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Abstract

Semi-supervised learning is crucial for alleviating la-
belling burdens in people-centric sensing. However, human-
generated data inherently suffer from distribution shift in
semi-supervised learning due to the diverse biological con-
ditions and behavior patterns of humans. To address this
problem, we propose a generic distributionally robust model
for semi-supervised learning on distributionally shifted data.
Considering both the discrepancy and the consistency be-
tween the labeled data and the unlabeled data, we learn the
latent features that reduce person-specific discrepancy and
preserve task-specific consistency. We evaluate our model in
a variety of people-centric recognition tasks on real-world
datasets, including intention recognition, activity recognition,
muscular movement recognition and gesture recognition. The
experiment results demonstrate that the proposed model out-
performs the state-of-the-art methods.

Introduction
People-centric sensing enables a wide range of challeng-
ing but promising applications which have great poten-
tial on impacting people’s daily lives (Liao et al. 2015;
Chen et al. 2018b) in many realms such as Brain Computer
Interface (BCI) (Zhang et al. 2018), assistive living (Bas-
anta, Huang, and Lee 2017), robotics (Lauretti et al. 2017)
and rehabilitation (Smeddinck, Herrlich, and Malaka 2015).
One of the major components of people-centric sensing is
understanding human behaviors by analyzing the data col-
lected from people-centric sensing devices, such as wear-
able sensors and biosensors. However, annotation is difficult
in the context of people-centric sensing due to the expensive
manual cost, privacy violation and the difficulty in automa-
tion (Do and Gatica-Perez 2014). Therefore, a large body of
research on semi-supervised learning (SSL) has been pro-
posed. SSL enables a reliable model to be trained by learn-
ing from the labeled samples and properly leveraging the
unlabeled samples as well.

Most of the existing SSL works are based on the assump-
tion that the labeled data and the unlabeled data are drawn
from identical or similar distributions. For example, (Cheng
et al. 2016), (Xing et al. 2018) and (Chen et al. 2018a) uti-
lize multiple classifiers to pseudo-label the unlabeled sam-
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ples that obtain confident predictions. In their tasks, the cor-
rectness of labeling is ensured by the condition that the la-
beled data and the unlabeled data are drawn from similar
distributions. But this assumption does not always stand.

In practical human-centred scenarios, only a few sub-
jects’ labeled data can be collected for training and unla-
beled data are usually collected from the target users. Since
people have diverse behavior patterns and biological phe-
nomena (Bulling, Blanke, and Schiele 2014), data collected
from different subjects are distributed variously. This trig-
gers the distribution shift problem where the labeled data
and the unlabeled data are distributed differently.

Distribution shift is a common problem in people-centric
sensing and most practical applications that require predic-
tive modeling. Despite this, the major attention is given to
semi-supervised learning of which the main challenge is
data scarcity instead of shifted distributions. Distribution
shift has been relatively underexplored until recently. Some
researchers propose to tackle the distribution shift prob-
lem by unsupervised domain adaptation or transferring the
model trained on the labeled data to the unlabeled data. For
instance, some recent works such as (Liu and Tuzel 2016)
and (Tzeng et al. 2017) are committed to mapping both do-
mains into the common feature space. However, they make
the covariate assumption that only the marginal distributions
of the input data are shifted but overlook the potential shift
in the conditional distributions of the output labels given in-
puts. In this setting, their models only see the difference be-
tween the labeled data and the unlabeled data but neglect
their latent output-related similarity.

To fill this gap, we propose a two-faced treatment that
tackles the problem of SSL for distribution shift. We define
two characteristics for the training data, person-specific dis-
crepancy and task-specific consistency. Person-specific dis-
crepancy means the distribution divergence of data collected
from different people owing to their different behavior pat-
terns and biological phenomena. In our semi-supervised set-
ting, person-specific discrepancy also represents the distri-
bution divergence between the labeled data and the unla-
beled data. By contrast, task-specific consistency denotes
the inherent similarity of the data of the subjects perform-
ing the same task. Our aim is to learn an embedding that re-
duces person-specific discrepancy and simultaneously pre-
serves task-specific consistency. The main building blocks
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of the proposed approach are illustrated in Figure 1. We
start by reducing person-specific discrepancy. By adversar-
ial training, we reduce the distribution divergence between
the latent features of the labeled data and the unlabeled data.
Then, we generate paired features and force them to lie in
the same space to preserve task-specific consistency. In this
way, we ensure the classifier trained with the labeled sam-
ples is also effective on the unlabeled samples.

The key contributions of this research are as follows:

• We propose a novel distributionally robust semi-
supervised learning algorithm to address the distribution
shift problem. We consider the distribution discrepancy
between the labeled data and the unlabeled data, and align
the feature distributions when the training data are dis-
tributed differently. We also leverage the similarity of the
labeled data and the unlabeled data to learn the task-
related discriminative features for classification.

• We propose to reduce person-specific discrepancy by
aligning the marginal distributions of the labeled data and
the unlabeled data. Specifically, we force the latent fea-
ture distributions to be similar by training the model in an
adversarial way.

• Furthermore, considering the classification task of our
model, we propose to preserve task-specific consistency
by generating paired data and making their features main-
tain consistent. Task-specific consistency avoids the fea-
tures losing the task-related information and facilitates the
classification.

• We compare the proposed model with eight state-of-the-
art methods in four challenging people-centric sensing
tasks: intention recognition, activity recognition, muscu-
lar movement recognition and gesture recognition. The
comprehensive results demonstrate the effectiveness of
our model in tackling the distribution shift problem in
SSL.

The Proposed Method
Problem Statement and Method Overview
We now detail the distributionally robust model for semi-
supervised learning on distributionally shifted data. Assume,
there are two parts to the training data: the labeled set L and
the unlabeled set U . In L, each sample (xL, y, s) consists
of an input vector xL ∈ XL, an activity label y ∈ Y and
a distribution indicator s = 1 that indicates the sample is
from L, whereXL is some input space and Y is a finite label
space for classification problems. In U , the samples that lack
labels are denoted by (xU , s), where xU ∈ XU and s = 0
which indicates the sample is from U . For simplicity, when
referring to a sample regardless of whether it is labeled or
unlabeled, we denote the input vector by x.

Under the distribution shift assumption, we assume that
the data are drawn from different distributions, that is, L is
drawn from a marginal distribution L(x) and U is drawn
from a different marginal distribution U(x). Thus, person-
specific discrepancy is formulated as the divergence of L(x)
and U(x): Div(L(x),U(x)). Simultaneously, unlike some
domain adaptation methods (Liu and Tuzel 2016; Tzeng et

al. 2017) that assume PL(y | x) = PU (y | x), we do not
make the same assumption but hold the opinion that there
exists latent consistency for data collected in the same tasks.
Therefore, we aim at preserving task-specific consistency by
learning latent features z so that PL(y | z) = PU (y | z) and
the predictor learned with L is also effective on U .

We decompose the proposed model into five parts: an en-
coder fe : X → R that maps input data to a latent feature
z ∈ R, a label predictor fy : R → Y that maps feature z to
the label y, a distribution predictor fs that predicts whether
the feature z is mapped from L(x) or U(x), and two de-
coders fdL : R → X and fdU : R → X that reconstruct in-
put vectors of L and U . The parameters of the five parts are
denoted by θe, θy, θs, θdL , θdU , respectively. An overview of
the proposed model is shown in Figure 1.

We define four components of the training objective: the
user adversarial loss, La, forces a reduction in the distri-
bution divergence of the latent features of L and U ; the re-
construction loss, Lrec, learns two decoders to reconstruct
input vectors x̂ from latent features z; the latent consistency
loss, Lcon, is a constraint that avoids losing the task-specific
information during training; the final prediction loss, Ly , en-
courages the encoder to learn discriminative features and en-
sures a powerful label predictor is trained. The total loss can
be defined as the sum of the four components:

Ltotal = La + Lrec + Lcon + Ly (1)

Reducing Person-Specific Discrepancy
To reduce person-specific discrepancy, we aim at learning
features z and making the distributionsLz(z) = {fe(x; θe) |
x ∼ L(x)} and Uz(z) = {fe(x; θe) | x ∼ U(x)} similar.
Since calculating and controlling the distribution discrep-
ancy is non-trivial, we force the feature extractor fe to map
XL andXU to a unified distribution by learning the features
whose distributions cannot be distinguished by the distribu-
tion classifier. This is constrained by an adversarial loss La.
(see Figure 1(a)) For the binary classification problem, the
loss function is defined as:

La =
1

NL

NL∑
n=1

logfs(fe(x
L
n))

+
1

NU

NU∑
n=1

log(1− fs(fe(xUn ))),

(2)

where NL is the number of labeled samples and NU is the
number of unlabeled samples. Firstly, we need a sufficiently
strong classifier to distinguish users from latent features be-
cause successfully deceiving a weak classifier does not mean
the features are drawn from similar distributions. This step
is done by updating θs while maximizing Eq. 2 and fixing θe.
Meanwhile, we need fe to learn the features that are uniden-
tifiable for fs. This is done by updating θe while minimizing
Eq. 2 and fixing θs. Therefore, the optimization of the ad-
versarial loss can be summarized as:

min
θe

max
θs

[La(x
L, xU , θe, θs)]

3322



(a) Person-Specific Discrepancy (b) Task-Specific Consistency (c) Prediction

Figure 1: The overview of the proposed model. We define three components of the training procedure: (a) person-specific
discrepancy, (b) task-specific consistency, (c) prediction. Four losses are proposed for the objective: the adversarial loss La to
reduce person-specific discrepancy, the reconstruction loss Lrec and the latent consistency loss Lcon to preserve task-specific
consistency and the prediction lossLy . When minimizing the losses, only the activated parts are trained (indicated as solid lines)
while the rest remain fixed (indicated as dashed lines). Red, blue and green denote the training procedures that are associated
with the labeled samples, unlabeled samples, and a mixture of all the training samples, respectively.

Probabilistically, Eq. 2 can be rewritten as:

La ≈ Ex∼Lx
[logfs(fe(x))] + Ex∼Ux [log(1− fs(fe(x)))]

= Ez∼Lz [logfs(z)] + Ez∼Uz [log(1− fs(z))]
(3)

The maximum of Eq. 3 is related to the Jensen-Shannon
divergence between Lz(z) and Uz(z) (Goodfellow et al.
2014):

max
θs

[La] = −log(4) + 2JSD(Lz(z) ‖ Uz(z))

Thus,

min
θe

max
θs

[La] = min
θe

[JSD(Lz(z) ‖ Uz(z))]− log(4),

regardless of the constant, the optimization of the adversar-
ial loss can be formulized as the problem of finding the op-
timized θe so that the discrepancy between Lz(z) and Uz(z)
is minimized.

Preserving Task-Specific Consistency
By preserving task-specific consistency, we learn features z
so that PL(y | z) = PU (y | z). Intuitively, if there exists
a matching sample (xU , xL) that belongs to the same label
y, we only need to make fe(xL) = fe(x

U ). However, in
our semi-supervised setting, we do not have paired data to
assess the latent task-related differences. Instead, we gener-
ate paired data using the decoders shown in Figure 1(b). fdL
and fdU are able to reconstruct input vectors x̂ from the cor-
responding latent features z. They can also be regarded as
two generators that generate x̂ from z. Therefore, we gener-
ate x̂U with xL: x̂U = fdU (fe(x

L)), and similarly for the
reverse: x̂L = fdL(fe(x

U )). In this way, we only need to
make fe(xL) = fe(x̂

U ) and fe(xU ) = fe(x̂
L) to ensure

task-specific consistency of the paired data.
Firstly, we need two decoders that can reconstruct input

vectors x̂ from the corresponding latent features z. They

are optimized as regular autoencoders (see the left of Fig-
ure 1(b)):

Lrec =
1

NL

NL∑
n=1

‖ xLn − fdL(fe(xLn)) ‖2

+
1

NU

NU∑
n=1

‖ xUn − fdU (fe(xUn )) ‖2, (4)

where ‖ • ‖ denotes the distance between vectors. Note that
only two decoders are updated when minimizing Lrec since
Lrec may distract the encoder from learning the features that
reduce person-specific discrepancy. Then, task-specific con-
sistency is ensured by the consistency loss as shown in the
right of Figure 1 (b):

Lcon =
1

NL

NL∑
n=1

‖ fe(xLn)− fe(fdU (fe(xLn))) ‖2

+
1

NU

NU∑
n=1

‖ fe(xUn )− fe(fdL(fe(xUn ))) ‖2 (5)

We finally conduct the prediction. Good prediction per-
formance not only relies on a powerful predictor but also
requires discriminative features. We harness the annotated
data to optimize the parameters of both the feature extractor
(the encoder) fe and the predictor fy as Figure 1(c) shows.
We minimize the empirical loss of the labeled samples by
minimizing the cross-entropy between the true label proba-
bility distribution and the predicted label probability distri-
bution:

Ly = − 1

NL

NL∑
n=1

M∑
m=1

yn(m) log fy(fe(x
L
n)), (6)

where M is the number of label classes, and yn(m) = 1
if the n-th sample belongs to the m-th class and 0 oth-
erwise. Ly ensures the discriminativeness of the features
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Algorithm 1 Training and Optimization

Require: the labeled set L = {(xL, y, s)},
the unlabeled set U = {(xU , s)},
the thresholds threa, threrec.

Ensure: the model parameters {θe, θy, θs, θdL , θdU }.
1: {θe, θy, θs, θdL , θdU } = RandomInitialize()
2: while training do
3: La ← Eq. 2
4: if La < threa then
5: θs ← θs +

δLa

θs
6: end if
7: Lrec ← Eq. 4
8: θdL , θdU ← θdL − δLrec

θdL
, θdU − δLrec

θdU

9: if Lrec < threrec then
10: La, Lcon, Ly ← Eq. 2, Eq. 5, Eq. 6

11: θe ← θe − δ(Ly+La+Lcon)
θe

12: θy ← θy − δLy

θy

13: end if
14: end while
15: return {θe, θy, θs, θdL , θdU }

z learned by the encoder fe and the good classification
ability of the predictor fy for the annotated data. Reduc-
ing person-specific discrepancy and preserving task-specific
consistency ensures that the fy learned with L only is effec-
tive on U .

Training and Optimization
The training objective is to minimize Eq. 1. Nevertheless, the
four losses La, Lrec, Lcon and Ly have respective goals and
different associated parameters to learn. The optimization
problem can be summarized and jointly trained as:

min
θe,θy

max
θs

[La + Lcon + Ly], min
θdL ,θdU

[Lrec] (7)

However, in the experiments, we find that a very strong clas-
sifier fs may minimize the feature distribution discrepancy
ofL andU , but it will also distract the encoder from learning
discriminative features for prediction. Therefore, we set a
threshold threa to seek a balance for the min-max game be-
tween person-specific discrepancy and discriminativeness.
On the other hand, we require rather strong decoders for
reconstruction, a threshold threrec is thus set to guarantee
the reconstruction performance. The detailed procedure is
shown in Algorithm 1.

Experiments
In this section, we evaluate the performance of our proposed
method in four challenging people-centric sensing tasks:
intention recognition, activity recognition, muscular move-
ment recognition and gesture recognition. In particular, we
first compare our model with both semi-supervised methods
that take no account to distribution shift and other domain
adaptation state-of-the-art. The experiment results show that
our method outperforms these state-of-the-art methods. Sec-
ondly, we perform a detailed ablation study to examine the

contributions of the proposed components to the prediction
performance. Then we explore the scalability of our model
when L and U are associated with multiple subjects. We fur-
ther present the visualized distributions of the latent features.
Lastly, we analyze the model’s sensitivity to the two thresh-
olds.

Datasets
Intention Recognition–EEG Dataset (Goldberger et al.
2000): The EEG dataset contains 108 subjects executing
left/right fist open and close intention tasks. The EEG data
is collected using BCI2000 instrumentation (Schalk et al.
2004) with 64 electrode channels and 160Hz sampling rate.
Each subject performs around 45 trials with a roughly bal-
anced ratio of the right and the left fist. We randomly choose
10 subjects for evaluation and select the period from 1 sec-
ond after the onset to the end of one trial.
Muscular Movement Recognition–EMG Dataset 1: The
UCI EMG Dataset in Lower Limb contains 11 subjects with
no abnormalities in the knee executing three different exer-
cises for analysis in the behavior associated with the knee
muscle, gait, leg extension from a sitting position, and flex-
ion of the leg up. The data is collected by MWX8 datalog
from the Biometrics company. The acquisition process was
conducted with four electrodes and one goniometer in the
knee. Data with 5 channels are acquired directly from equip-
ment MWX8 at 14 bits of resolution and 1000Hz frequency.
Activity Recognition–MHEALTH (Banos et al. 2014):
This dataset is devised to benchmark human activity recog-
nition methods based on multimodal wearable sensor data.
Three inertial measurement units (IMUs) are respectively
placed on 10 participants’ chest, right wrist, and left ankle
to record the acceleration (ms−2), angular velocity (deg/s)
and the magnetic field (local) data while they are performing
12 activities. The IMU on the chest also collects 2-lead ECG
data (mV) to monitor the electrical activity of the heart. All
sensing models are recorded at a frequency of 50 Hz.
Gesture Recognition–Opportunity Gesture (Roggen et al.
2010): This dataset consists of data collected from four sub-
jects by a wide variety of body-worn, object-based and am-
bient sensors in a realistic manner. There are a total of 17
gesture classes that comprises the coarser characterization
of the user’s hand activities such as opening a door and clos-
ing a door, toggle switch. Each recording contains 242 real-
value sensory readings.

Experiment Setting
In this work, we use a convolutional autoencoder as the main
architecture. The encoder has one convolutional layer, one
max-pooling layer and one fully-connected layer. Two de-
coders use a mirrored architecture with the encoder, includ-
ing one fully-connected layer, one un-pooling layer and one
deconvolutional layer. Each convolutional layer is followed
by a rectified linear unit (ReLU) activation and the classifi-
cation outputs are calculated by the softmax functions. The

1http://archive.ics.uci.edu/ml/datasets/emg+dataset+in+lower+
limb#
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kernel size of the convolutional layer and the deconvolu-
tional layers is M × 45 and the number of feature maps is
40, where M denotes the number of features of the datasets
and the pooling size is 1× 75. We use stochastic gradient de-
scent with Adam update rule to minimize the loss functions
at a learning rate of 1e-4. Dropout regularization with a keep
probability of 0.5 is applied before the fully-connected lay-
ers. Batch normalization during training is also used to get
better performance. All the experiments are conducted on a
Nvidia Titan X Pascal GPU.

Comparison with State-of-the-Art
To verify the overall performance of the proposed model,
we first compare our model with other state-of-the-art meth-
ods. The compared methods include semi-supervised meth-
ods (Tri-Net (Chen et al. 2018a), DP (Cheng et al. 2016)
and MS (Shinozaki 2016)), none of which take into ac-
count distribution shift, and other domain adaptation meth-
ods (DANN (Ganin et al. 2016), CYCADA (Hoffman et al.
2018), ADDA (Tzeng et al. 2017), CoGAN (Liu and Tuzel
2016) and Cycle GAN (Zhu et al. 2017)). We also employ a
regular CNN as a supervised baseline which is only trained
with the labeled set L. Considering that different people
have different behavior patterns and biological phenomena,
we simulate distribution shift scenarios by drawing training
sets L and U from two different subjects sL and sU . The
data of sU is evenly separated into two, one is the unlabeled
training set U and the other is used as the test set T . Cross-
validation is conducted on all the participant subjects to en-
sure rigorousness.

As we can observe from Table 1, the performance of all
the methods on MHEALTH achieves 95% even though L
andU are collected from different subjects, while the perfor-
mance on the other datasets only achieves 60% or 70%. The
prediction performance demonstrates the degrees of distri-
bution shift in four datasets, among which the discrepancy in
MHEALTH is the smallest. This observation coincides with
the visualized distribution discrepancy we show in Figure 3.

With respect to the compared methods, the semi-
supervised methods Tri-Net, DP and MSS only obtain sim-
ilar results with regular CNN even though they resort to the
unlabeled data of sU . Owing to the distribution shift, the
information of U cannot be well leveraged by these meth-
ods. In contrast, DANN, CYCADA, ADDA, CoGAN and
Cycle GAN achieve better results since they consider distri-
bution shift and are devoted to mitigating the shift. Overall,
the proposed model significantly outperforms the conven-
tional semi-supervised methods. Also, our model achieves
better performance than other domain adaptation state-of-
the-art. By reducing person-specific discrepancy and pre-
serving task-specific consistency, our model makes the clas-
sifier fy trained on L also effective on U and T .

Ablation Study
We perform a detailed ablation study to examine the contri-
butions of the proposed model components to the prediction
performance in Table 2. We first consider the model trained
only withLy . This model is composed of fe and fy , which is
the same as a regular CNN trained onL and tested on T . This

model serves as a baseline to evaluate the effectiveness of the
other components. Secondly, we evaluate the contribution of
reducing person-specific discrepancy by combining Ly and
La. This model is composed of fe, fy and fs. As we can see
in Table 2, the adversarial loss is effective since the predic-
tion results are improved by 3% to 7%. This is in accordance
with the analysis that La optimizes the parameters of the en-
coder to minimize person-specific discrepancy and is bene-
ficial to prediction. We also conduct experiments using the
model with preserving task-specific consistency but without
the adversarial loss, that is, L = Ly + Lrec + Lcon. The
model is composed of fe, fy , fdL and fdU . Note that Lrec is
only meaningful when it works with Lcon to build the con-
sistency loop. Otherwise it only trains two decoders of no
utilization. It can be observed that this setting also achieves
better performance than the regular model since it directly
forces the paired features to be equal and generalizes the
model by creating more samples. But it is less effective than
reducing person-specific discrepancy. When person-specific
discrepancy is large, it is harder to generate data x̂L ∼ L(x)
or x̂U ∼ U(x) so the effect of preserving task-specific con-
sistency of xL and x̂U is limited. When combining all these
benefits, our model achieves the best performance.

Scalability to Multi-Subjects
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Figure 2: Scalability to Multi-Subjects

The setting of this model is that L and U obey two differ-
ent distributions. The example is L and U are drawn from
two subjects. However, situations still exist when L and U
are separately collected from quite a number of subjects.
Therefore, the training sets L and U may include multiple
diverse distributions. We now explore the scalability of our
model in this setting. As Figure 2 shows, we increase the
number of the labeled subjects from 1 to 9 in the EEG and
MHEALTH datasets, from 1 to 10 in the EMG dataset, and
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Table 1: The prediction performance of the proposed approach and other state-of-the-art methods. CNN is a supervised baseline
trained with labeled data only. * denotes the domain adaptation state-of-the-art and the others are conventional semi-supervised
methods. The best performance is indicated in bold.

EEG

Method CNN MSS DP Tri-Net DANN*
Accuracy 66.62±0.83 63.22±0.64 67.90±1.33 67.69±0.74 70.79±0.81
Precision 65.46±0.94 58.38±0.84 63.27±0.84 62.36±0.78 69.34±0.82

Recall 67.47±0.75 64.45±0.77 68.61±0.92 68.45±1.32 71.87±0.88
Metrics CYCADA* ADDA* CoGAN* CycleGAN* Ours*

Accuracy 73.29±0.68 67.18±1.29 71.02±1.27 72.69±0.65 77.01±0.89
Precision 73.28±0.67 62.11±0.77 63.83±0.82 63.43±0.50 73.85±0.78

Recall 73.58±0.72 68.10±0.84 71.94±0.81 73.36±0.74 75.77±0.74

MHEALTH

Method CNN MSS DP Tri-Net DANN*
Accuracy 86.67±0.67 87.83±0.89 88.82±0.89 87.07±0.73 89.85±1.12
Precision 85.68±0.85 85.53±0.65 86.38±0.74 84.21±0.68 87.56±1.16

Recall 87.06±0.74 85.22±1.11 85.14±0.6 86.30±0.73 90.62±1.02
Method CYCADA* ADDA* CoGAN* CycleGAN* Ours*

Accuracy 92.08±0.53 88.93±0.68 90.35±0.56 91.08±0.78 95.22±1.32
Precision 90.61±0.53 83.72±1.33 86.75±0.87 87.29±1.32 94.28±1.16

Recall 92.32±0.97 90.35±0.63 90.48±0.76 91.25±0.86 96.32±0.86

EMG

Method CNN MSS DP Tri-Net DANN*
Accuracy 64.56±1.15 64.74±0.68 64.78±0.61 66.78±0.74 69.55±0.68
Precision 62.11±0.63 63.57±0.74 63.71±1.08 64.23±0.62 66.28±0.61

Recall 66.29±0.88 66.53±0.70 67.61++0.67 68.94±1.32 72.15±0.93
Metrics CYCADA* ADDA* CoGAN* CycleGAN* Ours*

Accuracy 74.03±1.16 68.55±1.11 72.37±0.58 74.46±0.81 77.83±0.56
Precision 71.18±0.92 65.83±0.09 70.79±0.92 70.88±0.61 73.35±0.74

Recall 75.93±0.53 68.10±0.82 73.19±0.76 73.32±0.67 76.11±0.65

OPPORTUNITY

Method CNN MSS DP Tri-Net DANN*
Accuracy 48.56±0.62 44.15±0.70 47.47±0.92 46.57±0.84 54.82±0.79
Precision 49.64±0.89 45.57±1.32 46.85±0.07 45.18±0.62 55.86±0.73

Recall 48.98±0.74 44.16±0.76 44.84±0.86 43.92±0.96 55.90±0.78
Method CYCADA* ADDA* CoGAN* CycleGAN* Ours*

Accuracy 58.83±0.62 52.81±1.63 58.38±0.75 59.23±1.72 62.27±0.54
Precision 58.06±0.75 47.13±0.98 57.30±1.0 53.51±0.72 60.39±0.74

Recall 58.06±1.02 52.15±0.91 58.31±0.99 60.50±1.03 62.47±0.68

Table 2: Ablation Study. Ly denotes a regular CNN trained with the prediction loss only; Ly+La is the model trained with a
reduction in person-specific discrepancy; Ly+Lrec+Lcon is the model with preserving task-specific consistency; the last model
is our proposed model.

Ablation EEG EMG
Accuracy Precision Recall Accuracy Precision Recall

Ly 66.62±0.83 65.46±0.94 67.47±0.75 64.56±1.15 62.11±0.63 66.29±0.88
Ly+La 70.79±0.81 69.34±0.82 71.87±0.88 69.55±0.68 66.28±0.61 72.15±0.93

Ly+Lrec+Lcon 68.85±0.69 67.83±0.86 69.35±0.63 67.40±0.53 65.16±0.86 69.57±0.56
Our Model 77.01±0.89 73.85±0.78 75.77±0.74 77.83±0.56 73.35±0.74 76.11±0.65

Ablation MHEALTH OPPORTUNITY
Accuracy Precision Recall Accuracy Precision Recall

Ly 86.67±0.67 85.68±0.85 87.06±0.74 48.56±0.62 49.64±0.89 48.98±0.74
Ly+La 89.85±1.12 87.56±1.16 90.62±1.02 54.82±0.79 55.86±0.73 55.90±0.78

Ly+Lrec+Lcon 87.41±1.33 86.13±0.78 88.38±0.91 51.85±0.92 52.23±0.69 54.23±1.04
Our Model 95.22±1.32 94.28±1.16 96.32±0.86 62.27±0.54 60.39±0.74 62.47±0.68

from 1 to 3 in the OPPORTUNITY dataset, and increase the
number of the unlabeled subjects in the same way. Note that
we do not conduct experiments in the settings when the sum-
mation of the number of the labeled subjects and the number

of the unlabeled subjects is larger than the total number of
the participant subjects since in these settings, there must ex-
ist overlapping data shared by L and U , which disobeys the
overall distribution shift setting.
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(a) EEG raw (b) MHEALTH raw (c) EMG raw (d) OPPORTUNITY raw

(e) EEG features (f) MHEALTH features (g) EMG features (h) OPPORTUNITY features

Figure 3: Visualization of Latent Features. Green points correspond to the labeled data or features, while the red points corre-
spond to the unlabeled data or features. In all cases, our model is effective in reducing distribution discrepancy.

In this experiment, the distribution classifier fs still works
as a binary classifier. We consider the merging of all the dis-
tributions in L as a new distribution and the same for U .
It can be observed that accuracy increases with an increase
in the number of labeled subjects and decreases with an in-
crease in the number of unlabeled subjects, which conforms
to the intuition that diversely distributed labeled data gives
the model generalization ability, but too scattered unlabeled
data is detrimental to training.

Latent Feature Visualization
To verify the effectiveness of the proposed model, we
present the visualized distributions of both the raw data
and the latent features of L and U via t-SNE visualization
(Maaten 2013) as Figure 3 shows. We can observe a rather
obvious discrepancy between the raw data distributions of L
and U . In line with Table 1, the discrepancy of raw data is
relatively unobvious in MHEALTH and is noticeable in OP-
PORTUNITY. After training, the features of the labeled data
and the unlabeled data are well merged in the MHEALTH,
EMG and OPPORTUNITY datasets. The merging is not that
effective in the EEG dataset, but a reduction in the discrep-
ancy still can be noticed.

Sensitivity to Thresholds
Lastly, we present the model’s sensitivity to two thresholds
in Figure 4. threa controls how strong the classifier fs is
to align the features of L and U , and threrec affects the re-
construction performance. In Figure 4(a), the prediction ac-
curacy achieves the top when threa is around 3 or 4. The
reason for this is that although a too strong classifier fs may
minimize the feature distribution discrepancy of L and U , it
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Figure 4: Sensitivity to Thresholds

also distracts the encoder from learning discriminative fea-
tures for prediction. Meanwhile, too weak fs is meaningless
to our model. The best threa, in fact, finds out the balance
for the min-max game between person-specific discrepancy
and discriminativeness. In Figure 4(b), accuracy decreases
with an increase in threrec. It can be inferred that powerful
reconstruction ability is significant for the proposed model.

Conclusion
We propose a novel distributionally-robust semi-supervised
method for handling shifted distributions of the labeled and
the unlabeled data. The model first reduces person-specific
discrepancy by aligning the distributions of the labeled data
and unlabeled data. Task-specific consistency is further pro-
posed for extracting label-related features. We experimen-
tally validate our model on a variety of people-centric sens-
ing tasks. The results demonstrate the outperformance of
the proposed model compared with the state-of-the-art. Our
model is generic and can be applied to practical applications.
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