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Abstract
Kernel selection is fundamental to the generalization perfor-
mance of kernel-based learning algorithms. Approximate ker-
nel selection is an efficient kernel selection approach that ex-
ploits the convergence property of the kernel selection crite-
ria and the computational virtue of kernel matrix approxima-
tion. The convergence property is measured by the notion of
approximate consistency. For the existing Nyström approxi-
mations, whose sampling distributions are independent of the
specific learning task at hand, it is difficult to establish the
strong approximate consistency. They mainly focus on the
quality of the low-rank matrix approximation, rather than the
performance of the kernel selection criterion used in conjunc-
tion with the approximate matrix. In this paper, we propose
a novel Nyström approximate kernel selection algorithm by
customizing a criterion-driven adaptive sampling distribution
for the Nyström approximation, which adaptively reduces the
error between the approximate and accurate criteria. We the-
oretically derive the strong approximate consistency of the
proposed Nyström approximate kernel selection algorithm.
Finally, we empirically evaluate the approximate consistency
of our algorithm as compared to state-of-the-art methods.

Introduction
Kernel-based learning provides a way to implicitly trans-
form data into a new feature space, which allows the learn-
ing of nonlinear functions using linear classifiers or regres-
sors in the kernel-induced feature space. The kernel function
determines the reproducing kernel Hilbert space (RKHS),
which is the hypothesis space of kernel-based learning and
hence has an essential influence on the performance of the
resulting hypothesis. Therefore, the selection of the ker-
nel function is a central problem in kernel-based learning
(Micchelli and Pontil 2005). The problem of kernel selec-
tion is closely linked to the generalization error of kernel-
based learning algorithms. The kernel with the smallest gen-
eralization error is usually regarded as the optimal kernel
(Bartlett, Boucheron, and Lugosi 2002; Liu et al. 2017;
Liu and Liao 2015). However, in practice one cannot com-
pute the generalization error because the underlying prob-
ability distribution of the data is unknown. It is thus com-
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mon practice to resort to estimates of the generalization er-
ror. One can either use empirical estimates that are based on
experiments, or theoretical estimates that are based on the
upper bounds of the generalization error. Cross-validation
(CV) is a well-known empirical estimate of the general-
ization error. Leave-one-out (LOO), the extreme form of
CV, provides an almost unbiased estimate of the general-
ization error. However, the naı̈ve kernel selection strategy
of CV, exhaustive search in the kernel parameter space, is
computationally intensive. To speed up CV-based methods,
approximate CV approaches were proposed, such as effi-
cient LOO (Cawley and Talbot 2010) and Bouligand in-
fluence function CV (BIFCV) (Liu, Jiang, and Liao 2014;
Liu et al. 2018). Employing the theoretical estimate bounds
of the generalization error as kernel selection criteria is an-
other alternative to experimental methods. Different bound-
based criteria introduce different measures of the capacity
of the hypothesis space (Bartlett, Boucheron, and Lugosi
2002; Ding et al. 2018), such as Rademacher complexity
(Bartlett and Mendelson 2002), local Rademacher complex-
ity (Cortes, Kloft, and Mohri 2013; Li et al. 2018), maximal
discrepancy (Bartlett, Boucheron, and Lugosi 2002), maxi-
mum mean discrepancy (MMD) (Sriperumbudur et al. 2009;
Gretton et al. 2012; Song et al. 2012; Ding et al. 2019), cov-
ering number (Ding and Liao 2014b) and effective dimen-
sionality (Zhang 2005). However, the computational com-
plexities of the existing kernel selection criteria are at least
quadratic in the number of examples l, i.e., O(l2). This kind
of scalability is prohibitive for large-scale problems.

Approximate kernel selection is an emerging and efficient
kernel selection approach, which exploits the convergence
property of the kernel selection criteria as well as the com-
putational virtue of kernel matrix approximation (Ding and
Liao 2011; 2014a; 2017). The basic principle of approxi-
mate kernel selection is that it is sufficient to calculate ap-
proximate kernel selection criteria, which can discriminate
the (nearly) optimal kernel from other candidates with high
efficiency. Two theoretical problems are faced by approxi-
mate kernel selection: how kernel matrix approximation im-
pacts the kernel selection criterion and whether this impact
can be ignored for large enough examples. In (Ding and Liao
2014a), the approximate consistency was first defined to the-
oretically answer these questions, by studying under what
conditions and at what speed the approximate kernel selec-
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tion criterion is close to the accurate one, if at all. It is worth
mentioning that the approximate consistency is defined for
approximate kernel selection algorithms and different from
the classical concept of “consistency” in the learning the-
ory, which is defined for learning algorithms and measures
how the learned hypothesis converges to the optimal one
that minimizes the expected error in the hypothesis space.
The Nyström approximation (Williams and Seeger 2000;
Drineas and Mahoney 2005; Yang et al. 2012; Kumar,
Mohri, and Talwalkar 2012; Gittens and Mahoney 2013;
Jin et al. 2013; Musco and Musco 2017) is a prevailing low-
rank matrix approximation method in the machine learning
community. However, even for the Nyström approximation
with the best kernel matrix approximation error bound (Git-
tens and Mahoney 2013), it is difficult to prove the strong
approximate consistency of the approximate kernel selection
method (Ding and Liao 2014a). It has been proven that the
best approximate consistency for Nyström methods is the 1

2 -
order approximate consistency (weaker than the strong ap-
proximate consistency) (Ding and Liao 2014a), which is de-
rived from the Nyström approximation using leverage score
sampling (Gittens and Mahoney 2013). Providing the first
Nyström approximate kernel selection approach with strong
approximate consistency is the goal of this paper.

Sampling distribution is critical to the performance of the
Nyström approximation. However, for the existing Nyström
methods, the sampling distributions are independent of the
specific learning task at hand and focus on the quality of the
low-rank matrix approximation, which ignores the perfor-
mance of the kernel selection criterion used in conjunction
with these approximations. The 1

2 -order approximate consis-
tency is the best approximate consistency for Nyström meth-
ods (Ding and Liao 2014a), which is likely caused by the
isolation between the sampling distribution and the kernel
selection. In this paper, we customize an adaptive sampling
distribution for the Nyström approximation and propose a
novel Nyström approximate kernel selection algorithm with
strong approximate consistency. The main contributions of
this paper can be summarized as follows. First, a criterion-
driven adaptive sampling distribution that iteratively reduces
the error between the approximate and accurate criteria is
designed for the Nyström approximation for the first time.
Second, based on this newly designed sampling distribution,
we propose a novel Nyström approximate kernel selection
algorithm. Third, we prove the strong approximate consis-
tency of the proposed Nyström approximate kernel selection
algorithm. Finally, we conduct empirical evaluations of the
approximate consistency of the proposed algorithm as com-
pared to state-of-the-art approximate algorithms.

Related Work
Kernel-based learning algorithms suffer from high com-
putational and storage complexity due to the use of the
kernel matrix. Kernel matrix approximation is adopted to
effectively reduce the computational and storage burdens
of kernel-based learning. To achieve linear complexity in
the number of examples, low-rank approximations from
subsets of columns are considered, such as the classical
Nyström method with different kinds of sampling strategies

(Williams and Seeger 2000; Drineas and Mahoney 2005;
Zhang and Kwok 2010; Kumar, Mohri, and Talwalkar 2012;
Gittens and Mahoney 2013; Musco and Musco 2017), the
modified Nyström method (Wang and Zhang 2013), incom-
plete Cholesky decomposition (Fine and Scheinberg 2002;
Bach and Jordan 2005; Bach 2013), sparse greedy approxi-
mations (Smola and Schölkopf 2000), and CUR matrix de-
composition (Drineas, Mahoney, and Muthukrishnan 2008).

The Nyström method1 is an effective low-rank matrix ap-
proximation method that has been extensively used in differ-
ent domains of machine learning, such as Gaussian process
(Williams and Seeger 2000), spectral grouping (Fowlkes et
al. 2004), and manifold learning (Talwalkar, Kumar, and
Rowley 2008; Zhang and Kwok 2010). To reduce the ma-
trix approximation error, different sampling strategies for
the Nyström approximation have been considered and the-
oretically analyzed, including uniform sampling (Kumar,
Mohri, and Talwalkar 2009), column norm-based sampling
(Drineas and Mahoney 2005), k-means clustering sampling
(Zhang and Kwok 2010; Si, Hsieh, and Dhillon 2017), and
leverage score-based sampling (Gittens and Mahoney 2013).
We collectively refer to the above sampling as fixed sam-
pling, which determines the distribution of all columns be-
fore the sampling procedure. In addition to the fixed sam-
pling, an adaptive sampling technique was proposed in
(Deshpande et al. 2006), which selects more informative
columns in each iteration and iteratively updates the sam-
pling distribution for selecting the next columns. The adap-
tive sampling has been extended to the Nyström approxi-
mation (Kumar, Mohri, and Talwalkar 2012), the modified
Nyström approximation (Wang and Zhang 2013) and the
ridge leverage score Nyström approximation (Musco and
Musco 2017). However, these existing fixed and adaptive
sampling distributions are almost independent of the specific
learning task at hand. They focus on the quality of the low-
rank approximation, the kernel matrix approximation error,
rather than the performance of the kernel selection criterion
with these approximations.

As compared to (Ding and Liao 2011; 2014a; 2017), this
paper designs the first criterion-driven adaptive sampling
strategy and provides the first approximate kernel selection
algorithm with strong approximate consistency for classical
Nystrom approximation.

Notations and Preliminaries
We use X to denote the input space and Y the output do-
main. Usually we will have X ⊆ Rd, Y = {−1, 1} for
binary classification and Y = R for regression. We assume
|y| ≤M for any y ∈ Y , whereM is a constant. The training
set is denoted by S = {(x1, y1) , . . . , (xl, yl)} ∈ (X × Y)

l.
We consider the Mercer kernel κ in this paper, which is a
continuous, symmetric and positive definite function from
X × X to R. The kernel matrix K = [κ(xi,xj)]

l
i,j=1, de-

1In the rest of this paper, if we mention the Nyström method, we
refer to the classical Nyström method, not the modified Nyström
method. Although the modified Nyström method has a tighter ma-
trix error bound, its computational burden is higher than the classi-
cal Nyström method.
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fined on a finite set of inputs {x1, . . . ,xl} ⊆ X is sym-
metric and positive definite (SPD). The reproducing ker-
nel Hilbert space (RKHS) Hκ associated with the kernel
κ can be defined as Hκ = span{κ(x, ·) : x ∈ X},
and the inner product 〈·, ·〉Hκ

on Hκ is determined by
〈κ(x, ·), κ(x′, ·)〉Hκ

= κ(x,x′) for x,x′ ∈ X . We use
‖K‖2 and ‖K‖F to denote the spectral and Frobenius norm
of K, respectively. We use λt(K) for t = 1, . . . , l to denote
the eigenvalues of K in descending order.

Approximate Kernel Selection
In this section, we first introduce a kernel selection criterion
that is very general in supervised learning, and then give a
brief review of approximate kernel selection and approxi-
mate consistency.

We consider the regularized square loss function, which
is very common in the machine learning community,

E(f) =
1

l

l∑
i=1

(f(xi)− yi)2 + µ‖f‖2Hκ
,

where µ denotes the regularization parameter. The opti-
mal function fκ = arg minf∈Hκ

E(f). By the represen-
ter theorem, we have fκ =

∑l
i=1 αiκ(xi, ·) with α =

(α1, . . . , αl)
T = (K + µlI)−1y, where y = (y1 . . . , yl)

T

and I denotes the identity matrix. Writing Kµ = K + µlI,
‖fκ‖2Hκ

= αTKα = yTK−1µ KK−1µ y. Denoting fκ =

(fκ(x1), . . . , fκ(xl))
T, we have fκ = Kα = KK−1µ y,

which implies

fκ − y = KK−1µ y −KµK−1µ y = −µlK−1µ y.
Now, we have

E(fκ) =
1

l
(fκ − y)T(fκ − y) + µ‖fκ‖2Hκ

= µyTK−1µ y.

E(fκ) is the regularized empirical error of the optimal
function fκ. For a fixed regularization parameter µ, E(fκ)
only depends on the kernel κ. It is known that κ has a one-
to-one correspondence with RKHSs Hκ. Different kernels
correspond to different RKHSs. In different RKHSs, differ-
ent optimal functions are derived. We can select the optimal
function fκ that makes E(fκ) the smallest among all opti-
mal functions, and then the corresponding kernel κ will be
the optimal kernel. We define a kernel selection criterion as

C(K) = E(fκ) = µyTK−1µ y. (1)

In the following, we adopt C(K) as a case to show our
Nyström approximate kernel selection algorithm. It is worth
noting that our algorithm can be generalized to any other
kernel selection criterion C() that is defined as a function of
a kernel matrix. For a prescribed set of kernels K, we can
find the optimal kernel by

κ∗ = arg min
κ∈K

C(K) = arg min
κ∈K

µyTK−1µ y.

There are three cases for the choice of the kernel set K:
(i) K includes a given type of kernel that has finite candi-
date parameters; (ii) K includes a given type of kernel that

has continuous parameters; (iii) K is defined as a set of non-
negative combinations of base kernels (Ding and Liao 2017).
C(K) can be applied to these three cases. In this paper, we
concentrate on the design of the sampling distribution and
the approximate kernel selection algorithm, so we only con-
sider the first case and leave the latter two as future work.

The approximate kernel selection was first studied in
(Ding and Liao 2011). Suppose that a kernel selection crite-
rion C() and a kernel matrix approximation algorithm A(),
which uses the training data S and the kernel κ to generate
the approximate matrix K̃, are given, the approximate kernel
selection is developed to select the kernel κ∗ as

κ∗ = arg min
κ∈K

C(A(S, κ)) = arg min
κ∈K

C(K̃). (2)

Here we denote an approximate kernel selection methodM
as a 2-tuple: M = (C(),A()). The computational cost for
C(K) defined in (1) is O(l3), which is prohibitive for big
data. The computation of C(K̃) could be much more effi-
cient than that of C(K) due to the specific structure of K̃. For
the Nyström approximation, the Woodbury formula could be
used to calculate C(K̃) (Ding and Liao 2012) and for the
multilevel circulant matrix approximation (Ding and Liao
2017), fast Fourier transform (FFT) could be used.

To demonstrate the rationality of approximate kernel se-
lection, the notion of approximate consistency was defined
in (Ding and Liao 2014a), which answers the theoretical
questions under what conditions and at what speed the ap-
proximate kernel selection criterion converges to the accu-
rate one, if at all2.
Definition 1. Suppose we are given an approximate kernel
selection methodM = (C(),A()), where C() is a kernel se-
lection criterion, and A() is a kernel matrix approximation
algorithm, which uses S and κ to generate the approximate
matrix K̃. We say the approximate kernel selection method
M is of strong approximate consistency, if

|C(K)− C(K̃)| ≤ ε(l), (3)

where liml→∞ ε(l) → 0. We sayM is of p-order approxi-
mate consistency if

|C(K)− C(K̃)| ≤ ε(l), (4)

where liml→∞ ε(l)/lp → 0. There are two scenarios: if A
is a deterministic algorithm, the approximate consistency is
defined deterministically; if A is a stochastic algorithm, (3)
or (4) is established under expectation or with high proba-
bility.

Nyström Approximate Kernel Selection
In this section, we materialize the kernel matrix approxi-
mation algorithm A() by the Nyström approximation, cus-
tomize an adaptive sampling strategy for the Nyström ap-
proximation and propose a novel Nyström approximate ker-
nel selection algorithm with strong approximate consistency.

2In (Ding and Liao 2014a), the approximate consistency is de-
fined for A(). Here we refine that definition and take approximate
consistency as a basic property ofM = (C(),A()).
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Suppose we randomly sample c columns of K. Let C de-
note the l× c matrix formed by these columns. Let D be the
c×cmatrix consisting of the intersection of these c columns
with the corresponding c rows of K. The Nyström approxi-
mation matrix is

K̃ = CD†kC
T ≈ K,

where Dk is the optimal rank k approximation to D and D†k
is the Moore-Penrose generalized inverse of Dk.

If we denote the SVD of D as D = UDΣDUT
D,

D†k = UD,kΣ
†
D,kU

T
D,k,

where ΣD,k and UD,k correspond to the top k singular val-
ues and singular vectors of D, respectively, then we have

K̃ = CUD,k

√
Σ†D,k︸ ︷︷ ︸

V

(
CUD,k

√
Σ†D,k

)T

︸ ︷︷ ︸
VT

,

where we let V = CUD,k

√
Σ†D,k ∈ Rl×k.

As shown in (2), approximate kernel selection adopts the
approximate criterion C(K̃) to select the optimal kernel. To
calculate the value of C(K̃), we need to solve the inverse of
K̃ + µlIl, where Il denotes the l × l identity matrix.

Using the Woodbury formula, we obtain(
K̃ + µlIl

)−1
=

1

µl

(
Il −V

(
µlIk + VTV

)−1
VT
)
.

To solve (K̃+µlIl)
−1y in C(K̃), we introduce the vector u

and let (K̃ + µlIl)u = y. Then we have

u =
1

µl

(
y −V

(
µlIk + VTV

)−1
VTy

)
. (5)

To efficiently solve (5), we introduce a temporary variable

ω :
(
µlIk + VTV

)
ω = VTy,

and then u = 1
µl (y −Vω).

We summarize the above computation of C(K̃) from Step
9 to Step 14 in Algorithm 1. Before conducting the above
approximation procedure, the most important step for the
Nyström method is to determine the distribution for sam-
pling c columns from K. The sampling distributions of exist-
ing Nyström methods are independent of the specific learn-
ing task at hand and mainly focus on the kernel matrix ap-
proximation error. The independence between the sampling
distribution and the learning task is the main source of the
weaker approximate consistency.

Here we will customize the sampling distribution of the
Nyström approximation for approximate kernel selection.
We adopt the adaptive sampling for the Nyström approxi-
mation, instead of sampling all columns at one time, to se-
lect more informative columns. The adaptive sampling pro-
cedure is given by Steps 3 to 8 in Algorithm 1. In each itera-
tion, we only select s < c columns from K3. Then according

3We do not calculate the whole kernel matrix K and then sam-
ple. We just calculate the corresponding s columns of K.

Algorithm 1 Nyström Approximate Kernel Selection

Require: Training data S = {(xi, yi)}li=1, candidate ker-
nel set K = {κ(i) : i ∈ [N ]}, number of columns to
be chosen c, initial distribution D0, number of columns
selected at each iteration s, regularization parameter µ

Ensure: κ∗
1: Initialize: Copt =∞;
2: for each κ ∈ K do
3: Sample s indices according to D0 to form I;
4: t = c/s− 1{Number of iterations};
5: for i = 1 : t do
6: Di = UpdateProbability(I);{Algorithm 2}
7: Ii = set of s indices sampled according to Di;
8: I = I ∪ Ii;
9: end for

10: Form C and D according to I;
11: Calculate the SVD of D as D = UDΣDUT

D;

12: Let V = CUD,k

√
Σ†D,k;

13: Solve
(
µlIk + VTV

)
ω = VTy to obtain ω;

14: u =
1

µl
(y −Vω);

15: C(K̃) = µyTu;
16: if C(K̃) ≤ Copt then
17: Copt = C(K̃);
18: κ∗ = κ;
19: end if
20: end for
21: return κ∗;

to the errors incurred by these columns we update the distri-
bution that will be used for selecting the next s columns.
The error used in the adaptive sampling of (Kumar, Mohri,
and Talwalkar 2009) is only the matrix approximation error,
which is independent of the learning and kernel selection.

For the kernel selection criterion C(K), to study the ap-
proximate consistency, we need to bound the difference

C(K)− C(K̃) = µyTK−1µ y − µyTK̃−1µ y,

where K̃µ = K̃ + µlI. The tighter the difference between
C(K) and C(K̃) can be bounded, the stronger the approxi-
mate consistency can be established.

In order to reduce the difference between C(K) and C(K̃),
we define the error matrix

E = K−1µ ⊗ yyT − K̃−1µ ⊗ yyT,

where ⊗ is the Hadamard product. This error matrix con-
tains the information of the vector y and the regularized
kernel matrix. For each iteration of adaptive sampling, we
choose the columns to make the error between the approx-
imate and accurate criteria small. However, calculating the
error matrix E requires computing the inverse of Kµ, which
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Algorithm 2 Update Probability
Require: The index set I
Ensure: The distribution D = {p1, . . . , pl}

1: Form C and D according to I;
2: Construct the Nyström approximation matrix K̃;
3: Ẽ = C⊗ yyT

ν − C̃⊗ yyT
ν ;

4: for i = 1 : l do
5: if i ∈ I then
6: pi = 0;
7: else
8: pi = ‖Ẽi‖22;
9: end if

10: end for
11: pi = pi/

∑l
i=1 pi for i = 1, . . . , l;

12: return D = {p1, . . . , pl};

is of O(l3) time complexity. We can prove that

|C(K)− C(K̃)|
= |µyTK−1µ y − µyTK̃−1µ y|

=
∣∣∣µyT

(
K−1µ − K̃−1µ

)
y
∣∣∣

=
∣∣∣−µyT[(K + µlI)−1(K− K̃)(K̃ + µlI)−1]y

∣∣∣
≤ µ‖yT‖2‖(K + µlI)−1‖2‖K− K̃‖2

‖(K̃ + µlI)−1‖2‖y‖2

≤ µ‖yT‖2‖K− K̃‖2‖y‖2
λmin(K + µlI)λmin(K̃ + µlI)

≤ 1

µl2
‖yT‖2‖K− K̃‖2‖y‖2.

(6)

This upper bound shows that for C(K) we can reduce the
error K−1µ − K̃−1µ by reducing K− K̃. Now we redefine the
error matrix as E = Kµ ⊗ yyT − K̃µ ⊗ yyT. Computing
E requires a full pass over Kµ which is inefficient for large-
scale problems. In order to further reduce the computational
burden, we approximate E as follows

Ẽ = C⊗ yyT
ν − C̃⊗ yyT

ν ,

where C is the previously sampled columns of K, C̃ is the
corresponding columns of K̃, yν denotes the first ν elements
of y and ν is the number of columns in C. For classification,
we regularize the labels to keep the class information: we use
l+(l−) to denote the number of the positive (negative) data
points and let yi = 1/l+, if yi = +1 and yi = −1/l− if yi =
−1 for i = 1, . . . , l. For regression, we keep the original
labels. The error between C and C̃ is always less than the
error between Kµ and K̃µ, i.e., ‖C−C̃‖F ≤ ‖Kµ−K̃µ‖F.
When we theoretically prove the approximate consistency,
we can just derive the related upper bound of ‖Kµ− K̃µ‖F.
Finally, we define the sampling distribution as

D = {pi}li=1, pi = ‖Ẽi‖22/‖Ẽ‖2F, i = 1, . . . , l,

where Ẽi is the i-th column of Ẽ. The procedure for updat-
ing the sampling distribution is shown in Algorithm 2. Step
5 and Step 6 in Algorithm 2 imply that our sampling is with-
out replacement. The complete Nyström approximate ker-
nel selection algorithm is shown in Algorithm 1. The main
computational cost of Algorithm 1 is from Step 11 to Step
13. The time complexity of SVD in Step 11 is O(c3). In
Step 12, the matrix multiplication with O(lck) complexity
is conducted. In Step 13, the inverse of

(
µlIk + VTV

)
is

solved by computing its Cholesky factorization with com-
plexity O(k3). Computing the matrix of the linear system
takes O(lk2) multiplications. The total complexity of Step
13 is thus O(lk2). Therefore, the total time complexity of
Algorithm 1 is O(N(c3 + lck)), where N is the number of
candidate kernels, which is linear to the number of exam-
ples l. Step 3 of Algorithm 2 can be parallelly done in each
column, so the time complexity is O(l).

Before giving the main theorem, we first introduce two
assumptions (Jin et al. 2013).

Assumption 1. For ρ ∈ (0, 1/2) and the rank parameter
k ≤ c � l, λk(K) = Ω(l/cρ) and λk+1(K) = O(l/c1−ρ),
where ρ characterizes the eigen-gap.

Assumption 2. We always assume that the rank parameter
k is a constant and the sampling size c is a small ratio r of l.

Assumption 1 states the large eigen-gap in the spectrum
of K (Jin et al. 2013), i.e., the first few eigenvalues of K
are much larger than the remaining ones, which is not a
strong assumption. As assumed in (Bach 2013), the eigen-
values of the kernel matrix have polynomial or exponential
decay. The eigenvalues of Gaussian kernels have exponen-
tial decay (Cortes, Kloft, and Mohri 2013). Assumption 1 is
always weaker than the exponential decay, even when ρ goes
to 0. When ρ is close to 1/2, Assumption 1 is weaker than the
polynomial decay. The assumption of the constant rank has
been adopted in (Wang and Zhang 2013). Assumption 2 is
one of the common settings for the Nyström approximation.

The following theorem shows the strong approximate
consistency of Algorithm 1, whose proof sketch is given in
the Appendix.
Theorem 1. If Assumptions 1 and 2 hold, for the kernel se-
lection criterion C(K) defined in (1), we have

E
(
|C(K)− C(K̃)|

)
≤ ε(l),

where the calculation of C(K̃) is shown in Algorithm 1,

ε(l) = τ

√
k(k + 1)M8 + sM4

sµ2r2−2ρ

√
l − k
l1−ρ

for some constant τ and liml→∞ ε(l)→ 0.
The strong approximate consistency reveals the fast con-

vergence of the difference between the approximate kernel
selection criterion and the accurate one. When our adaptive
Nyström approximate kernel selection algorithm is applied
to the kernel selection problem, we can obtain the optimal
kernel that is closest to the one produced by accurate ker-
nel selection methods as compared to other Nyström ap-
proximate algorithms with weaker approximate consistency,
which shows the appositeness of our adaptive Nyström ap-
proximate algorithm for kernel selection.
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Figure 1: Approximate consistency for different kernel matrix approximation algorithms. These figures show the values of the
criteria on different kernel parameters γ.

Empirical Studies
Here we empirically evaluate the approximate consistency
of the proposed approximate kernel selection algorithm.

We compare 8 different methods. The first one adopts the
original criterion C(K) in (1) for kernel selection (Origi-
nal). The second is the optimal rank k approximation (Op-
tApp). For fixed sampling distributions, we consider the
Nyström approximation with uniform sampling (Uniform),
column norm-based sampling (ColNorm) (Drineas and Ma-
honey 2005), and leverage score-based sampling (Leverage)
(Gittens and Mahoney 2013). For adaptive sampling distri-
butions, we compare the adaptive sampling in (Deshpande et
al. 2006) (AdaptDeshp) and the one in (Kumar, Mohri, and
Talwalkar 2012) (AdaptKumar). We denote our sampling
strategy as “AdaptMS”, which is short for model selection-
based adaptive sampling.

We set the sampling size c = 0.2l and the adaptive sam-
pling size s = 0.1c. To avoid the randomness, we run
all methods 10 times. Since Gaussian kernels are univer-
sal (Steinwart 2001), we adopt Gaussian kernels κ(x,x′) =
exp

(
−γ‖x− x′‖22

)
with variable width γ as our candidate

kernel set K. The focus of this paper is not on tuning the
regularization parameter µ, so we just set µ = 0.005. Since

the regularized kernel matrix Kµ = K + µlI, µ = 0.005 is
not too small. All the implementations are in the R language.
We conduct experiments on benchmark data sets from UCI
repository4 and LIBSVM Data5. Since the aim of our exper-
iments is to evaluate the theoretical findings on approximate
consistency, we do not conduct experiments on very large
scale datasets.

For each kernel parameter γ, we generate the kernel ma-
trix K and then use different approximation methods to pro-
duce the approximate kernel matrices K̃. We compare the
values of C(K) and C(K̃). The results are shown in Figure
1. We can see that, apart from the optimal rank k approx-
imation (OptApp), the curves of “AdaptMS” are closest to
the curves of the original criterion C(K) for all data sets,
which shows stronger approximate consistency as compared
to other approximation methods. It is worth noting that the
complexity of OptApp is O(l3) for each candidate kernel,
whereas the complexity of our algorithm is O(c3 + lck)
(k ≤ c � l). These results demonstrate that when we
conduct approximate kernel selection, our Nyström approx-

4http://www.ics.uci.edu/∼mlearn/MLRepository.html
5http://www.csie.ntu.edu.tw/∼cjlin/libsvm
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imate kernel selection algorithm can obtain the kernel that is
closest to the one produced by the accurate kernel selection
algorithm as compared to the approximate algorithms with
weaker approximate consistency.

The complexities of Original and OptApp are all O(l3).
Our adaptive Nyström approximate kernel selection algo-
rithm is faster than OptApp, Leverage and AdaptDeshp,
close to AdaptKumar, but slower than Uniform and Col-
Norm. AdaptDeshp requires a full pass through K in each
iteration. Leverage requires SVD to compute the sampling
distribution with O(l3) time complexity. Although there are
cases where some other approximate algorithms have com-
parable performance to our proposed algorithm, the strong
approximate consistency of our algorithm can guarantee a
consistently better performance than the algorithms with
weaker approximate consistency.

Conclusions
In this paper, we proposed a novel Nyström approxi-
mate kernel selection method. By introducing a criterion-
driven adaptive sampling distribution, we established the
first strong approximate consistency of the Nyström approx-
imate kernel selection method. The sampling strategy con-
sidered in this paper is different from the existing matrix-
error-based sampling strategies and closely related to the
specific learning task at hand. This design for the sampling
distribution may open a door for the research into learning-
error-based kernel matrix approximation. Through empirical
studies, we showed the stronger approximate consistency of
the proposed adaptive Nyström approximate kernel selection
method as compared to the state-of-the-art algorithms. In fu-
ture, we consider the application of our theoretical and algo-
rithmic results into online learning (Yang, Zhao, and Gao
2018) and recommendation (Yang et al. 2018).

Appendix: Proof Sketch of Theorem 1
The proof is mainly based on the results in (Deshpande et al.
2006; Cortes, Mohri, and Talwalkar 2010; Deshpande and
Rademacher 2010). According to (6), we can bound

|C(K)− C(K̃)| ≤ 1

µl2
‖yT‖2‖K− K̃‖2‖y‖2,

Since ‖y‖2 ≤
√
lM , we have

|C(K)− C(K̃)| ≤ M2

µl
‖K− K̃‖2.

As discussed in (Gittens and Mahoney 2013), SPSD ma-
trix approximations based on column sampling (such as
Nyström method) and those based on mixtures of columns
can both be subsumed in the SPSD Sketching Model. Here
we will apply the results for the approximation on mix-
tures of columns to the Nyström approximation. The initial s
columns are sampled according to the efficient volume sam-
pling (Deshpande and Rademacher 2010). We use Cs to de-
note the matrix formed by the s columns of K and Ds to
denote the corresponding intersection matrix. From Theo-
rem 8 in (Deshpande and Rademacher 2010), we obtain

‖K−CsD
†
s,kC

T
s ‖F ≤

√
k + 1‖K−Kk‖F.

According to Theorem 2.1 in (Deshpande et al. 2006), for
adaptive sampling, if we further adaptively sample another
s columns, we have

E
(
‖K−C2sD

†
2s,kC

T
2s‖2F

)
≤ ‖K−Kk‖2F +

k

s
‖E‖2F.

Here K̃ is C2sD
†
2s,kC

T
2s. If we continue the adaptive sam-

pling, the error will decrease. From the theoretical per-
spective, we just need to bound the sampling twice. Since
‖y‖2 ≤

√
lM , we can prove that

‖E‖2F ≤M4‖K−CsD
†
s,kC

T
s ‖2F.

Now, we have

E
(
‖K−C2sD

†
2s,kC

T
2s‖2F

)
≤ k(k + 1)M4 + s

s
‖K−Kk‖2F.

Since ‖K − Kk‖F ≤
√
l − kλk+1(K) and the fact that

‖A‖2 ≤ ‖A‖F, according to the above derived bounds, As-
sumption 1 and Assumption 2, we can obtain

|C(K)− C(K̃)| ≤ ε(l)

with

ε(l) = O

(√
k(k + 1)M8 + sM4

sµ2r2−2ρ

√
l − k
l1−ρ

)
.

Since ρ < 1
2 , liml→∞ ε(l)→ 0.
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