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Abstract

While in recent years machine learning (ML) based ap-
proaches have been the popular approach in developing end-
to-end question answering systems, such systems often strug-
gle when additional knowledge is needed to correctly an-
swer the questions. Proposed alternatives involve translating
the question and the natural language text to a logical rep-
resentation and then use logical reasoning. However, this al-
ternative falters when the size of the text gets bigger. To ad-
dress this we propose an approach that does logical reason-
ing over premises written in natural language text. The pro-
posed method uses recent features of Answer Set Program-
ming (ASP) to call external NLP modules (which may be
based on ML) which perform simple textual entailment. To
test our approach we develop a corpus based on the life cycle
questions and showed that Our system achieves up to 18%
performance gain when compared to standard MCQ solvers.

Developing intelligent agents that can understand natural
language, reason and use commonsense knowledge has been
one of the long term goals of AI. To track the progress to-
wards this goal, several question answering challenges have
been proposed (Levesque, Davis, and Morgenstern 2012;
Clark et al. 2018; Richardson, Burges, and Renshaw 2013;
Rajpurkar et al. 2016). Our work here is related to the school
level science question answering challenge, ARISTO (Clark
2015; Clark et al. 2018). As shown in (Clark et al. 2018)
existing IR based and end-to-end machine learning systems
work well on a subset of science questions but there exists a
significant amount of questions that appears to be hard for
existing solvers. In this work we focus on one particular
genre of such questions, namely questions about life cycles
(and more generally, sequences), even though they have a
small presence in the corpus.

To get a better understanding of the “life cycle” questions
and the “hard” ones among them consider the questions from
Table 1. The text in Table 1, which describes the life cycle of
a frog does not contain all the knowledge that is necessary to
answer the questions. In fact, all the questions require some
additional knowledge that is not given in the text. Question
1 requires knowing the definition of “middle” of a sequence.
Question 2 requires the knowledge of “between”. Question
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Life Cycle of a Frog
order: egg→ tadpole→ tadpole with legs→ adult

egg - Tiny frog eggs are laid in masses in the water by a
female frog. The eggs hatch into tadpoles.

tadpole - (also called the polliwog) This stage hatches
from the egg. The tadpole spends its time swimming in
the water, eating and growing. Tadpoles breathe using
gills and have a tail.

tadpole with legs - In this stage the tadpole sprouts legs
(and then arms), has a longer body, and has a more dis-
tinct head. It still breathes using gills and has a tail.

froglet - In this stage, the almost mature frog breathes
with lungs and still has some of its tail.

adult - The adult frog breathes with lungs and has no
tail (it has been absorbed by the body).

1. What is the middle stage in a frog’s life? (A) tadpole
with legs (B) froglet

2. What is a stage that comes between tadpole and adult
in the life cycle of a frog? (A) egg (B) froglet

3. What best indicates that a frog has reached the adult
stage? (A) When it has lungs (B) When its tail has been
absorbed by the body

Table 1: A text for life cycle of a Frog with few questions.

3 on other hand requires the knowledge of “a good indica-
tor”. Note that for question 3, knowing whether an adult frog
has lungs or if it is the adult stage where the frog loses its
tail is not sufficient to decide if option (A) is the indicator
or option (B). In fact an adult frog satisfies both the con-
ditions. An adult frog has lungs and the tail gets absorbed
in the adult stage. It is the uniqueness property that decides
that option (B) is an indicator for the adult stage. We believe
to answer these questions the system requires access to this
knowledge.

Since this additional knowledge of “middle”, “between”,
“indicator” (and some related ones which are shown later)
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is applicable to any sequence in general and is not spe-
cific to only life cycles, we aim to provide this knowledge
to the question answering system and then plan to train it
so that it can recognize the question types. The paradigm
of declarative programming provides a natural solution for
adding background knowledge. Also the existing semantic
parsers perform well on recognizing questions categories.
However the existing declarative programming based ques-
tion answering methods demand the premises (here the life
cycle text) to be given in a logical form. For the domain of
life cycle question answering this seems a very demanding
and impractical requirement due to the wide variety of sen-
tences that can be present in a life cycle text. Also a life cycle
text in our dataset contains 25 lines on average which makes
the translation more challenging.

The question that we then address is, “can the system uti-
lize the additional knowledge (for e.g. the knowledge of an
“indicator”) without requiring the entire text to be given in a
formal language?” We show that by using Answer Set Pro-
gramming and some of its recent features (function symbols)
to call external modules that are trained to do simple tex-
tual entailment, it is possible do declaratively reasoning over
text. We have developed a system following this approach
that answers questions from life cycle text by declaratively
reasoning about concepts such as “middle”, “between”, “in-
dicator” over premises given in natural language text. To
evaluate our method a new dataset has been created with the
help of Amazon Mechanical Turk. The entire dataset con-
tains 5811 questions that are created from 41 life cycle texts.
A part of this dataset is used for testing. Our system achieved
up to 18% performance improvements when compared to
standard baselines.

Our contributions in this work are two-fold: (a) we pro-
pose a novel declarative programming method that accepts
natural language texts as premises, which as a result extends
the range of applications where declarative programming
can be applied and also brings down the development time
significantly; (b) we create a new dataset of life cycle texts
and questions (https://goo.gl/YmNQKp), which contains an-
notated logical forms for each question.

Background
Answer Set Programming
An Answer Set Program is a collection of rules of the form,

L0 :- L1, ..., Lm,not Lm+1, ...,not Ln.

where each of the Li’s is a literal in the sense of classical
logic. Intuitively, the above rule means that if L1, ..., Lm are
true and if Lm+1, ..., Ln can be safely assumed to be false
then L0 must be true (Gelfond and Lifschitz 1988). The left-
hand side of an ASP rule is called the head and the right-
hand side is called the body. The symbol :- (“if”) is dropped
if the body is empty; such rules are called facts. Through-
out this paper, predicates and constants in a rule start with
a lower case letter, while variables start with a capital let-
ter. The following ASP program represents question 3 from
Table 1 with three facts and one rule.

Listing 1: a sample question representation

qIndicator(frog,adult).
option(a, has(lungs)).
option(b, hasNo(tail)).
ans(X):- option(X,V), indicator(O,S,V),

qIndicator(O,S).

The first fact represents that question 3 is an ‘indicator’
type question and is looking for something which indicates
that a frog is in the adult stage. The later two facts roughly
describes the two answer choices, namely “(a) when it
has lungs” and “(b) when its tail has been absorbed by the
body”. The last rule describes that for an indicator type
question, the option number X is a correct answer if the
answer choice V is an indicator for the organism O being in
stage S i.e. if indicator(O,S, V ) is true.

Aggregates A rule in ASP can contain aggregate functions.
An aggregate function takes as input a set. ASP has four
built-in aggregates namely #count, #max, #min, #sum which
respectively computes the number of elements in a set, the
maximum, minimum or the sum of numbers in the set. The
follows rule defines the concept of an ‘indicator’ using the
#count aggregate.

Listing 2: Defining Indicator of a stage
indicator(O,Stage,P) :-

stageFact(O,Stage,P),
#count {stageFact(O,S1,P)} = 1.

Here, stageFact(O,Stage, P ) captures the attributes P
that are true when the organism O is in the stage S. The
above rule then describes that P is an indicator for O being
in stage S if P is true in S and it is only true in S i.e. the
total number of stages S1 where Prop is true is one.

String valued Terms The object constants in ASP can take
string values (written inside quotes “ ”). This is useful while
working with text. For example, the options in the question
3 can also be represented as follows:
option(a, "when it has lungs").
option(b, "when its tail has

been absorbed by the body").

Function Symbols A function symbol allows calling an ex-
ternal function which is defined in a scripting language such
as lua or python (Calimeri et al. 2008). An occurrence of
a function symbol making an external call is preceded by
the ‘@’ symbol. For e.g., @stageFact(O,S, P ) denotes a
function symbol that calls to an external function named
stageFact which takes three arguments as input. A func-
tion symbol can return any simple term such as name, num-
ber and strings as output.

QA using Declarative Programming
A question answering (QA) system that follows declara-
tive programming approach primarily requires three compo-
nents: a semantic parser SP , a knowledge base KB and a
set of rules (let’s call it theory) T .

• The goal of the semantic parser SP is to translate a given
question into a logical form.
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• The KB provides facts or “premises” with respect to
which the question should be answered. For e.g. for the
frog life cycle the KB might look like the following:

Listing 3: A sample KB for part of the Frog life cycle
stageFact(frog,tadpole,has(tail)).
stageFact(frog,froglet,has(lungs)).
stageFact(frog,froglet,has(tail)).
stageFact(frog,adult,has(lungs)).
stageFact(frog,adult,hasNo(tail)).

• The theory T contains inference enabling rules.

To answer a question, the system first translates the question
into a logical form and then combines that with the KB and
the T to create a consolidated program. The output (models)
of which provides the answer.

For the running example of the ‘indicator’ question (Q3
from Table 1) if the theory T contains the rule in list-
ing 2, some semantic parser provides the question rep-
resentation in listing 1 and the KB contains the facts
in listing 3, then the output will contain the deduced
fact ans(b) describing that option (B) is the correct an-
swer. This is because, the rule in listing 2 will deduce
from the KB that indicator(frog, adult, hasNo(tail)) is
true. The last rule in listing 1 will then conclude that
ans(b) is true. Since there is no reason to believe that
indicator(frog, adult, has(lungs)) is true, ans(a) will
not be part of the output (model). The semantics of ASP
is based on the stable model semantics (Gelfond and Lifs-
chitz 1988). For further details interested readers can refer
to (Gebser et al. 2012; Gelfond and Kahl 2014).

Proposed Approach
The issue in the running example is that it is difficult to get
the facts in terms of stageFact/3 predicate and in the actual
KB we do not have facts in this format. Rather we have the
life cycle texts (Table 1) describing the facts. To deal with
this we replace such predicates with two external function
symbols, namely generate and validate.
Generate A generate function for a predicate takes the ar-

guments of the predicate and returns a textual description
of the predicate instance following some template. For ex-
ample, a generate function for stageFact can take (frog,
adult, hasNo(tail)) as input and returns a string such as
“an adult frog has no tail” or if it is for a predicate named
parent it can take (x, y) and return “x is a parent of y”.

Validate A validate function takes a string describing a
proposition (e.g. “an adult frog has no tail”) and validates
the truthfulness of the proposition against a KB contain-
ing text (e.g. Table 1). For now let us assume a validate
function returns 1 or 0 depending on whether the proposi-
tion is true or false according to the text in the KB.

With this transformation the “indicator” rule from listing 2
will look as follows:

indicator(O,Stage,Prop) :-
P = @g_StageFact(O,Stage,Prop),
@v_StageFact(P) ==1,

#count { S1: v_StageFact(P1)==1,
P1 = @g_StageFact(O,S1,Prop)} == 1.

The above rule could be read as follows: Prop de-
notes that O is in stage S if the natural language de-
scription of StageFact(O,Stage, Prop) which is ob-
tained by calling the g StageFact function is true ac-
cording to the v StageFact function and also the num-
ber of stages S1 where the natural language description of
StageFact(O,S1, P rop) true is equal to 1.

The pair of generate-validate function symbols delegates
the responsibility of verifying if a proposition is true or not
to an external function and we believe that if the proposi-
tion is simple enough and close to the texts described in a
KB, a simple validate function might be able to compute
the truth value with good accuracy. However, one important
issue with this rule is that it is not “safe”. In simple words
the above rule does not specify what values the variables
O,Stage, Prop, S1 can take and as a result what to pass as
arguments to the g StageFact functions is undefined. To
mitigate this issue one needs to add some domain predicates
which describes the possible values of the unbounded vari-
ables. For our question answering task, we have used the
predicates that represent the question as domain predicates.
The resulting rule, then, looks as follows:

indicator(O,Stage,Prop) :-
qIndicator(O,Stage),qOption(X,Prop),
P = @g_StageFact(O,Stage,Prop),
@v_StageFact(P) ==1,
#count { S1: isAStageOf(S1,O),

v_StageFact(P1)==1,
P1 = @g_StageFact(O,S1,Prop)} == 1.

The isAStageOf(S1, O) describes the stages in the life cy-
cle of the organism O and is extracted from the “order” field
in life cycle texts ( “Order” in Table 1).

On the choices of a Validate function The task of decid-
ing if a proposition is true based on a given text is a much
studied problem in the field of NLP and is known as tex-
tual entailment. There exist several textual entailment func-
tions. All of which can be used as validate function. How-
ever, the textual entailment functions returns a real value be-
tween 0 to 1 denoting the probability that the proposition is
true and thus one needs to decide a threshold value to ob-
tain a boolean validate function. In the implementation of
our system we have not used a boolean validate function but
used the entailment score as it is. We describe how to use a
fuzzy validate function in the next section after describing
the life cycle dataset and the representation of the texts.

The Dataset and The Implemented System
The life cycle question answering dataset contains a total
of 41 texts and 5.8k questions. Each text contains a se-
quence which describes the order of stages and a natural
language description of the life cycle as shown in Table
1. The life cycle texts are collected from the internet. The
sequence of the stages are manually added by either looking
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at the associated image in the website that describes the
order of the stages or from the headings of the text (Table 1).

Representing Life Cycle Texts
Each life cycle text is represented in terms of two predi-
cates, namely, stageAt(URL, O, P, S) and description(URL,
O, T). The stageAt predicate describes that according to the
source URL (from which the text is collected) the stage that
comes at position P in the life cycle of O is S. The descrip-
tion stores the text that describes the life cycle. The follow-
ing ASP program shows the representation of the text in Ta-
ble 1. To save space the actual value of the URL is replaced
by ‘u’. The KB contains representations of 41 such texts.

stageAt(u,"frog",1,"egg").
stageAt(u,"frog",2,"tadpole").
stageAt(u,"frog",3,"tadpole with legs")
stageAt(u,"frog",4,"froglet").
stageAt(u,"frog",5,"adult").
description(u,"frog",

"Egg: Tiny frog eggs are laid...").

Question Categories
The question that are created from these texts are divided
into 11 categories. The first three types of questions namely
look up, difference, indicator require reading the textual
description of stages whereas the remaining six types of
questions can be answered solely from the sequence of
stages (egg→ tadpole→ tadpole with legs→ adult).

Look Up Questions This category contains questions the
answer to which can be directly looked up from the descrip-
tion of the stages and does not require any special thinking.
The following list shows some questions in this category:

How do froglets breath? (A) using lungs (B) using gills

The tail of a frog disappears at what stage? (A) adult
(B) froglet

Where do female frogs lay their eggs? (A) In water (B)
On land

Difference Questions This category of questions compare
two stages based on their physical attributes, abilities or need
that is true in one stage but not in other. The following list
shows examples:

What is an adult newt able to do that a tadpole cannot?
(A) walk on land (B) swim in water

A tadpole just turned into an eft. What does it need
now? (A) shade (B)water

A seedling develops what that a sprout does not have?
(A) protective bark (B) root

Indicator Questions This category of questions mentions
an organism, a stage, two answer choices and asks which
one of those indicates that the organism is in the given stage.
Question 3 in Table 1 provides an example of this.

Sequence Based Questions Questions from this category
can be answered based on the sequence of stages that

describes journey of an organism from beginning to the
end (e.g. egg → tadpole → tadpole with legs → adult).
Questions in this category are further divided into 8 classes
which takes one of the following forms: (1) Next Stage
Questions: given a stage and an organism, asks for the next
stage. (2) Before Stage Questions: given a stage and an
organism, asks for the stages that appear before. (3) Between
Stage Questions: given two stages and an organism, asks
for the stages that appear between those two. (4) Stage At
Questions: given an organism and a position, asks for the
stages that appear at that position. (5) Count Questions:
given an organism asks how many stages are there in the life
cycle. (6) Correctly Ordered Questions: given an organism
asks the sequence that describes the correct order of the
stages. (7) Stage Of Questions: given an organism asks for
the stages that appear in its life cycle. (8) Not a Stage of
Questions: given an organism asks for the stages that do not
appear in its life cycle. Table 2 shows an example of each
types of questions.

Question Representation
The representation of a question comprises of four ASP
facts. Given an MCQ question of the form “〈Q?〉 (A)
〈answer choice 1〉 (B) 〈answer choice 2〉 ”, the first three
facts are computed trivially as follows:

question(‘‘Q?’’).
option(a,‘‘answer choice 1’’).
option(b,‘‘answer choice 2’’).

The fourth fact captures the type of the question (i.e. look
up, difference etc.) and some associated attributes (i.e. or-
ganism, stages, position). For each one of the 11 types of
questions in the dataset there is a fixed template which de-
scribes the associated attributes for each type of question.
The fourth fact is an instantiation of that template which is
computed by a semantic parser. Table 2 describes the ques-
tions templates and shows an example instantiation.

Theory
The theory contains a total of 36 ASP rules, 3 generate func-
tions one for each of the look up, difference and stage indi-
cator question type and a single validate function. The val-
idate function, @validate(Text,Hypothesis) takes as in-
put a life cycle text and a hypothesis (string) and returns a
score between 0 to 1. The score is computed using a textual
entailment function as follows:

score = max{ textual entailment(S,Hypothesis) :
S is a sentence in Text}

To find the answer, a confidence score V ∈ [0, 1]
is computed for each answer option X (denoted by
confidence(X,V )). The rules in the theory computes these
confidence scores. The correct answer is the option that gets
maximum score. The following rule describes this:

ans(X):- option(X,V), confidence(X,V),
V == #max {V1:confidence(X1,V1)}.

Due to limited space we only describe the rules that call
entailment functions through function symbols.
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Question Template Example Question Instantiated Template #Qs
qLookup(O) How do froglets breath? qLookup(“frog”) 2525
qDifference(O,S1, S2) What is an adult newt able to do

that a tadpole cannot?
qDifference(“newt”, “tadpole”, “adult”) 167

qIndicator(O,S) When do you consider a penguin
to have reached the adult stage?

qIndicator(“penguin”, “adult”) 125

qNextStage(O,S) A salmon spends time as which of
these after emerging from an egg?

qNextStage(“salmon”, “egg”) 346

qStageBefore(O,S) Newt has grown enough but it is
not yet in the tadpole stage, where
it might be?

qStageBefore(“newt”, “tadpole”) 123

qStageBetween(O,S1, S2) What is the stage that comes after
egg and before eft in the newt life
cycle?

qStageBetween(“newt”, “egg”, “eft”) 123

qStageAt(O,P ) What stage a longleaf pine will be
in when it is halfway through its
life?

qStageAt(“longleaf pine”,middle) 520

qCorrectlyOrdered(O) To grow into an adult, fleas go
through several stages. Which of
these is ordered correctly?

qCorrectlyOrdered(“flea”) 43

qCountStages(O) From start to finish, the growth
process of a wolf consists of how
many steps?

qCountStages(“wolf ′′) 113

qIsAStageOf(O) The growth process of lizards in-
cludes which of these?

qIsAStageOf(“lizard”) 1500

qIsNotAStageOf(O) To grow into an adult, fleas go
through 4 stages. Which of these
is not one of them?

qIsNotAStageOf(“flea”) 227

Table 2: Question templates and total number of questions for each question category. Variables starting with O,P, S respec-
tively refers to an organism, a position and a stage. A position could be a natural number or any member of {middle, last}.

Lookup Questions Given the representation of a lookup
question such as: {qLookup(“frog”). question(“How
do froglets breathe?”). option(a,“using gills”). op-
tion(b,“using lungs”).}, the following rule computes the
confidence score for each option.

confidence(X,V):-
question(Q), qOption(X,C),
H = @generate_lookup(Q,C),
qLookup(Org), description(URL,Org,P),
V = @validate(P,H),

While creating the confidence for option “a” this rule will
call the generate lookup(Q,C) function with Q = “How
do froglets breathe?” and C = “using gills”. The gen-
erate lookup function then returns a hypothesis “froglets
breathe using gills”. The validate function then takes the de-
scription of the frog life cycle and the hypothesis and veri-
fies if any of the sentence in the text supports the hypothesis:
“froglets breathe using gills”. The confidence score of option
“a” is the score returned by the validate function. Similarly
it will compute the confidence score for option “b”.

The work of (Khot, Sabharwal, and Clark 2018) presents
a function that creates a hypothesis from a question and an
answer choice which was used to solve MCQ questions. The
generate lookup function here reuses their implementation.

Difference Questions Given a difference question (e.g.
“What is an adult newt able to do that a tadpole cannot?”
and an answer choice (e.g. “walk on land”) a generate
function returns two hypothesis H1 and H2. (“adult newt
able to walk on land”, “a tadpole cannot walk on land”). The
fuzzy truth value for each each hypothesis is computed with
the validate function. The product of which is assigned
to be the confidence score of the answer choice. A rule is
written in ASP to describe the same.

Indicator Questions When dealing with a fuzzy validate
function the definition of an indicator is modified as follows:
Let v be the score for an answer choice c that indicates that
the organism O is in stage S. If O goes through n stages, S
represents the j-th stage and pi is the truth value that c is true
in stage i, then v = pj ∗

∏n
k=1,k 6=j(1 − pk). The following

five ASP rules are written to describe the same.

stageIndicatorIndex(ID):-
stageAt(URL, O, ID, S),
qStageIndicator(O,S).

trueForStage(Idx,X,V):-qIndicator(O,S),
option(X,C),stageAt(URL,O, Idx, S1),
H = @generate_indicator(S1,C)
description(URL, O, Text),
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V = @validate(Text, H).

result(1, X , @product("1.0",V,1,ID)):-
trueForStage(O, 1,X,V),
stageIndicatorIndex(SRC,ID).

result(O, N, X, @product(V1,V2,N,ID)):-
result(O, N-1, X , V1),
trueForStage(O, N,X,V2),
stageIndicatorIndex(ID).

confidence(X,V):- res(N, X , V),
N = #max {P:stageAt(URL,O, P, S )}.

The first rule finds out the index of the stage specified in the
question. The second rule computes the truth value pi (true-
ForStage(Idx, X, V)) for each stage index Idx and each option
X . The last three rules compute the confidence score v =
pj ∗

∏n
k=1,k 6=j(1− pk) iteratively. Here product(V1, V2, N,

ID) function returns either V 1∗V 2 or V 1∗(1−V 2) depend-
ing on whether N is equal to ID. The generate indicator
function follows a simple template. It takes as input a stage
such as “froglet” and an answer choice, for e.g. “when it has
lungs” and returns “In the 〈froglet〉 stage, 〈it has lungs〉”.

Dataset Creation
We crowdsourced the dataset of 5811 multiple-choice life
cycle questions with their logical forms with the help of
Amazon Mechanical Turk. The workers did not create the
logical forms. We collected them using reverse-engineering
without exposing the workers to the underlying formalism.

To obtain the sequence based questions we followed
the crowdsourcing technique in (Wang, Berant, and Liang
2015). Using stageAt predicates in the KB and the rules in
the theory we first computed a database of sequence based
facts such as nextSatge(frog, egg, tadpole). We then used
a simple grammar to create an MCQ question out of it, for
e.g, “What stage comes after egg stage in frog’s life? (A)
tadpole (B) adult”. Finally we asked the workers to rephrase
these questions as much as possible. Since the seed ques-
tions were generated using logical facts we could also com-
pute the logical form and the correct answer beforehand.

To collect indicator type questions we gave the workers a
life cycle text and described what is meant by an stage indi-
cator question. Each worker were then asked to create two
multiple choice stage indicator questions and write down the
correct option and associated stage for each question. There
were two workers working on each text. As a result we got
41×2×2 = 164 questions. We manually removed the ques-
tions that did not meet the requirements and finally ended up
with 125 questions. Using the stage name that was written
down for each question we were able to compute the logi-
cal form qStageIndicator(organism, stage). Similarly, a
separate task was created to collect stage difference ques-
tions where the workers apart from the question and the an-
swer choices also wrote down the two stages that are being
compared. Using that we computed the logical form.

To obtain look up questions we gave the workers a life cy-
cle text and asked them to create free form MCQ questions,

which gave us 2710 questions. We then manually filtered the
questions that should belong to the other 10 categories and
ended up with 2525 look up questions. Since the question
template of a look up question only contains the organism
name we did not need any extra supervision to create the
logical form.

Related Work
Many question answering systems (Sharma et al. 2015; Mi-
tra and Baral 2016; 2015; Wang, Lee, and Kim 2017; Lierler,
Inclezan, and Gelfond 2017; Clark, Dalvi, and Tandon 2018;
Moldovan et al. 2003) have been developed that use declara-
tive programming paradigm. Among these the closest to our
work are the works of (Lierler, Inclezan, and Gelfond 2017;
Mitra and Baral 2016; Clark, Dalvi, and Tandon 2018)
which try to answer a question with respect to a given text.
But to do so they convert the associated text into some action
language with existing natural language parsers (Bos 2008;
He et al. 2017; Flanigan et al. 2014). Having a formal rep-
resentation of the text is helpful but the ability to provide
special domain knowledge should not be impaired by the
absence of a formal representation of the text. Our work can
be considered as a step towards that direction.

Our work is also related to (Eiter et al. 2006; Havur et al.
2014). Eiter et al. have used function symbols (referred to
as external atoms) to interface ASP with an ontology lan-
guage (e.g. OWL) that has different formats and semantics.
In (Havur et al. 2014) function symbols are used to delegate
some low level feasibility checks (such as “is it possible to
move left without colliding”) in a robotics application.

The task of textual entailment (Dagan, Glickman, and
Magnini 2006) and semantic parsing (Zelle and Mooney
1996) play a crucial role in our work. With access to new
datasets both the task have received significant attention
(Bowman et al. 2015; Parikh et al. 2016; Chen et al. 2018;
Wang, Berant, and Liang 2015; Krishnamurthy, Dasigi, and
Gardner 2017).

Finally, recently there has been a surge of new question
answering datasets. Depending on their restrictions on the
possible answers they can be divided into three categories:
(1) the answer is an exact substring of the text (2) the answer
can take values from a fixed which is decided by the training
dataset and (3) multiple choice questions. We have used the
accuracy of existing science MCQ solvers (Khot, Sabharwal,
and Clark 2018) as baselines in our experiment.

Experiments
Setup To evaluate our system we divide the 41 texts and
the 5811 questions in two different ways:

Text Split : In this case, we follow the machine compre-
hension style question answering and divide the 41 life cycle
texts into three sets. The training set then contains 29 texts
and 4k associated questions, the dev set contains 4 texts and
487 questions and the test set contains 8 texts with 1368
questions. Given a text and a MCQ question the task is to
find the correct answer choice.

Question Split : In this split we mimic the open book
exam setting and divide the 5.8k questions randomly into
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train, dev and test set each containing 4011, 579 and 1221
questions respectively. Here the knowledge base contains all
the texts. Given a MCQ question the task is to find out the
correct answer choice with respect to the knowledge base.

Our System We experiment with four different textual en-
tailment functions. One of those is a neural network based
model (Parikh et al. 2016). The remaining three are varia-
tions of n-grams and lexical similarity based model (Jijk-
oun and De Rijke 2006). The first variation (NGRAM-LS-1)
uses WordNet based lexical similarity. The second variation
uses (NGRAM-LS-2) weighted words (Jijkoun and De Ri-
jke 2006) along with simple synonym based similarity. The
third variation (NGRAM-LS-3) uses both word weights and
WordNet based lexical similarity.

The semantic parser in (Krishnamurthy, Dasigi, and
Gardner 2017) is trained to obtain the question template
instances (e.g. qIndicator(“frog”, “adult”)). We ob-
served that the semantic parser predicts the question types
(e.g. qIndicator) with high accuracy but often make errors
in identifying the associated attributes (e.g. “adult”). For
example it predicts that a given question is of qStageAt type
with 100% accuracy but fails to identify the associated stage
index attribute 38% times. Since the question templates in
our dataset is quite simple and only contains one organism
name, maximally two stage names or one stage index, we
employ a simple search to extract the attributes. The result-
ing semantic parser then works as follows: it first obtains
the question type from the trained parser of (Krishnamurthy,
Dasigi, and Gardner 2017). Then it calls a function with a
list containing all the organism names and the question. The
function then returns the specified organism based on the
first organism name that appears in the question. Similarly
it makes subsequent calls for extracting stage names and
positions. From now on we refer to the semantic parser in
(Krishnamurthy, Dasigi, and Gardner 2017) as “KDG” and
the customized version as “Customized-KDG”.

Baselines We use the performance of the entailment func-
tions as baseline scores. For each option a hypothesis is cre-
ated by combining the question and the answer choice using
the code from (Khot, Sabharwal, and Clark 2018), which is
then passed to an entailment function to compute the con-
fidence score. A second set of baseline is computed using
BiDaF (Seo et al. 2016) which performed well across sev-
eral machine comprehension tasks. Given a passage and a
question, BiDaF returns a substring of the passage as an
answer. We then use that substring to compute the confi-
dence score for each option. Two versions of BiDaF is used:
BiDaF-1 which is trained on (Rajpurkar et al. 2016) and
BiDaF-2 which is trained on both (Rajpurkar et al. 2016;
Clark et al. 2018). To make the comparison fair, we have
added a sentence of the type “The i-th stage is S” for each
stageAt(O, I, S) fact in theKB. Also during the evaluation
of “Question Split” only the necessary life cycle text is given
as the passage.
Results Table 3 presents the performance of all the sys-
tems on both splits. The first four rows show the accu-

System Acc(%)
Question
Split

Acc(%)
Text
Split

Gold + (Parikh et al. 2016) 73.63 78.87
Gold + NGRAM-LS-1 78.95 84.06
Gold + NGRAM-LS-2 79.20 83.77
Gold + NGRAM-LS-3 79.28 83.77
KDG + (Parikh et al. 2016) 70.60 72.51
KDG + NGRAM-LS-1 73.87 76.17
KDG + NGRAM-LS-3 74.28 75.88
KDG + NGRAM-LS-3 74.61 76.02
Custom-KDG + (Parikh et al. 2016) 72.40 76.68
Custom-KDG + NGRAM-LS-1 77.07 80.70
Custom-KDG + NGRAM-LS-2 77.72 80.41
Custom-KDG + NGRAM-LS-3 77.80 80.48
(Parikh et al. 2016) 53.07 51.02
NGRAM-LS-1 61.29 61.25
NGRAM-LS-2 60.44 58.04
NGRAM-LS-3 62.40 61.98
BidaF-1 60.03 57.27
BidaF-2 58.44 60.20

Table 3: The first 12 rows show the performance of our
method with different parsers and entailment functions. The
last 6 rows show the performance of the baseline methods.

racy of our system when gold representation of the question
is used. This shows the best performance that the system
can achieve with the entailment functions at hand; which is
79.28% with the NGRAM-LS-3 entailment function on the
“Question Split” and 84.06% with the NGRAM-LS-2 entail-
ment function on the “Text Split”. The next four rows show
the performance with the KDG parser. The errors made by
the parser result in an accuracy drop of ∼ 5% on “Ques-
tion Split” and a drop of ∼ 8% on “Text Split”. However,
when the customized-KDG parser is used the accuracy on
both the split increases. The best accuracy on “Text Spit”
is 77.8% which is within 1.5% of the achievable best with
the entailments at hand. The accuracy drop on “Text split”
also reduces from ∼ 8% to ∼ 3.3%. Among the baseline
methods which are shown in the last 6 rows, the best score
is achieved by the NGRAM-LS-3 entailment function which
is 15.4% less than the best performance achieved by our sys-
tem on “Question Split” and 18.72% less on “Text Split”.

Conclusion
Developing methods that allow machines to reason with
background knowledge with premises written in natural lan-
guage enhances the applicability of logical reasoning meth-
ods and significantly reduces the effort required in building
a knowledge based question answering system. In this work
we have presented a method towards this direction by using
ASP with textual entailment functions. Experiments show
the success of our method. However there is still scope for
further improvements with the best accuracy being 80.7%.
The life cycle dataset and the associated code is publicly
available to track the progress towards this direction.
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