classifier is a
symptom of proxying, and we call a classifier free of latent
discrimination if it does not exhibit any such disorders.

We demonstrated that our notion of fairness has multiple
favorable features, making it suitable for analysis of individ-
ual fairness. First, we proved that the optimal fair classifier
can be represented in a simple fashion. It enjoys an intuitive
interpretation that the sensitive feature should be omitted
after, rather than before training. This way, we control for
the sensitive feature when estimating the weights on other
features; but at the same time, we do not use the sensitive
feature in the decision-making process. Based on this intu-
ition, we then provided a simple two-step algorithm, called
train-then-mask, for computing the optimal fair classifier.
We showed that aside from simplicity and ease of compu-
tation, our notion of fairness had the advantage that it does
not lead to double discrimination. That is when the group
that is discriminated against is also the group that performs
better overall, our method still removes the bias against that
protected group. Finally, we should point out while A* can
be computed in many practical scenarios, but in the worst
case, it is not possible to have h*. Therefore, there is a gap
between the surrogated accuracy and real accuracy which
consequently results in a gap between surrogated and real
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discriminations.
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