
The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

Efficient Concept Induction for Description Logics

Md Kamruzzaman Sarker, Pascal Hitzler
Data Semantics (DaSe) Laboratory,

Dept. of Computer Science and Engineering,
Wright State University

{sarker.3, pascal.hitzler}@wright.edu

Abstract

Concept Induction refers to the problem of creating complex
Description Logic class descriptions (i.e., TBox axioms) from
instance examples (i.e., ABox data). In this paper we look
particularly at the case where both a set of positive and a set of
negative instances are given, and complex class expressions
are sought under which the positive but not the negative ex-
amples fall. Concept induction has found applications in on-
tology engineering, but existing algorithms have fundamen-
tal performance issues in some scenarios, mainly because a
high number of invokations of an external Description Logic
reasoner is usually required. In this paper we present a new
algorithm for this problem which drastically reduces the num-
ber of reasoner invokations needed. While this comes at the
expense of a more limited traversal of the search space, we
show that our approach improves execution times by up to
several orders of magnitude, while output correctness, mea-
sured in the amount of correct coverage of the input instances,
remains reasonably high in many cases. Our approach thus
should provide a strong alternative to existing systems, in par-
ticular in settings where other systems are prohibitively slow.

Introduction
With the rise of the Web Ontology Language OWL (Hit-
zler et al. 11 December 2012), description logics have be-
come the leading paradigm for the representation of ontolo-
gies (Hitzler, Krötzsch, and Rudolph 2010). The knowledge
acquisition bottleneck, in the form of acquisition of descrip-
tion logic knowledge bases, thus becomes an issue also for
the field of ontology engineering and applications. Ontology
Learning is a term often used for this in the Semantic Web
context, and a relatively recent overview of the many facets
of this subfield can be found in (Lehmann and Völker 2014).

In this paper, we study one of the subproblems of on-
tology learning, commonly known as Concept Induction or
Concept Learning. Generally speaking, this problem can be
described as one of generating complex description logic
class expressions S from a given description logic knowl-
edge base (or ontology) O and sets P and N of instances,
understood as positive and negative examples, such that
O |= S(a) for all a ∈ P , and O 6|= S(b) for all b ∈ N . In a
practical ontology engineering process, solutions sought are

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

often approximate, i.e., they will not satisfy O |= S(a) for
all a ∈ P , but for as many as possible, and will not satisfy
O 6|= S(b) for all b ∈ N , but for as many as possible.

Concept Induction is traditionally studied with meth-
ods derived from Inductive Logic Programming, and an
overview of corresponding results and systems can be found
in (Lehmann et al. 2014). The most mature and recent sys-
tem for this type of Concept Induction we are aware of
is DL-Learner, as presented in (Bühmann, Lehmann, and
Westphal 2016) and based on the algorithms from (Lehmann
and Hitzler 2010; Lehmann et al. 2011). Concept Induction
has been employed for ontology engineering, in particular
in the context of ontology and knowledge graph refinement,
see e.g. (Lehmann and Bühmann 2010; Paulheim 2017) and
the use case descriptions in (Bühmann, Lehmann, and West-
phal 2016). Another recent use case in the context of ex-
plaining deep learning systems was described in (Sarker et
al. 2017).

However, while DL-Learner is an excellent and very use-
ful system, its algorithm – which comes with theoretical cor-
rectness results (Lehmann and Hitzler 2010) – has major
performance issues in some scenarios, such as the one de-
scribed in (Sarker et al. 2017). In fact, it was the application
need for scalability exposed through our experiments in the
scenario from (Sarker et al. 2017) which primarily prompted
the investigations which we report herein. The key problem
is that in a single execution, the DL-Learner system will
make a significant number of external calls to a description
logic reasoner. While the latter have become rather efficient
in recent years, the accumulated time needed, in particular
if the input ontologies are large, can be prohibitive for the
use of the approach. For example, as we will report in the
evaluation section, for the scenario described in (Sarker et
al. 2017) a single run of DL-Learner can easily take over
two hours, while the scenario easily necessitates thousands
of such runs.

In this paper, we follow the idea that in some scenarios
such as the one mentioned, it may be prudent to give up
some completeness guarantees, and to instead focus on exe-
cution speed. In the approach which we describe herein, we
do in fact invoke a description logic reasoner only once for
each run of our algorithm. The reasoner computes a materi-
alization of facts in term of class memberships of individuals
to atomic classes, and this materialization is used through-

3036

out the rest of the algorithm. Furthermore, we depart from
the established tradition in Concept Induction in that we
do not use a refinement-operator-based approach to produce
candidate solutions. As a consequence, our approach saves
up to several orders of magnitude on large input ontologies,
as compared to DL-Learner. At the same time, accuracy of
the solutions provided by our approach remains reasonably
high, which indicates a favorable trade-off between accuracy
and efficiency, for application scenarios where such a trade-
off is desired.

The rest of the paper is organized as follows. We first de-
scribe a high-level perspective of our approach and algo-
rithm.Then we describe the concrete algorithm which we
have implemented, together with some formal results. Af-
ter that, we present our experimental evaluation in terms of
a comparison with DL-Learner, and finally we conclude.

The General Algorithm
In terms of terminology, we generally follow (Lehmann and
Hitzler 2010) where appropriate. The general learning prob-
lem we address is concept induction as described in the fol-
lowing, where we assume that some description logic L has
been fixed: Given an ontologyO (consisting of an ABox and
a TBox) over L and two sets P and N of individuals called
positive respectively negative examples, we seek a (possibly
complex) class expression S over L such thatO |= S(a) for
all a ∈ P (we say that C covers a), and O 6|= S(b) for all
b ∈ N . We call S a solution for this.

The most prominent refinement-operator based approach
to concept induction, as provided in the DL-Learner system
(Bühmann, Lehmann, and Westphal 2016), essentially fol-
lows a generate-and-test paradigm: Based on a so-called re-
finement operator, an idea borrowed from Inductive Logic
Programming (Nienhuys-Cheng and de Wolf 1997), subse-
quent candidate concepts are generated and tested as to the
degree to which they come close to a solution, and following
some strategy the next candidate concepts are generated un-
til eventually, a full solution is found or some approximate
solution has been created. The testing and assessment steps
involve the calling of an external description logic reasoner,
while the number of generated potential candidates can be
very large. Since description logic reasoners generally have
to run rather complex algorithms,1 the repeated testing nec-
essary amounts for the majority of the runtime used.

In some application scenarios for DL-Learner such as the
one presented in (Sarker et al. 2017), however, it turns out
that due to the sheer amount of tests required this approach
takes a very long time so that the data space cannot be suffi-
ciently explored – we provide runtime data in the evaluation
section below. Some aspects of the scenario are as follows.
(a) It requires many runs with changing example sets, while

the ontology remains unchanged.
(b) The positive and negative examples do not include en-

tities with complex property relationships. Rather, for
each example a the corresponding ABox statements are
only of the form R(a, b), with R some role and b some

1Worst-case computational complexities for these algorithms
are typically rather high (Hitzler, Krötzsch, and Rudolph 2010).

(other) individual, together with statements of the form
A(a) and B(b), where A and B are atomic classes. We
call such examples star-shaped.

(c) It is more important to quickly arrive at relatively simple
solutions, if such simple solutions exist, rather than to
comprehensively explore the space of possible complex
solutions. I.e., it seems favorable to trade some com-
pleteness for higher efficiency.

In this paper, we are going to show how the performance
issue can be addressed in such scenarios. We will now first
describe our approach in a general way, and in the next sec-
tion we will describe the concrete algorithm.

Our new approach consists of the following three steps:
1. Select a finite set {C1, . . . , Cn} of complex class expres-

sions over L, and setO′ = O∪{Ai ≡ Ci | i = 1, . . . , n},
where the Ai are atomic classes not yet occurring in O.

2. Use a reasoner to compute membership in atomic classes
fromO′ of all individuals occuring in examples. Note that
this includes the newly added atomic classes from step 1.

3. Generate candidate class expressions (possibly, itera-
tively) using only the constructors u, t and ¬ and atomic
classes, and test using the results from step 2 to what ex-
tent they constitute approximate solutions, using the as-
sessment to guide iterative generation of candidates.
Let us briefly consider the pros and cons of this approach.

• Steps 1 and 2 need to be performed only once for each set
of examples, provided O does not change. I.e., they can
be considered pre-processing steps.

• Depending on the underlying logic L, step 2 can take con-
siderable time, but this preprocessing overhead would be
outweighed by time saved in step 3, as it will not be nec-
essary to invoke a reasoner for each candidate solution.

• Testing in step 3 is in general not equivalent to using a full
reasoner. Our algorithm is approximate one in the sense
that we trade some completeness for improved efficiency.

• We could also allow some use of existential and universal
quantification, but for ease of comprehensibility of solu-
tions we chose not to, currently. Quantifiers can of course
be included in the complex classes generated in step 1.

• Our approach will necessarily miss solutions also because
there are infinitely many possible complex class expres-
sions involving quantifiers, while in step 1 we generate
only a finite number of class expressions involving quan-
tifiers. We implemented our approach based on the hy-
pothesis that the benefit of significantly improved runtime
will outweigh this drawback in many relevant scenarios.

• In our approach, preprocessing runtime can effectively
be controlled by selecting more or fewer complex class
expressions in step 1. Selecting more will mean that we
include the exploration of more possible solutions but
increase pre-processing time, while selecting fewer will
have the opposite effect.
The scenarios we have in mind and which prompted

this work are those regarding data exploration under back-
ground knowledge: The ontology O constitutes the back-
ground knowledge, and the exploration mechanism suggests
clusters of data points for which it would be desirable to ob-
tain a meaningful label or an explanation. E.g., data clusters
could be explored visually, while labels are generated based

3037

on fixed background knowledge, and displayed next to clus-
ters. Another scenario in the context of explainable artificial
intelligence is about exploring the space of activation pat-
terns of hidden layer neurons in deep learning systems as
in the already mentioned (Sarker et al. 2017), and we will
include corresponding evaluation data below.

Let us now revisit the properties (a) through (c) of our
setting mentioned above.

Regarding property (a), a key difference between our ap-
proach and the algorithms employed in DL-Learner is that
we only have to use a reasoner once for computing Step 2,
while the DL-Learner algorithm would have to invoke a rea-
soner for every candidate solution.

Regarding property (b), we understand that this seems to
be a severe restriction. However, some settings can be com-
piled into the star-shaped format which we require, by mak-
ing some minor additions to the ontology, e.g. by means of
role chain expressions. Practically speaking, many of the
known scenarios where concept learning has been applied
seem to fit our requirement, and we will further elucidate
this in the evaluation section.

Regarding property (c), this trade-off will not be a good
one for all scenarios, but it will when time is of the essence.

Efficient Concept Induction from Instances
We now provide a concrete instance of the algorithm de-
scribed in generic terms in the previous section. We call it
the “Efficient Concept Induction from Instances” algorithm,
ECII (pronounced like “easy”). We consider again the same
three steps, and we assume O to be an OWL DL ontology
(Hitzler et al. 11 December 2012), i.e., essentially a knowl-
edge base expressed in the description logic SROIQ.2 In
the description we will use some parameters, which are nat-
ural numbers ni and ki, and we will refer to them in our
exhibition.

In step 1 of the algorithm, we select as additional complex
class expressions all class expressions C which are formed
by the grammar C ::= B | C1 u C2 | ∃R.C where B is
atomic, R is a role, and which contain at most n1 occur-
rences of the u symbol and at most n2 occurrences of the
∃ symbol (in our system, both n1 and n2 default to 3, but
can be set differently). The rationale behind this choice is
simply that we wanted to remain within the EL++ language
which allows for very efficient (and polynomial time) rea-
soning.(Hitzler et al. 11 December 2012) However, if O is
not in OWL EL, which is the case for most of our evaluation
data on which we will report later, then this does not neces-
sarily lead to any advantage, and we could also allow other
complex classes from OWL DL which are not in OWL EL –
that does not fundamentally modify the approach.

In step 2 of the algorithm we compute the materializa-
tion for all relevant individuals, i.e., the membership of all
individuals from the examples in all atomic classes from
O′. There are several good algorithms and systems for this,
which can be used off-the-shelf. If the ontologyO is already

2For background on description logics, see (Baader, Brandt, and
Lutz 2005; Hitzler, Krötzsch, and Rudolph 2010)

in OWL EL, then this reasoning task is in fact worst-case
polynomial in the size of the input.

In order to explain what we do in step 3 of the algorithm,
we need a bit of preparation. First, some definitions.

A negated disjunct is a class expression of the form
¬(D1 t · · · t Dk), where the Di are atomic classes from
O. A conjunctive Horn clause is a class expression of the
form B uD, where B is an atomic class from O′ and D is a
negated disjunct. A candidate class is a class expression of
the form

⊔m
i=1Hi, with conjunctive Horn clausesHi.

As the term suggests, step 3 of the algorithm will gener-
ate solution candidates which involve candidate classes, and
will check whether they are solutions. The candidate classes
are not the solution candidates; the latter will be defined be-
low. We restrict ourselves to candidate classes of the men-
tioned form because we think that conjunctive Horn clauses
can easily be understood by humans, and our intention was
to provide solutions in such an easily ingestible form. We
will return to this issue in the evaluation section.

We narrow the concept induction problem to the follow-
ing, which fits our scenarios of interest, as described earlier.

Given an ontologyO (consisting of an ABox and a TBox)
over L, an example is an individual a together with a set
A(a) of ABox statements (not necessarily contained in O)
of the forms A(a), R(a, b) or B(b), for any roles R, individ-
uals b and atomic classes B. We call two sets P and N of
examples the set of positive respectively negative examples
and set A =

⋃
a∈P∪N A(a). We now seek to find a (possi-

bly complex) class expression S over L such thatO |= S(a)
for all a ∈ P (and in this case we say that C covers a), and
also that O 6|= S(b) for all b ∈ N . We call S a solution for
this learning problem.

Now let R1, . . . , Rl be all roles occurring in all (positive
and negative) examples. A solution candidate is a class ex-
pression of the form A u

dl
i=1 ∃Ri.Ci or

A u
ll

i=1

∃Ri.

 m⊔
j=1

(Bji u ¬(D1 t . . . tDjik
))

 (1)

where the Ci are candidate classes and where A and all the
Bj and Dj are atomic classes in O′.

In order to now spell out step 3 of the algorithm, we have
to present how the solution candidates are generated, and
how they are checked whether they are solutions.

Let us first turn to the algorithm for checking whether
a solution candidate is a solution. What we in fact do, is
to determine the individuals which fall under the candidate
classes which are part of a solution candidate.

Let

C =
m⊔
j=1

(Bj u ¬(D1 t . . . tDjk))

be such a candidate class. We now require some definitions.
If R is a role occuring in A(a) for a (positive or negative)
example a, then we define the set of all R-fillers of a to
be the set R(a) = {b | R(a, b) ∈ A(a)}, and if X is a
set of individuals then we define the set of all inverse R-
fillers of X to be the set R−(X) = {a | there is some b ∈

3038

X with R(a, b) ∈ A(a)}. We also set

R
+
=
⋃
a∈P

R(a) R
−
=
⋃
a∈N

R(a) R = R
+ ∪R−

for each role R. The extension ↓B of an atomic class B is
defined as ↓B = {b | B(b) ∈ A}. The extension of the class
candidate C given above is then defined as

↓C =
m⋃
j=1

(↓Bj ∩ \(↓D1 ∪ . . . ∪ ↓Djk)).

Now if

S = A u
ll

i=1

∃Ri.Ci

is a solution candidate, then let

↓S = ↓A ∩
l⋂

i=1

R−i (↓Ci).

We now call a solution candidate S an approximate solu-
tion if and only if both of the following hold.
1. a ∈ ↓S for all positive examples a in P .
2. a 6∈ ↓S for all negative examples a in N .

Note that checking whether a solution candidate is an ap-
proximate solution can be done simply by means of a num-
ber of straightforward set-theoretic operations, which is eas-
ily implemented. In the general case, approximate solutions
will of course not be (full) solutions, and whether or not this
is a reasonable thing to do depends on the use case, and in
particular on the question whether the runtime improvments
for the use case outweigh the severity of the reasoning mis-
takes we get in return. We will better understand this trade-
off when we discuss our evaluation results.

Let us now turn to the generation of solution candidates.
Essentially, the set of all possible solution candiates can be
understood as a search space, within which we want to locate
solutions or at least approximate solutions which are highly
accurate in terms of coverage or not of the examples.

The DL-Learner system, which is our primary compar-
ison, is based on traversing the search space by means of
a so-called refinement operator, an idea borrowed from In-
ductive Logic Programming (Nienhuys-Cheng and de Wolf
1997): Given a solution candidate, the refinement operator
produces a set of new solution candidates. These are all as-
sessed as to their accuracy in terms of coverage or not of the
examples, and the best are kept and the process is iterated.
The DL-Learner system calls an external reasoner each time
the accuracy of a candidate solution is to be assessed.

Our approach, however, dispenses of the need to call
an external reasoner as discussed above. We could now of
course use a refinement-operator approach to iteratively cre-
ate solution candidates and check them. However since ac-
curacy assessment in our setting is very quick, and since our
solutions are of very specific forms, we instead opted for a
direct assembly of solution candidates from its parts, as de-
scribed in the following.

Recall that our solution candidates are of the form (1). Our
algorithm for constructing solution candidates consists of

three consecutive steps: (I) Select a set of conjunctive Horn
clauses. (II) Select a set of candidate classes constructed
from the selection in step (I). (III) Select a set of candidate
solutions constructed from the selection in step (II).

These three steps, each of which we are going to describe
in detail shortly, depend on five user-defined parameters
k1, . . . , k5 which are natural numbers. Their default values
are k1 = k2 = k3 = 3 and k4 = k5 = 50, but they can be
changed by the user. There is another user-defined parame-
ters keepCommonTypes, which defines whether to keep or
delete the commonTypes (which are the set of atomic con-
cepts which appear both in positive and negative instances).
Default value for it is false.

(I) For every role R occuring in the examples, set NR =
{B | B is an atomic class in O′ and there is b ∈ R with b ∈
↓B}. Then, for each role R, construct the set H0,R of
all conjunctive Horn clauses, each of which contains only
atomic classes fromNR, and at most k1 of such classes each.

Then, for each H ∈ H0,R, calculate the accuracy of H as

α1(H) =
|R+ ∩ ↓H|+ |R− \ ↓H|

|R|
.

Finally, let HR be the set of the k4 conjunctive Horn
clauses from H0,R which have the highest accuracy; if two
clauses are of the same accuracy, then we use those of
shorter length, where length is measured in the number of
atomic classes occuring in the conjunctive Horn clause. HR

is the set of conjunctive Horn clauses selected in this step.
(II) For every role R occuring in the examples, set C0,R

to be the set of candidate classes assembled as disjunctions
of maximally k2 conjunctive Horn clauses from HR each.

Then, as before, we select the set CR of the k6 candidate
classes from C0,R which have the highest accuracy, and if
two candidate classes are of the same accuracy, then we use
those of shorter length.

(III) Construct the set of candidate solutions S0 ={
A u

dk3

i=1 ∃Ri.Ci
∣∣∣Ci ∈ CRi

, A an atomic class in O′
}
.

Our output set S consists of the best candidate solutions
from S0 again selected by means of highest accuracy and
shortest length, where the accuracy for each C ∈ S is

α2(C) =
|P ∩ ↓C|+ |N \ ↓C|

|P ∪N |
.

Let us make some remarks. In (I), we essentially brute-
force the search for good conjunctive Horn clauses for each
set of R-fillers, and NR are all the classes relevant for these
R-fillers. Accuracy is simply measured by coverage of R-
fillers from the positive examples and non-coverage of the
R-fillers from the negative examples, as a quotient with
the number of all R-fillers. Length as a tie-breaker makes
sense because we retain our intention to produce human-
interpretable solutions, i.e., simple solutions are preferred.
The size of H0,R is of course exponential in k1, but this
simply reflects the nature of the search space. Likewise, step
(II) is exponential in k2, and step (III) is exponential in k3.
The accuracy measure in step (III) is essentially the same
as the one in steps (I) and (II), just that now we are look-
ing at the examples, instead of the R-fillers. The required

3039

computations in all steps are straightforward arithmetic or
set operations.

Due to the already mentioned deliberate decision to trade
completeness for runtime improvements, our approach will
of course not necessarily find all solutions or best solutions.
It is to be understood as a heuristics which delivers a favor-
able trade-off between accuracy and speed, as we argue in
the evaluation section below.

Experimental Evaluation
The goal of our experimental evaluation was to test the hy-
pothesis that the ECII algorithm leads to a favorable trade-
off between runtime improvements and loss in accuracy,
compared to DL-Learner. We expected to see runtime im-
provements of 2 or more orders of magnitude for large in-
put ontologies, while we expected that accuracy would only
moderately decrease in many test cases.

To evaluate our approach, we implemented the ECII sys-
tem in Java (version 1.8) which makes it platform indepen-
dent. We made use of the OWL API (Horridge and Bech-
hofer 2011) (version 4.5), which is an open source imple-
mentation for manipulating OWL 2 ontologies. As external
reasoner for step 1 of the algorithm we used Pellet (Sirin
et al.) In principle, ECII can also use other reasoners. We
used Apache Maven as build system. The ECII system and
all experimental data and results, including ontologies and
configuration files are available online.3

All experiments were conducted on a 2.2. GHz core I7
machine with 16GB RAM.

For DL-Learner we used the CELOE (Lehmann et al.
2011) algorithm and the fast instance check (DL FIC) vari-
ation of it, which is another approximation approach which
trades time for correctness. We terminated DL-Learner at
the first occurance of a solution with accuracy 1.0, mak-
ing use of the stopOnFirstDefinition parameter. For some
large ontologies DL-Learner could not produce a solution
with accuracy 1.0 within 4,500 seconds (i.e., 75 minutes);
in these cases we terminated the algorithm after 4,500 sec-
onds, using the maxExecutionTimeInSeconds parameter. For
the FIC mode of DL-Learner, the time limit was set to be
the execution time of the ECII system. For ECII we used
the default settings, for Ks i.e., k1 = k2 = k3 = 3 and
k4 = k5 = 50 and varied the keepCommonTypes as true
and false, as mentioned earlier. We use ECII to denote the
ECII system with default parameters, and DL-Learner to de-
note DL-Learner with full reasoner (CELOE setting) unless
otherwise mentioned. Note that a runtime comparison for the
cases where DL-Learner does not produce a solution with
accuracy 1.0 is difficult to do, since DL-Learner would sim-
ply keep producing candidate solutions for a very long time,
while ECII by design tests only a limited number of candi-
date solutions. Our 75-minute cap on DL-Learner runtime is
unavoidably somewhat arbitrary.

As evaluation scenarios we used all evaluation scenar-
ios (except Carcinogesis) from the original DL-Learner al-
gorithm paper (Lehmann and Hitzler 2010), as well as the
scenario from (Sarker et al. 2017) which makes use of the

3https://github.com/md-k-sarker/ecii-expr.

ADE20k (Zhou et al. 2017) dataset. We cannot describe all
these scenarios in detail, and the reader is asked to refer
to (Lehmann and Hitzler 2010; Sarker et al. 2017) for de-
tails. The evaluation scenarios from (Lehmann and Hitzler
2010) were Michalski’s trains (Michalski 1980), Forte Fam-
ily (Richards and Mooney 1995), Poker (http://www.ics.uci.
edu/∼mlearn/MLRepository.html), Moral Reasoner (http://
mlearn.ics.uci.edu/databases/moral-reasoner/), and Yinyang
family relationship (Iannone, Palmisano, and Fanizzi 2007),
which are benchmark scenarios from Inductive Logic Pro-
gramming. Carcinogesis was excluded because according to
(Lehmann and Hitzler 2010) it did not work with a full rea-
soner under DL-Learner, and we encountered the same prob-
lem.

We will now briefly discuss each of the scenarios in turn,
before we summarize; Table 1 provides an overview of the
results. Runtimes were averaged over 3 runs. Accuracy of a
solution S was assessed as

α3(S) =
|PS |+ |NS |
|P ∪N |

, where

PS = {a ∈ P | O ∪ A |= S(a)} and
NS = {b ∈ N | O ∪ A 6|= S(b)},

using a full reasoner. DL-Learner fast instance check (DL
FIC) is compared with the α2 accuracy score (see above)
of ECII system with default (ECII DF) and keeping com-
mon types (ECII KCT). In Table 1, the accuracy value for
DL-Learner is always the one with the best solution. The α3

accuracy score for DL-Learner is the score of the result re-
turned by DL-Learner with the highest such score. The α2

score for ECII is the average score over three runs, where
for each run the solution with the best α2 score is used for
the average. The α3 accuracy score for ECII has been com-
puted by taking all (or if more than five, a random section of
five) of the results returned by ECII which score maximally
in terms of α2. For each of these, the α3 score has been cal-
culated using a full reasoner (in fact, Pellet), and averaging
over these results.

The Yinyang family relationship problem is about creat-
ing descriptions for family relationship types from instance
data. This dataset includes a small ontology with 157 logi-
cal axioms. We notice that ECII with default parametes per-
forms worse than DL-Learner in this task both in terms of
runtime and in terms of α3 accuracy, but ECII KCT obtains
same α2 score as DL FIC when keeping the common types.

The Michalski’s train dataset ontology has 273 axioms.
On this task, ECII is significantly outperformed by DL-
Learner in terms of runtime, while both find perfect solu-
tions. The reason that DL-Learner is quicker lies in the fact
that it quickly comes up with solution by making a good
choice in the refinement operator steps, thus leading to a
quick termination. This is not necessarily an indication that
DL-Learner runtime will always be significantly quicker for
problems of this input size – see e.g. the next paragraph.

The Forte family dataset is also of small size, the ontol-
ogy has 341 axioms. The problem defined for this was to de-
scribe the uncle (Richards and Mooney 1995; Lehmann and
Hitzler 2010) relationship. Two problems (large and small)

3040

Experiment Name Number of Runtime (sec) Accuracy (α3) Accuracy α2

Logical Axioms DLa DL FIC(1)b DL FIC(2)c ECII DFd ECII KCTe DLa ECII DFd DL FIC(1)b DL FIC(2)c ECII DFd ECII KCTe

Yinyang examples 157 0.065 0.0131 0.019 0.089 0.143 1.000 0.610 1.000 1.000 0.799 1.000
Trains 273 0.01 0.020 0.047 0.05 0.095 1.000 1.000 1.000 1.000 1.000 1.000
Forte 341 2.5 1.169 6.145 0.95 0.331 0.965 0.642 0.875 0.875 0.733 1.000
Poker 1,368 0.066 0.714 0.817 1 0.281 1.000 1.000 0.981 0.984 1.000 1.000

Moral Reasoner 4,666 0.1 3.106 4.154 5.47 6.873 1.000 0.785 1.000 1.000 1.000 1.000
ADE20k I 4,714 577.3f 4.268 31.887 1.966 23.775 0.926 0.416 0.263 0.814 0.744 1.000
ADE20k II 7,300 983.4f 16.187 307.65 20.8 293.44 1.000 0.673 0.413 0.413 0.846 0.900
ADE20k III 12,193 4,500g 13.202 263.217 51 238.8 0.375 0.937 0.375 0.375 0.930 0.937
ADE20k IV 47,468 4,500g 93.658 523.673 116 423.349 0.375 NA 0.608 0.608 0.660 0.608

a DL : DL-Learner
b DL FIC (1) : DL-Learner fast instance check with runtime capped at execution time of ECII DF
c DL FIC (2) : DL-Learner fast instance check with runtime capped at execution time of ECII KCT
d ECII DF : ECII default parameters
e ECII KCT : ECII keep common types and other default parameters
f Runtimes for DL-Learner were capped at 600 seconds.
g Runtimes for DL-Learner were capped at 4,500 seconds.

Table 1: Runtime and accuracy comparison of DL-Learner and ECII. Some figures are averages as described in the text.

were taken from this dataset by varying the numbers of posi-
tive and negative individuals, and the score is averaged. ECII
outperforms DL-Learner in terms of runtime but dips in ac-
curacy. For approximation accuracy ECII (α2 = 1.00) out-
performs DL-Learner fast instance check (α2 = 0.87) ver-
sion by setting keepCommonTypes to true.

The Poker dataset has 1,368 axioms and thus a slightly
larger ontology. (Lehmann and Hitzler 2010) defined two
problems using this dataset namely learning the definition
of a pair and of a straight. With the same (1.0) accuracy,
DL-Learner is significantly quicker, presumably for similar
reasons as for the Trains dataset.

The Moral Reasoner dataset has 4,666 axioms and is of
medium size as part of our set of scenarios. In (Lehmann
and Hitzler 2010), several versions of this scenario were ex-
plored, and we chose the one using all instances and which
did not modify the original set of atomic classes which can
be used to construct solutions. For this problem one of the
solutions with accuracy 1.0 found by DL-Learner consists
of the single atomic class “guilty,” while ECII average ac-
curacy is only 0.785. One of the solutions found by ECII,
with accuracy 0.91, is ¬plan knownt¬carefultguilty. DL-
Learner was significantly quicker. We see that DL-Learner
outperforms ECII on this task, and the runtime performance
of DL-Learner can be explained as in the Trains example.
Regarding accuracy, ECII did not come up with “guilty” as
candidate solution, presumably because its α2 score is not
high enough. Indeed, the ontology for this dataset contains
a significant numer of class disjunctions, which causes diffi-
culties for our approximate reasoning procedure. This seems
to explain both why ECII does not produce “guilty” as a so-
lution and also why it would construct a complicated solu-
tion using disjunctions which scores well with respect to α2

but not well with respect to α3-accuracy.
The ADE20k dataset contains over 20,000 images of

scenes which are preclassified in terms of scene type. Each
image may have several annotations of objects which have
been provided by humans. For our evaluation we used the
dataset from (Sarker et al. 2017) where the ADE20k dataset,
with annotations, was cast into an OWL ontology and
aligned with the Standard Upper Merged Ontology SUMO4.

4http://www.adampease.org/OP/

In (Sarker et al. 2017), sets of positive and negative exmples
were selected from the images, and DL-Learner was used to
generate corresponding class expressions. Only a handful of
such experiments was reported in (Sarker et al. 2017): As we
see below and in Table 1, the scenario yields to prohibitively
long runtimes for DL-Learner, which makes a thorough in-
vestigation along the lines of (Sarker et al. 2017) impossible.

In order to compare performances, we used this scenario
to create four problem classes with varying input sizes, as
listed in Table 1.

For the smallest problem class, ontology size 4,714 ax-
ioms, ECII took on average 1.966 seconds to terminate and
come up with solutions having average accuracy of 0.416.
DL-Learner took 300 seconds to produce solutions with av-
erage accuracy of 0.926. As DL-Learner did not find solu-
tions with accuracy 1.0 within a reasonable time span we
capped execution at 10 minutes or 600 seconds. DL-Learner
then took on average 577.3 seconds and the average accu-
racy obtained within this time was 0.926 which is the same
as of 300 seconds. For one representative problem, a solu-
tion found by ECII had an accuracy of 1.0. The highest ac-
curacy obtained by DL-Learner within this time limit on that
same problem was 0.88. We notice that accuracy of ECII
lags behind that of DL-Learner on average, but with this in-
put size we already see significant runtime improvements,
and sometimes even higher accuracy. ECII outperforms DL
FIC interms of α2 score.

For the medium size setting – ontology with 7,300 ax-
ioms, we used exactly the settings reported in (Sarker et
al. 2017). DL-Learner was able to come up with solutions
with accuracy 1.0, but the time required to produce these
solutions was 983 seconds average. The runtime for ECII
was 20.8 seconds on average, and the average accuracy was
0.673. Accuracy of ECII on these is less than DL-Learner
but runtime is very significantly improved. Approximate ac-
curacy is better for ECII compared to DL FIC.

Our largest test ontologies were created using attributes
from all images, from the types with names starting with the
letter “R” from the ADE20k dataset. In this case we cre-
ated 2 different ontologies, in one version from the valida-
tion data – ontology size 12,193 axioms – and in the other
version from the training data – ontology size 47,468 ax-

3041

Figure 1: Runtime comparison between DL-Learner and
ECII. The vertical scale is logarithmic in hundredths of sec-
onds, and note that DL-Learner runtime has been capped at
4,500 seconds for ADE20k III and IV. For ADE20k I it was
capped at each run at 600 seconds.

ioms.
For the validation data ontology, DL-Learner was not able

to find a solution with accuracy 1.0, and we terminated DL-
Learner after 4,500 seconds (i.e., 75 minutes). DL-Learner
produced a solution with accuracy of 0.375. ECII took 51
seconds to run and produced soultions with an average ac-
curacy of 0.937. In fact, it turns out that DL-Learner did
produce ∃imageContains.> as solution, which essentially
means that it did not manage to take even a few refine-
ment steps. One solution found by ECII had an accuracy of
0.90. ECII system also outperforms DL Fast instance check
(DL FIC), in terms of α2 score. DL FIC was able to achive
α2 score as 0.375 while ECII system achives significantly
higher score.

For the training data ontology, DL-Learner was also ter-
minated after 4,500 seconds. It procuded the same solution
as before with accuracy of 0.375. ECII took 116 seconds
producing an average α2-score of 0.66. Due to the size of
the ontology, we were not able to run a reasoner to compute
the α3 accuracy value for the solutions provided by ECII.

From the last two tasks, we see that ECII provides a very
significant runtime improvement over DL-Learner, and is in
fact able to produce approximate solutions in cases where
DL-Learner can only return a trivial guess such as >.

Let us summarize the results using some charts. Figure 1
displays a runtime comparison over all experiments; the
experiments are sorted from left to right in increasing in-
put size. The DL-Learner curve has much higher variance,
which presumably is because runtime is capped whenever a
1.0 accuracy solution is found, while runtime is significantly
higher for comparable sizes if this is not the case. ECII has
an algorithm which is quicker in those test cases where DL-
Learner did not find a 1.0 accuracy solution, i.e., for Forte
and all ADE20k experiments, and is several orders of mag-
nitudes quicker for the large input ontologies.

Figure 2 visualizes the accuracy (α3) comparison results.
While ECII achieves 1.0 accuracy, as does DL-Learner, in
some cases (Train, Poker), it usually achieves only a lower
accuracy for all cases where DL-Learner is able to pro-

Figure 2: Accuracy (α3) comparison between DL-Learner
and ECII. For ADE20k IV it was not possible to compute an
accuracy score within 3 hours for ECII as the input ontology
was too large.

Figure 3: Approximation accuracy (α2) comparison between
DL-Learner fast instance check and ECII.

duce non-trivial solutions. When DL-Learner produces only
a trivial result, as in ADE20k III, ECII in fact is able to do
better than DL-Learner. It is reasonable to assume that this
would indeed happen in many cases where DL-Learner is
simply not able to process a large input size.

Figure 3 shows the approximate accuracy (α2) compar-
ison results. We can see that ECII always outperforms DL
FIC system.

Conclusions and Future Work
When we initially set out to develop the ECII algorithm and
system, our goal was to provide an alternative to DL-Learner
which trades some accuracy for speed. We anticipated that
our approach would only be slightly less accurate but with
one or two orders of magnitude in runtime improvements.

In a sense, our experiments show that we were not bold
enough in our assumptions regarding runtime improvme-
ments for large input ontologies, while for smaller ones there
aren’t any, unless in the cases where DL-Learner cannot pro-
vide an accuracy 1.0 solution. At the same time, our exper-
iments also show that we were too optimistic regarding ac-
curacy results for the smaller ontologies, while at the same
time we see much better results in the cases where DL-
Learner has to resort to trivial solution attempts.

3042

So overall, based on the evaluation, ECII indeed seems
to provide a reasonable alternative to DL-Learner in some
cases, and in fact provides reasonable solutions even in cases
where DL-Learner is unable to do so. From this perspective,
we have achieved what we set out to do.

Our analysis of course also raises rather obvious points
for further investigations and improvements. Further exper-
iments in fact should shed further light on the strengths and
weaknesses of ECII, and this needs to be explored. We have
not varied the ECII default parameters, but we conjecture
that we can move the time-accuracy trade-off in both direc-
tions by changing them. We have also not yet made full use
of the theoretical results for OWL EL, but only looked at the
obvious evaluation datasets for a fair comparison.

As discussed in the evaluation section, it also turns out
that the solutions with the highest α2-score are not always
the best ones with respect to the correct α3-accuracy. Of
course, calculating the α3-accuracy requires a full reasoner,
and thus significant time, but by doing a few such checks one
may be able to improve accuracy at the expense of some of
the runtime gains. As a further alternative, a post-processing
step could be added to the ECII algorithm which takes a
somewhat larger number of the solution candidates which
perform high with respect to α2-score, and returns only
those among them which also score high on α3-accuracy.

References
Baader, F.; Brandt, S.; and Lutz, C. 2005. Pushing the EL
envelope. In Kaelbling, L. P., and Saffiotti, A., eds., IJCAI-
05, Proceedings of the Nineteenth International Joint Con-
ference on Artificial Intelligence, Edinburgh, Scotland, UK,
July 30 – August 5, 2005, 364–369. Professional Book Cen-
ter.
Bühmann, L.; Lehmann, J.; and Westphal, P. 2016. DL-
Learner – A framework for inductive learning on the seman-
tic web. J. Web Sem. 39:15–24.
Hitzler, P.; Krötzsch, M.; Parsia, B.; Patel-Schneider, P.; and
Rudolph, S., eds. 11 December 2012. OWL 2 Web Ontology
Language: Primer (Second Edition). W3C Recommenda-
tion. Available at http://www.w3.org/TR/owl2-primer/.
Hitzler, P.; Krötzsch, M.; and Rudolph, S. 2010. Founda-
tions of Semantic Web Technologies. Chapman & Hall/CRC.
Horridge, M., and Bechhofer, S. 2011. The OWL API: A
java API for OWL ontologies. Semantic Web 2(1):11–21.
Iannone, L.; Palmisano, I.; and Fanizzi, N. 2007. An algo-
rithm based on counterfactuals for concept learning in the
semantic web. Applied Intelligence 26(2):139–159.
Lehmann, J., and Bühmann, L. 2010. ORE – A tool for re-
pairing and enriching knowledge bases. In Patel-Schneider,
P. F.; Pan, Y.; Hitzler, P.; Mika, P.; Zhang, L.; Pan, J. Z.; Hor-
rocks, I.; and Glimm, B., eds., The Semantic Web – ISWC
2010 – 9th International Semantic Web Conference, ISWC
2010, Shanghai, China, November 7-11, 2010, Revised Se-
lected Papers, Part II, volume 6497 of Lecture Notes in
Computer Science, 177–193. Springer.
Lehmann, J., and Hitzler, P. 2010. Concept learning in de-

scription logics using refinement operators. Machine Learn-
ing 78(1-2):203–250.
Lehmann, J., and Völker, J. 2014. Perspectives on Ontology
Learning, volume 18 of Studies on the Semantic Web. IOS
Press.
Lehmann, J.; Auer, S.; Bühmann, L.; and Tramp, S. 2011.
Class expression learning for ontology engineering. Web Se-
mantics: Science, Services and Agents on the World Wide
Web 9(1):71–81.
Lehmann, J.; Fanizzi, N.; Bühmann, L.; and d’Amato, C.
2014. Concept learning. In Lehmann, J., and Völker, J., eds.,
Perspectives on Ontology Learning, volume 18 of Studies on
the Semantic Web. IOS Press, Amsterdam. 71–91.
Michalski, R. S. 1980. Pattern recognition as rule-guided
inductive inference. IEEE Transactions on Pattern Analysis
and Machine Intelligence (4):349–361.
Nienhuys-Cheng, S., and de Wolf, R., eds. 1997. Foun-
dations of Inductive Logic Programming, volume 1228 of
Lecture Notes in Computer Science. Springer.
Paulheim, H. 2017. Knowledge graph refinement: A sur-
vey of approaches and evaluation methods. Semantic Web
8(3):489–508.
Richards, B. L., and Mooney, R. J. 1995. Automated refine-
ment of first-order horn-clause domain theories. Machine
Learning 19(2):95–131.
Sarker, M. K.; Xie, N.; Doran, D.; Raymer, M.; and Hitzler,
P. 2017. Explaining trained neural networks with seman-
tic web technologies: First steps. In Besold, T. R.; d’Avila
Garcez, A. S.; and Noble, I., eds., Proceedings of the Twelfth
International Workshop on Neural-Symbolic Learning and
Reasoning, NeSy 2017, London, UK, July 17-18, 2017., vol-
ume 2003 of CEUR Workshop Proceedings. CEUR-WS.org.
Sirin, E.; Parsia, B.; Grau, B. C.; Kalyanpur, A.; and Katz, Y.
Pellet: A practical OWL-DL reasoner. J. Web Sem. 5(2):51–
53.
Zhou, B.; Zhao, H.; Puig, X.; Fidler, S.; Barriuso, A.; and
Torralba, A. 2017. Scene parsing through ADE20K dataset.
In 2017 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26,
2017, 5122–5130. IEEE Computer Society.

3043

