The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

Efficient Data Point Pruning for One-Class SVM

Yasuhiro Fujiwara, Sekitoshi Kanai,’ Junya Arai,” Yasutoshi Ida,’ Naonori Ueda'*
TNTT Software Innovation Center, 3-9-11 Midori-cho Musashino-shi, Tokyo, 180-8585, Japan
INTT Communication Science Laboratories, 2-4 Seika-Cho Soraku-gun, Kyoto, Japan
t0saka University, 1-5 Yamadaoka, Suita-shi, Osaka, Japan
fRIKEN Center for AIP, 1-4-1 Nihonbashi, Chuo-ku, Tokyo, 103-0027, Japan
{fujiwara.yasuhiro, kanai.sekitoshi, arai.junya, ida.yasutoshi, ueda.naonori} @lab.ntt.co.jp

Abstract

One-class SVM is a popular method for one-class classifica-
tion but it needs high computation cost. This paper proposes
Quix as an efficient training algorithm for one-class SVM.
It prunes unnecessary data points before applying the SVM
solver by computing upper and lower bounds of a parame-
ter that determines the hyper-plane. Since we can efficiently
check optimality of the hyper-plane by using the bounds, it
guarantees the identical classification results to the original
approach. Experiments show that it is up to 6800 times faster
than existing approaches without degrading optimality.

Introduction

Due to the rapid development of Internet and database tech-
nologies, we can improve the effectiveness of applications
by using knowledge from big data (Fujiwara et al. 2017a;
Mishima and Fujiwara 2015; Nakatsuji and Fujiwara 2014).
Machine learning approaches play important role in ex-
tracting knowledge from big data (Fujiwara et al. 2017b;
Tanaka et al. 2016; Nakatsuji et al. 2014). One-class SVM
is a popular machine learning approach to achieving one-
class classification (Scholkopf et al. 2001). It computes a
hyper-plane that separates data points of the target class.
Data points are called support vectors if they are representa-
tive of the hyper-plane, and they are called outliers if they are
not labeled as the target class. One-class SVM offers the ad-
vantage of the desirable properties of traditional SVMs. For
instance, it has a unique solution in computing the hyper-
plane since its optimization problem is convex. However,
its computation cost is excessive especially for large-scale
data since it needs to solve a quadratic programming prob-
lem with n constraints where n is the number of data points.

The shrinking approach is a popular method to reduce the
computation cost of SVM (Joachims 1999). Although it can
compute the optimal hyper-plane, it needs high computa-
tion cost in checking the optimality. The Nystrom method
approximates a kernel matrix used in the solver by select-
ing data points as landmarks (Drineas and Mahoney 2005).
Specifically, it computes a small matrix of landmarks where
all data points are projected by using kernel similarities be-
tween landmarks and data points. Random Fourier features

Copyright (© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

3590

can reduce the computational cost of SVM by constructing
a random mapping into a low-dimensional feature space for
kernel functions (Rahimi and Recht 2007). However, these
approaches need the high computation cost since they apply
the solver to all the data points. Note that, since the origi-
nal approaches of the Nystrom method and random Fourier
features use simple algorithms (Drineas and Mahoney 2005;
Rahimi and Recht 2007), they are more effective in reduc-
ing computation cost comparing to the recent approaches of
the Nystrom method and random Fourier features (Li et al.
2016; Musco and Musco 2017; Wu et al. 2016). Noumir
et al. proposed an online learning approach based on the
coherence criterion (Noumir, Honeine, and Richard 2012).
The approach computes the hyper-plane by updating the
Gram matrix and its inverse matrix by exploiting the Wood-
bury matrix identity. In terms of efficiency, this approach
outperforms the adaptive approach (Gémez-Verdejo et al.
2011). Gao proposed the active-set method based online ap-
proach for one-class SVM to improve the efficiency (Gao
2015). It applies the solver to data points only if their dis-
tance to the center of the hyper-plane is not less than the ra-
dius of the hyper-plane. However, they can erroneously re-
move data points that are actually support vectors for the
optimal hyper-plane; they sacrifice the optimality of the
hyper-plane to increase the efficiency. Note that there ex-
ists a gap between the performance of approximate and the
optimal approaches in terms of accuracy (Li et al. 2016;
Fujiwara et al. 2015; 2013; Yang et al. 2012).

We propose a novel efficient approach that guarantees the
optimal hyper-plane. Given parameter v (0 < v < 1) that
determines the fraction of outliers and support vectors, this
paper formally addresses the problem of reducing the train-
ing time of one-class SVM for parameter v and given data
points. We prune unnecessary data points in computing sup-
port vectors before applying the solver by computing up-
per and lower bounds of a parameter that determines the
hyper-plane. Since we efficiently check the optimality of an
obtained hyper-plane after applying the solver, we can ob-
tain the same training result as the original algorithm. The
proposed approach can use any solvers such as SMO (Platt
1998) and incremental approaches (Cauwenberghs and Pog-
gio 2000; Laskov et al. 2006) since our approach is solver-
independent. Note that the proposed approach itself does not
have hyper-parameters to be tuned by users.

Preliminaries

In one-class SVM, vector x; = (z;[1],2;[2],. .. ,z;[m]) cor-
responds to the ¢-th data point in m dimensional space and
can be represented as the i-th row vector of data matrix X
whose column vectors are standardized (Ceker and Upad-
hyaya 2016; Fisher, Camp, and Krzhizhanovskaya 2016).
Let w, &;, and p be an m-dimensional vector, a slack vari-
able, and an offset, respectively, it solves the following
quadratic programming problem:

I Hwl2+ L™ & — |
WEFEE%"WER 2 ”W” + nv Zz:l 51 14 ()
Subjectto (w-P®(x;)) >p—&,& >0)

In Equation (2), ® is a kernel map X — F' which trans-
forms the training data points into a high-dimensional fea-
ture space. We have the following dual problem by intro-
ducing the Lagrange function:

3
“
Here, o is a vector whose i-th element «; is a Lagrange

multiplier of data point x;, and K (x;,X;) is a kernel func-
112

subjectto 0 < oy < L 3" oy =1

tion such as the Gaussian kernel given as e 7IIxi—;
In Equation (3), the data points that have o; > 0 and
Q; % are called support vectors and outliers, respec-
tively, and v is a lower bound of the fraction of support vec-
tors and an upper bound on the fraction of outliers. This in-
dicates that training accuracy should be at least 1 — v. Let
z =", a;K(x,x;) — p be a parameter for data point x,
the decision function is given as follows:

f(x) = sgn(z) = sgn(3oiL, K (x,xi) = p) (5)

Since the dual problem is convex, we can compute the op-
timal hyper-plane by applying the solver. We can compute
offset pas p = Y ., o; K(x;,x;) where x; is the data point
for which 0 < o5 < n%

However, one-class SVM has a drawback; its computation
cost is high in obtaining the hyper-plane. This is because
it needs to solve a quadratic programming problem with n
constraints. Even though Sequential Minimal Optimization
(SMO) is known to be an efficient SVM solver to obtain the
optimal hyper-plane, its computation cost is quadratic to the
number of data points.

Proposed method
Main ideas

The original algorithm applies the solver to all data points.
Our approach exploits the property of one-class SVM that
the hyper-plane is determined only by support vectors
(Scholkopf et al. 2001); we select data points to apply the
solver by upper and lower bounds of parameter z.

This approach has several advantages. First, the hyper-
plane obtained by our approach is guaranteed to be op-
timal unlike the previous approaches for SVM (Drineas
and Mahoney 2005; Gao 2015; Gémez-Verdejo et al. 2011;
Noumir, Honeine, and Richard 2012; Rahimi and Recht

3591

2007). This is because our approach checks whether the ob-
tained hyper-plane is theoretically identical to the optimal
hyper-plane by exploiting the upper and lower bounds. Sec-
ond, our approach can efficiently check the optimality of the
hyper-plane since we can efficiently compute the bounds
used in the optimality check. Although the shrinking ap-
proach selects data points similar to our approach, it needs
high computation cost to check the optimality of the hyper-
plane by computing kernel functions (Joachims 1999). If s
is the number of support vectors, the shrinking approach re-
quires O(snm) time while our approach needs at most O(n)
time in checking the optimality from the bounds. Finally,
the proposed approach does not require any user-defined
inner-parameter other than parameter . Note that param-
eter v is also required by the original algorithm of one-
class SVM. By contrast, the previous approaches (Drineas
and Mahoney 2005; Noumir, Honeine, and Richard 2012;
Rahimi and Recht 2007) need to set parameters that deter-
mine their performance in computing the hyper-plane. This
indicates that our approach is user-friendly.

Upper and lower Bounds

Our approach iteratively computes Lagrange multipliers
from a set of data points by applying the solver until we
obtain the optimal hyper-plane. In computing the set of data
points, we exploit the upper and lower bounds of parameter
z;. This section introduces the approach to efficiently com-
puting the bounds. Since the RBF kernel is the most popular
technique, we first assume the RBF kernel. However, we can
handle other kernels as we describe in this section.

In order to efficiently compute the upper and lower
bounds, we use sparse vector x; = (&;[1], #;[2], ..., &;[m])
for data point x;. Vector X; has sparse structure since we
compute each element of vector X; as Z;[j] = x;[j] — o}
where o; is the most frequent value of the j-th column of
data matrix X. Let O and H be a set of outliers and data
points such that O = {x;|o; = L} and H = {x;/0 < o; <
n%}, respectively, we compute the bounds as follows:

Definition 1 Let Z; and z; be the upper and lower bounds
of parameter z;, respectively, for the given Lagrange multi-
pliers, bound z; and z; are computed as follows:

. -1 o=y (Ix = 11%; 2
217"1/01 erijeX\@Oége (1% ll=11%51D (6)
_ 1 o=y (Ixa ||+ 1% 2
2= Lo p+ T a0 age T IRIHIHIT (7)
2
where 0; = ZXE(D) e~ VlIxi—x;117
J

In Definition 1, we can efficiently compute score o; since
set O is incrementally updated each time we compute a La-
grange multiplier, and it is not necessary to compute the
kernel functions if «; 0 holds in Equation (6) and (7).
In addition, we can compute norm ||X;|| before applying
the solver where vector X; has sparse structure by subtract-
ing the most frequent values in data matrix X. As a result,
we can efficiently compute the bounds at O(|H|) time from
Equation (6) and (7) where |H]| is the number of data points
included in set H if we have score o; and norm ||%;|| for
each data point. On the other hand, it needs O(sm) time to

exactly compute parameter z; from Equation (5). This indi-
cates that bound Z; and z; can be more efficiently computed
than parameter z; since we have |H| < s (Scholkopf et al.
2001). Since the shrinking approach computes parameter z;
for each data points, it needs high computation cost. How-
ever, our approach can efficiently obtain the data points ap-
plied to the solver.

Definition 1 indicates that we need to obtain Lagrange
multiplier o; for data point x; in computing the bounds. We
describe later the approach to compute the initial Lagrange
multiplier setting. . For Definition 1, we have the following
lemma from the Cauchy-Schwarz inequality (Steele 2004):
Lemma 1 If we compute parameter z; for the obtained
hyper-plane, we have z; > z; and z; < z;.

Proof Since we have o; = $ forset O and 0 < o; < ﬁ

for set H,
zi=300 g K (XiX5) —p=30 ey il (i, %;) —p

(8)
= Ex] €0 aiK(Xivxj) _p+2xj €x\0 O‘iK(Xi’Xj)
Since we use the RBF kernel, we have
2= g0t g en oge s)
Since we have Z;[j] = x;[j] — o; for vector X;,
I3 =12 =300 (i k] — 5 [K])? (10)

= 2o {(@ilk] — 0;) = (2;[k]—05)} = % =%
If (%X;,%;) is the inner product of %X; and X;, from the
Cauchy-Schwarz inequality, we have

I3ei — %1% = 325y (&[] — 2 [K])?

= {(@i[k])? + (5 [R]) =2 3051, @alkl2; (k] (1)
=\\ﬁi||2+\\ﬁj||2—2<>?i,f<j>>(||>?i||—\\>2j||)2
Therefore, z; < -0 erZ aJG*W(H*iH*H*jH)Q Z;
holds from Equatlon 9). Slmllarly, since [|%x; — %% <

(1%]| +11%;5 ||) holds from the Cauchy-Schwarz inequality,
we have 2, > Lo, —p+3° e UIil+I% D* =z, 0
We can compute the bounds for other kernel func-
tions such as linear (K (x;,%;) = (X;,X;)), polynomial
(K (x4,%x5) = (v(xi,%;) + r)P), and sigmoid (K (x;,%;) =
tanh(y(x;,x;) + r)) based on the following property:
Lemma 2 For the inner product of vector X; and x;, we
have <Xz‘a>ij> < s lllxill® + Il = (1% | = l1%51D)?} and
(xi, %) = g {llxi [15112 = (1%l + 1% 1)}
Proof Since ||x; —x;|?> = ||%; —%;||? from Equation (10),
(i, %) = B (a5 |25l =115 4205, %)) holds.
Since (%;, x]> < ||%;]|||%;]| holds from the Cauchy-Schwarz
inequality, we have —||%;[|?—||%;]|? +2<x“xj> < —(JI%:ll—
1%,1)2. Similarly, since (X;,%;) > —|%;]|[|%;| holds, we
have — |2~ 1% [242(%; %;) > — (%1%,)2, which
completes the proof. d
Note that we can compute norm ||x;|| and ||x;| before
applying the solver. As a result, we can exploit Lemma 2 to
efficiently compute the bounds for linear, polynomial, and
sigmoid kernel functions since these kernel functions can be
computed from inner product (x;, X;).

3592

Selective computation

In order to reduce the computation cost of one-class SVM,
we effectively use set of selected data points S and set of
pruned data points IP. More specifically, we apply the solver
for data points in set S and check the optimality of the hyper-
plane from data points in set PP. If the hyper-plane is not
confirmed to be optimal, we update set S and IP. Let X be a
set of the given data points, i.e., X = {x;|1 < i < n}, we
determine set S and [P so that they meet the three conditions
of (DSUP=X,2)SNP=0,and 3)Vx; € P, ; = O or
o = % We later described our approach to determine set S
and P. Theoretically, our approach is based on the following
property for set S and P.

Lemma 3 Let S and P be sets of data points such that (1)
SUP =X,(2)SNP =0, and (3) Vx; € P, a; = 0 or
o = % In addition, let o, be the Lagrange multiplier of
data point x; before applying the solver. The hyper-plane
is optimal if the following two conditions hold where the
bounds are computed from Lagrange multipliers after ap-
plying the solver to the data points in set S:

(1)Vx; € Psit. o = E,Ei<0 (12)
(2)vx; € Pst.a, =0, 2, >0 (13)

Proof Each «a; of data point x; included in set S reaches
convergence after applying the solver since the optimiza-
tion problem of one-class SVM is convex (Scholkopf et al.
2001). As a result, since we have S U P=XandSNP = (),
we need to show that (1) a; = — holds for data point

x; € PP such that o n— if we have Zi < Oand 2) a; =0
holds for data pomt x; € PP such that o = 0 if we have
z; > 0 even if we apply the solver to all the data points
in set X in order to prove Lemma 3. Note that set P does
not include data point x; such that 0 < o; < % from the
condition for set PP.

If Z; < 0 holds, we have z; < 0 since z; < Z; holds, and
we have & > 0 for such data points (Cristianini and Shawe-
Taylor 2000). In addition, if 3; is a Lagrange multiplier, we
have (1) 8;¢; = 0 and (2) «;(z; + &) = 0 from the Kuhn-
Tucker Theorem (Cristianini and Shawe-Taylor 2000). If we
assume ozZ = 0 for such data points as z; < 0, we have
B; = H since 3; = % — «; holds by differentiating the
Lagrange function with respect to &;. As a result, we have
& = 0 since 5;&; = 0 holds. However, this contradicts the
result of Z; < 0. Therefore, we have «; # 0. If we assume
0<a; < % for such data points of z; < 0, we similarly
have &; = 0 since we have 3;£; = 0 where 3; # 0. However,
this contradicts the result of Z; < 0. As a result, we have
o = ﬁ for such data points of z; < 0. If z; > 0 holds,
we have z; > 0 and & = 0 (Cristianini and Shawe-Taylor
2000). As a result, we have z; + & # 0. Therefore, a; = 0
holds from «;(z; + &;) = 0, which completes the proof. [

As shown in Lemma 3, we can check the optimality of
the hyper-plane from data points in set P; we do not need
set S. In addition, this lemma indicates that we can check
the optimality by using bound Z; and z;; we do not compute
parameter z;. As a result, we can check the optimality at
most O(n) time if we have the bounds from Lemma 3. On
the other hand, the shrinking approach checks the optimality

SON SN

of the hyper-plane by exactly computing parameter z; for all
the data points. Therefore, our approach can more efficiently
check the optimality than the shrinking approach.

In exploiting Lemma 3, we have the assumption for set S
and [P that they meet the three conditions of (1) SUP = X,
2)SNP =0,and 3) Vx; € P, a; = 0 or oy; %.Inour
approach, we initialize and update set S and IP as follows in
the iterative process to compute the optimal hyper-plane:

Definition 2 We initialize set S by including data points that
meet one of the following conditions:

(Dot =L andz, >0 (14)
(2)0<af <L (15)
(3)al=0and z; <0 (16)

In addition, we initialize set P by including data points that
meet either of the following two conditions:

(1) o (17)
(2) o (18)
Definition 3 If S’ and ' are the set of selected and pruned
data points before the update, respectively, we update S and

P as follows after applying the solver if the optimality is not
confirmed:

S=S"U{xilx; €P and z; <0< Z;}
P=P\{xx; €Pandz; <0<z}

_ 1 =.
= —andz; <0

=0andz; >0

(19)
(20)

As shown in Definition 2, we use the initial settings of the
Lagrange multipliers in computing set S and IP. We describe
the approach to initializing the Lagrange multipliers in the
next section. In Definition 3, we compute the bounds after
applying the solver. Definition 3 indicates that we move data
points to set S from set P if the hyper-plane is not confirmed
to be optimal; set S and IP are monotonically increased and
decreased, respectively. Definition 2 and 3 indicate that we
can obtain set S and P within O(n) time if we have the
bounds. For set S and P, we have the following property:

Lemma 4 [fset S and P are given by Definition 2 and 3, we
have (1)SUP =X, (2)SNP =0, and (3)Vx; €P, a; =0

or o =

Proof Just after the initialization by Definition 2, each data
point included in set S U IP meets one of the following con-
ditions: (1)z; > Oorz; < 0ifa) = L, (20 < of < L,
and (3) z; < O or z; > 0if o/ = 0. Since z; and z; are
the bounds of parameter z;, we have —oo < 2z, < Zz; < oo.
Therefore, it is clear that all the data points are included in
set SUP, i.e., SUP = X. Similarly, we have the following
conditions for data points in set SNP: (1) Z; > 0and z; < 0
if o/ = = and (2) z; < 0 and z; > 0if o = 0. Therefore,
it is clear that S NP = {. In addition, as shown in Equa-
tion (17) and (18), a data point can be included in set P only
if of = -L or o = 0. Therefore, PP does not include data
point x; such that 0 < a; < %’ After updating sets S and
IP, since the set of data points {nxi\xi €Pandz; <0<7%}
is moved from set IP to set S as shown in Equation (19) and
(20), we have SUP = S'UP' = Xand SNP = S'NP’ = (). In
addition, from Equation (20), any data points are not added

3593

Algorithm 1 Initialization of o

Input: Matrix X, parameter ~, number of data point n
QOutput: Lagrange multiplier o
o = Os Qsum — 0, A= @7

l:

2: repeat

3: if A # () then

4: x; = argmax{p;|x; € X\A};
S: else

6: x; = argmax{||X;|||x; € X};
7: add x; to A and randomly set «v;;
8: if Qsum + i > 1 then

9: a; =1 — sums
10: Qsum = Qsum + Qi)

11: for i = 1ton do

12: incrementally compute priority p;;
13: until ogum =1

to set P in the update computation. As a result, since set P
does not initially have a data point such that 0 < o; < .-,
all the data points in set P meet the condition of a; = 0 or
Q; = nly. O
Lemma 4 indicates that set S and IP given by Definition 2
and 3 meet the conditions assumed in Lemma 3. Therefore,
we can check the optimality from Definition 2 and 3.

Lagrange multiplier initialization

As described in the previous sections, we need to compute
the initial setting of Lagrange multiplier c; in computing
set S and P from the bounds. This section introduces our
approach that determines the initial setting.

In the proposed approach, we first set a;; = 0 for each
data point. We then add data points one by one to the set
of support vectors from the data points that have the highest
priorities until we have Y " | a; = 1. We randomly set the
Lagrange multiplier of the added data pointto 0 < «; < ﬁ
Note that Lagrange multipliers have constraints such that
0 < o < n—ly and Z?Zl a; = 1 as shown in Equa-
tion (4). We iteratively compute priority p; of data point
X; a8 p; = — Z?:l a,; K(x;,%;) by adding data points as
support vectors. Note that priority p; is computed from the
Lagrange multipliers and the kernel function of data point
x; similar to the definition of parameter z; in Equation (5)
although offset p is not used in computing priority p;. This
indicates that priority p; is expected to have high value if
data point x; is determined to be an outlier such that o; > 0.
As a result, we can effectively compute the initial setting of
Lagrange multiplier a; from priority p;. Note that we can
incrementally compute priority p; of each data point within
O(m) time in the process of adding data points one by one;
we can efficiently update priority of each data points.

Algorithm 1 shows the approach to compute the initial
setting of Lagrange multipliers. If A is a set of data points
that are added as support vectors, it selects the data point
that has maximum priority if A # () holds; otherwise, it
selects the data point offering the maximum norm since such
data points are expected to be outliers (lines 3-6). For the
selected data point, it randomly sets the Lagrange multiplier

as0 < oy < %, and, if the sum of the Lagrange multiplier

Algorithm 2 Quix

Input: Matrix X, parameter v, Lagrange multiplier
Output: Lagrange multiplier «, offset p
1: S=0P=0;

: fori = 1tomdo

sort elements in the i-th column vector of X

find the most frequent value from the sorted elements;
for i = 1tondo

compute vector x; from the most frequent values;
compute the initial Lagrange multiplier by Algorithm 1;
fori = 1tondo

compute bound Z; and z, from Definition 1:
10: compute set S and P from Definition 2;

R R b

11: repeat

12: apply the solver to the data points included in set S;

13: for i =1 ton do

14 incrementally compute Z; and z, by updating set O
15: check the optimality of the hyper-plane by using Lemma 3;

16: update set S and P from Definition 3:
17: until the hyper-plane is optimal
18: compute p from ec;

exceeds 1, it resets «; by following the constraint for one-
class SVM (lines 7-10). It then incrementally computes the
priority of each data point (lines 11-12).

Since we can obtain sub-optimal hyper-plane by using
the initialization approach, we can effectively reduce the
training time. Even if we randomly initialize the dual vari-
ables, we can obtain the optimal hyper-plane since our ap-
proach checks the optimality of the obtained hyper-plane by
Lemma 3, however, training time would be a little bit long.

Algorithm

Algorithm 2 gives a full description of our approach, Quix.
It starts by computing the most frequent value o; from the -
th column to obtain sparse vectors (lines 2-6). It then obtains
the initial Lagrange multiplier settings by using Algorithm 1
(line 7). It computes the upper and lower bounds of each data
point and the sets of selected and pruned data points from the
definitions (lines 8-10). In order to compute the hyper-plane,
it applies the solver to the selected data points and updates
the bounds (lines 12-14). It then checks the optimality of
the obtained hyper-plane by exploiting Lemma 3 and incre-
mentally computes the set of selected and pruned data points
from Definition 3 (lines 15-16). It performs these procedures
by using Lagrange multipliers of the previous iteration as
the warm-start until the optimal hyper-plane is assured (line
17). Note that we can use various solvers since our approach
is solver-independent as shown in Algorithm 2. In addition,
our approach can be easily extended to online fashion. When
we have a new data point, we obtain set A by adding data
points of previous support vectors and the new data points.
After that, we randomly set the initial setting of Lagrange
multiplier so that the condition of Equation (4) should meet.
Our approach has the following properties:

Theorem 1 The proposed approach is guaranteed to yield
the optimal hyper-plane.

Proof Since we have SUP = Xand SNP = (from

Lemma 4, Algorithm 2 assigns all the data points to either
set S or P after the initialization by Definition 2 (line 10).
After initialization, we apply the solver to each data point
in set S (line 12). It is clear that the hyper-plane is opti-
mal if it passes the optimality check according to Lemma 3.
From the obtained hyper-plane, we update set S and P by
using Definition 3 (line 16). In this process, set S and PP are
monotonically increased and decreased, respectively. This
is because, as shown in Definition 3, set of data points
{xi|x; € Plandz; < 0 < Z;} is added to set S by sub-
tracting it from set IP. This indicates that this process can
update set S and P until S = X and P = (). In this case, it is
clear that our approach can obtain the optimal hyper-plane
since it applies the solver to all data points.

Theorem 2 Let C(S) and t be the computation cost of the
solver applied to set S and the number of applications of the
solver, respectively. In addition, let |A| and |Q| be the num-
ber of data points in A and Q, respectively. The computation
cost of the proposed approach is O(nm(logn+|A|+|0])+
(C(S)+n|H])t).

Proof As shown in Algorithm 1, in computing the initial
setting of Lagrange multipliers, it identifies the data points
that have the largest priorities if A # () holds (lines 2-4);
otherwise, it obtains the data point with maximum norm
(lines 5-6). Since we can update priorities within O(nm)
time after adding a data point to set A, the computation cost
for these processes is O(nm|Al). As shown in Algorithm 2,
in computing the optimal hyper-plane, we first compute the
most frequent value of each column of data matrix X to ob-
tain vector x; (lines 2-6). This process needs O(nm logn)
time by using Quicksort. It computes the bounds from set
A at O(nm|A|) time (lines 8-9) and initializes sets S and
P within O(n) time (line 10). In computing the hyper-
plane, it applies the solver to the selected data points within
O(C(S)t) time. It needs O(nm|OQ| + n|H|t) time to up-
date the bounds (lines 13-14). In addition, it requires O(nt)
time to check the optimality of the hyper-plane (line 15).
To compute offset p, it needs O(n) time (line 18). As a
result, the computation cost of the proposed approach is
O(nm(log n+|A|+|0|)+(C(S)+n|H|)t). O

Since we randomly set Lagrange multiplier from 0 to
1/(nv), average of Lagrange multiplier initially included in
set S is 2nv. In addition, at least one data point is added to
set S in each iteration. Note that if no data point is added,
we terminate the iterations. Therefore, The upper bound of
number of iterations is O(|S| — 2nv).

Experimental evaluation

In this section, we evaluated the efficiency and effective-
ness of the proposed approach. We performed the experi-
ments on three datasets of gisette, rcvi.binary, and real-sim
downloaded from the website of LIBSVM. They have 6000,
20242, and 72309 data points, respectively; these datasets
have dimensions of 5000, 47236, and 20958, respectively.
In the datasets, each column vector of data matrix X is
standardized to have mean zero and variance one by fol-
lowing the previous papers (Ceker and Upadhyaya 2016;
Fisher, Camp, and Krzhizhanovskaya 2016).

Quix —— |
Nystrom vzz=z
Fourier £==X

[Coherence Exxx
Active-set &z
Shrinking m—

Wall clock time [s]
5
%

Wall clock time [s]

4 101 .

g\sene revi.binary real-sim

(v =0.02

FActive-set Exzezzd
Shrinking m—

g\sene revl

2)v =0.04

Quix —— |
Nystrém zzz=z
Fourier <X
F Coherence EXxXx
Active-set Bz
£ Shrinking s

10° F

ESSSSNNNNSSSNN
V7777777777

N CaVaVaVaVavaVaVaviva¥

A

gisette revi.

3)v = 0.06

ary real-sim

Figure 1: Training time of each approach.

We compared our approach to the Nystrom method
(Drineas and Mahoney 2005), random Fourier features
(Rahimi and Recht 2007), the coherence criterion-based ap-
proach (Noumir, Honeine, and Richard 2012), the active-
set method-based approach (Gao 2015), and the shrinking
approach (Joachims 1999). In the experiments, we set the
number of landmark to 0.01-n for the Nystrom method. We
set the number of features to 0.01-m for Random Fourier
features. The coherence criterion-based approach incremen-
tally adds data points to a set of support vectors by exploit-
ing threshold py if it is not well approximated by the sup-
port vectors. The active-set method-based approach updates
the hyper-plane by adding a data point to a set of support
vectors if its distance to the center of hyper-plane is not
less than the radius of the hyper-plane. In the experiments
of the coherence criterion-based approach and the active-set
method-based approach, we show the results in training all
the data points. Note that these four approaches inherently
can discard data points that can be support vectors of the op-
timal hyper-plane unlike our approach. On the other hand,
the shrinking approach obtains the optimal hyper-plane by
checking the optimality of the hyper-plane on the basis of
Kuhn-Tucker Theorem. In this section, “Quix”, “Nystrom”,
“Fourier”, “Coherence”, “Active-set”, and “Shrinking” rep-
resent the results of the proposed approach, the Nystrom
method, random Fourier features, the coherence criterion-
based approach, the active-set method-based approach, and
the shrinking approach, respectively.

Our approach can use SMO variants since it prunes
data points before applying the solver as shown in Algo-
rithm 2. Similarly, SMO variants can be used in the Nystrom
method (Drineas and Mahoney 2005), random Fourier fea-
tures (Rahimi and Recht 2007), the active-set method-based
approach (Gao 2015), and the shrinking approach (Joachims
1999). However, since the coherence criterion-based ap-
proach (Noumir, Honeine, and Richard 2012) uses the in-
cremental approach, it cannot use SMO variants. In addition,
the solver of LIBSVM exploits several heuristics to improve
the efficiency. Therefore, in order to ensure fair compar-
isons, we used the original SMO (Platt 1998) as the solver.
We used the RBF kernel function and set kernel parameter
. We conducted all experiments on a Linux server
W1th 2 70 GHz Intel Xeon.

3595

ary real-sim
Pruned C——
Selected —=

Support Em——

Ll

gisette rcvi.binary real-sim

Number of data points

Figure 2: Effectiveness of the pruning

Efficiency

We evaluated the training time of each approach. Figure 1
shows the results with parameter v values of 0.02, 0.04,
and 0.06. For the coherence criterion-based approach, we set
threshold i so that the number of support vectors is nv for
parameter v to ensure fair comparisons. Note that v is the
lower bound on the fraction of support vectors. Therefore,
we changed v to evaluate our approach for various numbers
of support vectors. For real-sim dataset, we omit the results
of the active-set method-based approach and the shrinking
approach since training could not be completed within a
week. Figure 2 shows the number of data points included
in set S and P of our approach and the number of support
vectors after we have the optimal hyper-plane. In this figure,
“Pruned”, “Selected”, and “Support” represent the number
of selected data points in set S, pruned data points in set PP,
and support vectors, respectively, where we set v =0.02.

As shown in Figure 1, our approach is much faster than
the previous approaches. Specifically, it is up to 170, 190,
40, 3800, and 6800 times faster than the Nystrém method,
random Fourier features, the coherence criterion-based ap-
proach, active-set method-based approach, and the shrinking
approach, respectively. The Nystrom method and random
Fourier features are not so effective in reducing the com-
putation time. This is because, although these approaches
can efficiently compute kernel functions used in the solver,
they need to apply the solver for all the data points. In
addition, the proposed approach is more efficient than the
coherence criterion-based and active-set method-based ap-
proaches. The active-set method-based approach incurs high
computation cost since it must compute the distances of data
points from the center of the hyper-plane to discard data

Quix
Nystrom

T
Coherence &x=x= -
Active-set Bz
Shrinking m——

T T
Quix ——

Nystrom zzz2

Fourier Ex<

Objective function score
L
Objective function score

'g
§
N

Voo 7777777777

gisette rev:

(1) v = 0.02

.binary real-sim

Figure 3:

T T T

Quix ——— Coherence EXx=
Nystrém ezz=z
Fourier E5=X

Active-set xx
Shrinking m— |

F-measure

4
N %% %%

0.04 0.
Parameter v

o
=3

Figure 4: F-measures of output support vectors.

points. Since the coherence criterion-based approach can ef-
ficiently check the data points by using the criterion, it is
faster than the active-set method-based approach. However,
the effectiveness of the coherence criterion-based approach
is moderate. This is because, although it incrementally up-
dates the Lagrange multipliers by using the Woodbury ma-
trix identity, it needs to update the Lagrange multipliers ev-
ery time data points are added to the set of support vectors.
Although the shrinking approach can reduce data points be-
fore applying the solver, it needs to compute parameter z;
of each data point from the kernel functions in checking
the optimality of the hyper-plane. Therefore, the shrinking
approach does not effectively reduce the computation cost.
On the other hand, our approach efficiently computes the
upper and lower bounds of each data point before apply-
ing the solver. In addition, we can effectively reduce sets of
selected data points applied to the solver as shown in Fig-
ure 2. Note that the number of applications of the solver in
our approach, ¢, was at most two in the experiments. Even
though we use the set of pruned data points in checking the
optimality, we can efficiently check the optimality by using
upper and lower bounds. Note that our approach is more ef-
ficient than the incremental SVM approach (Laskov et al.
2006). Incremental SVM needs to iteratively add data point
one by one. Therefore, it needs O(n|S|?) time to perform
batch learning (n > |S|) if SMO is used as the solver. On
the other hand, we compute hyper-plane for s data points and
thus needs O(|S|?) time. Therefore, our approach is more ef-
ficient than the previous approaches.

Optimality

One major advantage of our approach is that it yields the
optimal hyper-plane that minimizes the objective function

T
—
rzz2a

Fourier Ex=3

gisette rcvi.binary real-sim

(2) v = 0.04

3596

T

Quix ——
Nystrom zzz2
Fourier E==3

" Coherence s]
Active-set Bz

T
Coherence &x=x= -
Active-set Bz
Shrinking m—

L
Objective function score

gisette rcvi.binary real-sim

3)v =0.06

Objective function score of each approach.

T

Quix C—1 ' Goherence &
Nystrom rzz=z Active-set rxm
Fourier =X Shrinking m—m

XXX

0.8

XXX

0.6

XXX

0.4
0.2

Training accuracy

ST EeES

Parameter v

Figure 5: Training accuracy of each approach

No subtraction ——
Subtraction =—=

N

gisette rcvi.binary real-sim

10* £

Wall clock time [s]

Figure 6: Training time of the subtraction approach

given by Equation (1). In Figure 3, we show the scores
of the objective function yielded by each approach for pa-
rameter v values of 0.02, 0.04, and 0.06. In addition, Fig-
ure 4 shows the F-measure against the original approach of
one-class SVM in identifying support vectors, and Figure 5
show the training accuracy of each approach where we used
gisette dataset. F-measure of an approach is 1 if the obtained
support vectors by the approach exactly match those of the
original approach.

Figure 3 shows that our approach has smaller objective
function scores than the previous approximate approaches.
The Nystrom method randomly selects data points as land-
marks and random Fourier features randomly selects fea-
tures in order to compute low-rank approximation. How-
ever, they erroneously discard data points that can be sup-
port vectors of the optimal hyper-plane as shown in Fig-
ure 4; they cannot exactly obtain the support vectors. As a
result, they fail to minimize the score of the objective func-
tion given by Equation (1) as shown in Figure 3. In addi-
tion, the online approaches exploit heuristics in checking
data points to improve the efficiency. However, these ap-
proaches cannot obtain the optimal hyper-plane since the

heuristics have no theoretical foundation. Note that ap-
proximate approaches result in reducing accuracy of SVM
as demonstrated in the previous papers (Li et al. 2016;
Yang et al. 2012). On the other hand, although our approach
also discards data points it is carefully designed so that sup-
port vectors of the optimal hyper-plane can be obtained.
Therefore, as shown in Figure 4, our approach can accu-
rately identify the support vectors for the given data points.
As aresult, the training accuracy of the proposed approach is
high as shown in 5. Note that, as described in the preliminar-
ies section, the training accuracy of one-class SVM cannot
smaller than 1 — v. Although the shrinking approach can ob-
tained the optimal hyper-plane, it needs high computation
cost as shown in Figure 1.

Subtraction approach

The proposed approach uses sparse vector X; to efficiently
compute the upper and lower bounds. So as to evaluate the
effectiveness of this approach, we perform experiments. In
Figure 6, we show the training times where we set v = 0.02.
In this figure, “No subtraction” and “Subtraction” represent
the results of approaches without and with the subtraction
approaches, respectively. Note that gisette dataset obtained
from the website of LIBSVM has numerical features.

Figure 6 shows that we can increase the training speed
by reducing the number of non-zero elements. In order to
increase the number of non-zero elements, the proposed ap-
proach subtracts the most frequent value in each vector. As a
result, our approach can use the sparse vectors in computing
the bounds. Since we can effectively reduce non-zero ele-
ments, we can increase the training efficiency of one-class
SVM; the training time is up to 147 times faster by exploit-
ing the subtraction approach.

Conclusions

In this paper, we proposed Quix, an efficient algorithm for
one-class SVM that is guaranteed to yield the optimal hyper-
plane. The proposed approach computes upper and lower
bounds of a parameter that determines the hyper-plane to
improve calculation efficiency. Experiments indicated that
the proposed approach outperforms previous approaches in
terms of efficiency and optimality. The proposed approach
is an attractive option in the application of one-class SVM.

References
Cauwenberghs, G., and Poggio, T. A. 2000. Incremental and
Decremental Support Vector Machine Learning. In NIPS, 409-
415.
Ceker, H., and Upadhyaya, S. J. 2016. User Authentication with
Keystroke Dynamics in Long-text Data. In BTAS, 1-6.
Cristianini, N., and Shawe-Taylor, J. 2000. An Introduction to Sup-
port Vector Machines and Other Kernel-based Learning Methods.
Cambridge University Press.
Drineas, P., and Mahoney, M. W. 2005. On the Nystréom Method for
Approximating a Gram Matrix for Improved Kernel-based Learn-
ing. Journal of Machine Learning Research 6:2153-2175.

Fisher, W.; Camp, T.; and Krzhizhanovskaya, V. V. 2016. Crack
Detection in Earth Dam and Levee Passive Seismic Data Using
Support Vector Machines. In ICCS, 577-586.

3597

Fujiwara, Y.; Nakatsuji, M.; Shiokawa, H.; Mishima, T.; and
Onizuka, M. 2013. Fast and Exact Top-k Algorithm for PageR-
ank. In AAAL

Fujiwara, Y.; Nakatsuji, M.; Shiokawa, H.; Ida, Y.; and Toyoda, M.
2015. Adaptive Message Update for Fast Aaffinity Propagation. In
SIGKDD, 309-318.

Fujiwara, Y.; Marumo, N.; Blondel, M.; Takeuchi, K.; Kim, H.;
Iwata, T.; and Ueda, N. 2017a. Scaling Locally Linear Embedding.
In SIGMOD, 1479-1492.

Fujiwara, Y.; Marumo, N.; Blondel, M.; Takeuchi, K.; Kim, H.;
Iwata, T.; and Ueda, N. 2017b. SVD-based Screening for the
Graphical Lasso. In IJCAI, 1682-1688.

Gao, K. 2015. Online One-class SVMs with Active-set Optimiza-
tion for Data Streams. In ICMLA, 116-121.

Go6mez-Verdejo, V.; Arenas-Garcia, J.; Lazaro-Gredilla, M.; and
Navia-Vazquez, A. 2011. Adaptive One-class Support Vector Ma-
chine. IEEE Trans. Signal Processing 59(6):2975-2981.
Joachims, T. 1999. Advances in kernel methods. Cambridge,
MA, USA: MIT Press. chapter Making Large-scale Support Vector
Machine Learning Practical, 169-184.

Laskov, P.; Gehl, C.; Kriiger, S.; and Miiller, K. 2006. Incremental
Support Vector Learning: Analysis, Implementation and Applica-
tions. Journal of Machine Learning Research 7:1909-1936.

Li, Z.; Yang, T.; Zhang, L.; and Jin, R. 2016. Fast and Accurate
Refined Nystrom-based Kernel SVM. In AAAI 1830-1836.
Mishima, T., and Fujiwara, Y. 2015. Madeus: Database Live Mi-
gration Middleware under Heavy Workloads for Cloud Environ-
ment. In SIGMOD, 315-329.

Musco, C., and Musco, C. 2017. Recursive Sampling for the Nys-
trom Method. In NIPS, 3836-3848.

Nakatsuji, M., and Fujiwara, Y. 2014. Linked Taxonomies to Cap-
ture Users’ Subjective Assessments of Items to Facilitate Accurate
Collaborative Filtering. Artif. Intell. 207:52—-68.

Nakatsuji, M.; Fujiwara, Y.; Toda, H.; Sawada, H.; Zheng, J.; and
Hendler, J. A. 2014. Semantic Data Representation for Improving
Tensor Factorization. In AAAI 2004-2012.

Noumir, Z.; Honeine, P.; and Richard, C. 2012. Online One-class
Machines Based on the Coherence Criterion. In EUSIPCO, 664—
668.

Platt, J. 1998. Sequential Minimal Optimization: A Fast Algorithm
for Training Support Vector Machines. Technical report.

Rahimi, A., and Recht, B. 2007. Random Reatures for Large-scale
Kernel Machines. In NIPS, 1177-1184.

Scholkopf, B.; Platt, J. C.; Shawe-Taylor, J.; Smola, A. J.; and
Williamson, R. C. 2001. Estimating the Support of a High-
dimensional Distribution. Neural Computation 13(7):1443-1471.
Steele, J. M. 2004. The Cauchy-Schwarz Master Class: An Intro-
duction to the Art of Mathematical Inequalities. Cambridge Uni-
versity Press.

Tanaka, Y.; Kurashima, T.; Fujiwara, Y.; Iwata, T.; and Sawada, H.
2016. Inferring Latent Triggers of Purchases with Consideration of
Social Effects and Media Advertisements. In WSDM, 543-552.
Wu, L.; Yen, . E.; Chen, J.; and Yan, R. 2016. Revisiting Random
Binning Features: Fast Convergence and Strong parallelizability.P
In KDD, 1265-1274.

Yang, T.; Li, Y.; Mahdavi, M.; Jin, R.; and Zhou, Z. 2012. Nystrém
Method vs Random Fourier Features: A Theoretical and Empirical
Comparison. In NIPS, 485-493.

