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Abstract

We investigate ontology-based query answering for data that
are both temporal and probabilistic, which might occur in
contexts such as stream reasoning or situation recognition
with uncertain data. We present a framework that allows to
represent temporal probabilistic data, and introduce a query
language with which complex temporal and probabilistic pat-
terns can be described. Specifically, this language combines
conjunctive queries with operators from linear time logic as
well as probability operators. We analyse the complexities of
evaluating queries in this language in various settings. While
in some cases, combining the temporal and the probabilistic
dimension in such a way comes at the cost of increased com-
plexity, we also determine cases for which this increase can
be avoided.

Introduction
The internet has become highly dynamic, with information
being frequently added and changed, and new data being
generated from a variety of sources. In addition, new tech-
nologies such as smart phones and the internet of things (IoT)
frequently encounter a data environment that is constantly
changing. To make use of these data, there has been an in-
creasing interest in investigating semantic and reasoning tech-
niques that process not only static data, but streams of data,
such as in the semantic stream reasoning paradigm (Margara
et al. 2014). One application is that of situation recognition,
where we want to recognise or query temporal patterns in a
stream of data. As Margara et al. illustrate, frequently, the
data encountered in stream reasoning applications is not only
temporal, but also probabilistic in nature. In ontology-based
query answering (OBQA), queries are evaluated with respect
to an ontology, which specifies background knowledge about
the domain of interest. Using a reasoner, this allows to query
also information that follows implicitly from the data. While
OBQA was originally designed for querying static and pre-
cise data, there is good motivation also for semantic stream
reasoning as well as for querying historical data, where data
are temporal and probabilistic.

As an example, consider a health or fitness monitoring
application, for which one may want to use concepts from a
medical ontology such as SNOMED CT (Elkin et al. 2006)

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

to describe information about the health status of a patient.
Specifically, such an application could be used on a smart-
phone in combination with a sensor that measures the di-
astolic blood pressure of the patient while he is exercising
(Kumar et al. 2015). As the sensor might be imprecise in
its measurements, it might report information about whether
the blood pressure of the patient is high with an associated
probability, and provide this information to the application
in regular time intervals. If a too high blood pressure was ob-
served for several times during a short period, the application
should give a warning to the patient, and advise him to take a
break from his exercise.

We assume a representation of the data in form of a se-
quence of probabilistic data sets, which may have been ob-
tained using further preprocessing and windowing operations.
A typical query would then ask whether, with a high prob-
ability, the patient had at least twice a high blood pressure
during the last 10 minutes. In order to properly take both the
temporal and the probabilistic aspects of this question into
account when querying the probabilistic stream, we propose
a query language for OBQA that comes with both temporal
and probabilistic operators. In this language, the query would
be expressed as follows, where HighBloodPressure is a
concept defined in the ontology.

P>.8(#−10♦(HighBloodPressure(x)

∧#♦HighBloodPressure(x)))

Our language is an extension of the well-investigated tem-
poral query language introduced in (Borgwardt and Thost
2015; Baader, Borgwardt, and Lippmann 2015),which ex-
tends conjunctive queries with operators from linear temporal
logic (LTL). Other authors considered using these operators
also as part of the DL, either to describe temporal concepts
(Gabbay et al. 2003), or to make the axioms of the ontology
itself temporal (Baader, Ghilardi, and Lutz 2012). Recently,
this work has been extended also to metric temporal logics
(Baader et al. 2017; Brandt et al. 2017). Temporal reasoning
for streams of data has also been considered in the context
of Datalog (Ronca et al. 2018). A recent survey on temporal
query answering with ontologies can be found in (Artale et
al. 2017).

A major restriction of using temporal concepts in the DL is
that we cannot keep relations between objects stable through-
out the timeline (rigid) without making the DL undecidable.
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Figure 1: Complexity of TPQ Entailment vs. classical CQ
entailment. Here, ∅ corresponds to the case without TBox.
Except for the PPP and the decidability results, all complexity
bounds are tight.

This limits their application for querying situations concern-
ing more than one object, which in applications more in-
volved than in our running example might be crucial. For this
reason, we focus on extensions of the query language rather
than the DL in this paper, though investigating an extension
of this framework with temporal DLs might be interesting as
future work.

In addition to the temporal dimension, we add a probabilis-
tic dimension to our setting. An OBQA framework for prob-
abilistic data was presented in (Jung and Lutz 2012), though
a temporal dimension was not considered here yet. Since this
publication, several authors investigated OBQA in similar
settings (Borgwardt, Ceylan, and Lukasiewicz 2017; Baader,
Koopmann, and Turhan 2017; Ceylan and Peñaloza 2017).
In addition to settings based on probabilistic databases, there
is also research on extending DLs with probability opera-
tors, such as in P-SHIF(D)/P-SHOIN (D) (Lukasiewicz
2008) or Prob-ALC/Prob-EL (Gutiérrez-Basulto et al. 2017).
The probability operator used in our query language syntacti-
cally and semantically corresponds to the probability operator
in Prob-ALC and Prob-EL.

To our knowledge, the only work that combines both tem-
poral and probabilistic query answering in the presence of
description logic ontologies is (Ceylan and Peñaloza 2015).
Albeit, the authors consider a different setting, in which the
flow of time is modeled by a Markov-process, and not by
a sequence of observations as in our case. Moreover, they
do not consider a rich query language like ours, but focus
on computing the probability that some axiom is entailed
in some given time range. (Dylla, Miliaraki, and Theobald
2013) consider temporal probabilistic databases with tempo-
ral Datalog rules and constraints, and computing probabilities
of conjunctive queries in these KBs. Both works do not allow

for nested probabilities as part of the query language.
To handle scenarios like in our example, we propose a

framework that combines the ideas from (Borgwardt and
Thost 2015) for temporal knowledge bases with the frame-
work for probabilistic knowledge bases introduced in (Jung
and Lutz 2012). To query data in the resulting temporal prob-
abilistic knowledge bases, our language extends temporal
queries with probabilistic operators, to allow to assign prob-
ability bounds to arbitrary parts of the query. We establish
a more or less complete picture of the complexity of query
entailment in this framework for various DLs (see Figure 1,
explained in detail throughout the text), and also discuss a
restricted variant of our query language without negation,
which sometimes leads to a restricted complexity.

Detailed proofs are provided in the extended version of the
paper (Koopmann 2018).

Preliminaries
We recall the DLs studied in the paper, conjunctive query
answering, and probabilistic complexity classes.

Description Logics. Let NC, NR and NI be pair-wise count-
ably infinite sets of respectively concept names, role names
and individual names. A role is an expression of the forms
r, r−, where r ∈ NR. Concepts are of the following forms,
where A ∈ NC, R is a role, C, D are concepts, n ∈ N and
a ∈ NI:

A | C uD | ∃R.C | ∀R.C | ≥nR.C | {a}.

A TBox is a set of axioms of the forms C v D, R v S and
trans(R), where C,D are concepts and R, S roles, while an
ABox is a set of assertions of the forms A(a) and r(a, b),
A ∈ NC, r ∈ NR, a, b ∈ NI. For a TBox T , we define
the relation ≺T s.t for two roles R, S, S ≺T R holds if
S′ v R′ ∈ T with S, S′ ∈ {s, s−} and R,R′ ∈ {r, r−},
r, s ∈ NR. A role R is complex wrt. T if trans(S) ∈ T for
some role S s.t. S ≺∗T R. To ensure decidability, we require
for every concept of the form ≥nR.C in T that R is not
complex. Now a knowledge base (KB) is a tuple 〈T ,A〉 of
a TBox T and an ABox A. We differentiate different DLs
based on the operators allowed: EL only supports concepts of
the formA,CuD and ∃R.C and axioms of the formC v D,
no roles of the form r−, and no axioms of the forms R v S
or trans(R).ALC extends EL with concepts of the form ¬C,
and S extendsALC with axioms of the form trans(R). More
expressive DLs are denoted by attaching a letter to the DL,
where we use I for support of roles r−, O for concepts of
the form {a},Q for concepts of the form ≥nR.C, andH for
axioms of the form R v S. For example, SHI extends S
with axioms of the form R v S and roles of the form r−,
whereas ALCHOQ extends ALC with concepts of the form
{a} and ≥nR.C. Depending on the DL L used, we speak of
L concepts, L axioms, L TBoxes and L KBs.

The semantics of KBs is defined in terms of interpretations
I = 〈∆I , ·I〉, where ∆I is a set of domain elements and
·I maps each concept name A ∈ NC to a set AI ⊆ ∆I ,
each role name r ∈ NR to a relation rI ⊆ ∆I ×∆I , each
individual name a ∈ NI to a domain element aI ∈ ∆I , and
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each role r− to (r−)I = (rI)−. It is extended to concepts as
follows.

(C uD)I = CI ∩DI , (¬C)I = ∆I \ CI , {a}I = {aI},
(∃R.C)I = {d ∈ I | ∃e ∈ ∆I : 〈d, e〉 ∈ RI , e ∈ CI},

(≥ nR.C)I = {d ∈ I | #{e ∈ ∆I |
〈d, e〉 ∈ RI , e ∈ CI} ≥ n}

We say that an interpretation I satisfies an axiom/assertion
α, in symbols I |= α, if α = C v D and CI ⊆ DI ;
α = R v S andRI ⊆ SI ; α = trans(R) andRI = (RI)+;
α = A(a) and aI ∈ AI ; and α = r(a, b) and 〈aI , bI〉 ∈ rI .
I is a model of a TBox/ABox/KB iff it satisfies all axioms in
it. Finally, a TBox/ABox/KB X entails an axiom/assertion α
iff α is satisfied by every model of X .

Conjunctive Queries. A conjunctive query (CQ) takes the
form q = ∃~y.φ(~x, ~y), where ~x, ~y are vectors of variables and
φ(~x, ~y) is a conjunction over atoms of the forms A(t1) and
r(t1, t2), where A ∈ NC and r ∈ NR is not complex, and t1
and t2 are terms taken from NI, ~x and ~y. ~x are the answer
variables of q. Given an interpretation I and a CQ q with
answer variables x1, . . . , xn, the vector a1 . . . an ⊆ NI

n is
an answer of q in I if there exists a mapping π : term(q)→
∆I s.t. π(xi) = ai for i ∈ J1, nK, π(b) = bI for b ∈ NI,
π(t) ∈ AI for every A(t) in q, and 〈π(t1), π(t2)〉 ∈ rI for
every r(t1, t2) in q. A vector a1 . . . an is a certain answer
of q in a KB K if it is an answer in every model of K. If a
query does not contain any answer variables, it is a Boolean
CQ, and we say it is entailed by a KB K (interpretation I) if
it has the empty vector as answer. The complexity of query
entailment for KBs in various DLs is shown in the left-part
of Figure 1.

Probabilistic Complexity Classes. The complexity class
PP is defined using probabilistic Turing machines, which are
like non-deterministic Turing machines, but with an alterna-
tive acceptance condition: namely, they accept an input iff
at least half of the computation paths end in an accepting
state. PP describes the class of all problems that can be de-
cided by a probabilistic Turing machine in which all paths
are polynomially bounded by the size of the input. By us-
ing oracles, we can obtain the complexity classes PPNP and
PPP, for which we have the relations NP ∪ CONP ⊆ PP ⊆
PPNP ⊆ PPP ⊆ PSPACE (Toda 1991). Strongly related to
the decision class PP is the function class #P, which is the
class of functions that can be computed by counting accept-
ing paths in a non-deterministic polynomial time-bounded
Turing machine.

Temporal Probabilistic Knowledge Bases
and Queries

We introduce our framework for temporal probabilistic query
answering.

Temporal Probabilistic Knowledge Bases. Regarding
the probabilistic aspects, we follow the paradigm introduced

ΩK A′1 A′3 A′4 µK
w1 hBP(p, b),HBP(b) HBP(b) HBP(b) 0.378
w2 hBP(p, b) HBP(b) HBP(b) 0.162
w3 hBP(p, b),HBP(b) ∅ HBP(b) 0.042
w4 hBP(p, b) ∅ HBP(b) 0.018
w5 hBP(p, b),HBP(b) HBP(b) ∅ 0.252
w6 hBP(p, b) HBP(b) ∅ 0.108
w7 hBP(p, b),HBP(b) ∅ ∅ 0.028
w8 hBP(p, b) ∅ ∅ 0.012

Table 1: Probability space of example TPKB.

in (Jung and Lutz 2012) for atemporal probabilistic KBs. To
keep things simple, we focus on the easiest type of proba-
bilistic fact bases presented there, the so-called assertion-
independent probabilistic ABoxes (ipABoxes). Here, as-
sertions are assigned probabilities, which are assumed to
be statistically independent. They correspond to the tuple-
independent probabilistic databases studied in (Dalvi and
Suciu 2007).

An ipABox is a set of probabilistic ABox assertions of the
form α: p, where α is an ABox assertion and p is a proba-
bility value between 0 and 1. Intuitively, α: p expresses that
the assertion α holds with a probability of at least p. Instead
of α: 1, we may just write α if the meaning is clear from the
context. ipABoxes only specify a lower bound on the proba-
bility, to conform with the open-world semantics common in
ontology-based representations. This means, we might infer
using other information in the KB that the probability is in
fact higher.1 A temporal probabilistic KB (TPKB) is now a
tuple 〈T , (Ai)i∈J1,nK〉, where T is a TBox and (Ai)i∈J1,nK
is a sequence of ipABoxes.

We define the semantics of TPKBs using the possible
worlds semantics, as common to probabilistic logics and
databases (Dalvi and Suciu 2007). For a given a TPKB K =
〈T , (Ai)i∈J1,nK〉, the set ΩK of possible worlds ofK contains
all sequences w = (A′i)i∈J1,nK of classical ABoxes such that
for every i ∈ J1, nK and α ∈ A′i,Ai contains an axiom of the
form α: p. Each TPKB uniquely defines a probability space
〈ΩK, µK〉, where the probability measure µK : 2ΩK → [0, 1]
satisfies

µK({(A′i)i∈J1,nK}) =
∏

i∈J1,nK
α: p∈Ai

α∈A′
i

p ·
∏

i∈J1,nK
α: p∈Ai

α6∈A′
i

(1− p)

and for W ⊆ ΩK, µK(W ) =
∑
w∈W µ({w}). Intuitively,

µK(W ) gives the probability of being in one of the possible
worlds in W , by summing up the probabilities of each possi-
ble world. The definition of µK(W ) reflects the assumption
that all probabilities in the TPKB are statistically indepen-
dent.

Example 1. We define the TPKB K = 〈T , (Ai)i∈J1,5K〉,

1This is different to the open-world semantics for probabilis-
tic databases suggested in (Ceylan, Darwiche, and van den Broeck
2017), which assumes a fixed upper probability for facts absent in
the data.
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where T contains the axiom

HighBloodPressurePatient ≡
∃hasBloodPressure.HighBloodPressure,

and the probabilistic ABoxes are

A1 = {hasBloodPressure(a, b),

HighBloodPressure(b):0.7}
A3 = {HighBloodPressure(b): 0.9}
A4 = {HighBloodPressure(b): 0.6}

and A2 = A5 = ∅. Every possible world w =
(A′i)i∈J1,5K with hasBloodPressure(a, b) 6∈ A′1 has proba-
bility µK(w) = 0. The remaining possible worlds, exclud-
ing time points 2 and 5, are shown in Figure 1, with the
probability measure µK shown in the last column, where
hBP is short for hasBloodPressure and HBP is short for
HighBloodPressure.

Remark 1. We follow the semantical idea of ipABoxes, in
which all assertions are assumed to be statistically indepen-
dent, mainly to keep the representation simple. Of course,
for realistic applications, the assumption that all probabilistic
facts are statistically independent is not always accurate, and
already (Jung and Lutz 2012) specify a more general con-
cept of probabilistic ABoxes. The complexity upper bounds
established in this paper only rely on a fixed probability dis-
tribution over the possible worlds, which is why they can be
easily extended to more refined settings.

Based on the probability measure, we define models by
assigning to each possible world a sequence of classical in-
terpretations. A model of a TPKB K = 〈T , (Ai)i∈J1,nK〉 is
a mapping ι from possible worlds w = (A′i)i∈J1,nK ∈ ΩK
to sequences (ι(w)i)i>0 of (classical) models of T s.t. for
all i ∈ J1, nK, ι(w)i is a model of the classical knowledge
base 〈T ,A′i〉, and all ι(w)i have the same set ∆ι of domain
elements (constant domain assumption).

Rigid Names. As typical for temporal knowledge bases,
we may assume in addition a set Nrig of rigid names, contain-
ing the set NCrig ⊆ NC of rigid concept names and the set
NRrig ⊆ NR of rigid role names. Rigid names denote names
whose interpretation is independent of the flow of time. We
say that a model ι of a TPKB K = 〈T , (Ai)i∈J1,nK〉 respects
rigid names iff for all w ∈ ΩK, i, j ∈ J1, nK and X ∈ Nrig,
Xι(w)i = Xι(w)j . Allowing for rigid names often has a direct
impact on complexity and decidability of common reasoning
problems, which is why typically different cases based on
whether NCrig = ∅ or NRrig = ∅ are studied for complexity.

Example 2. In the above example, the relation hasBP is
rigid, as its interpretation should be independent of time,
while the concept HighBP is not rigid, as the blood pressure
of a patient can change from high to not high. As a conse-
quence, the individual p will be related to the blood pressure
b at all time points, even though the assertion hasBP(p, b)
only occurs in A1.

φ ι, w, i |= φ iff
∃~y.ψ(~y) ι(w), i |= ∃~y.ψ(~y)
¬φ1 ι, w, i 6|= φ1

φ1 ∧ φ2 ι, w, i |= φ1 and ι, w, i |= φ2

φ1 ∨ φ2 ι, w, i |= φ1 or ι, w, i |= φ2

#φ1 ι, w, i+ 1 |= φ1

#−φ1 ι, w, i− 1 |= φ1 and i > 0
♦φ1 ι, w, j |= φ1 for some j ≥ i
♦−φ1 ι, w, j |= φ1 for some j ≤ i
2φ1 ι, w, j |= φ1 for all j ≥ i
2−φ1 ι, w, j |= φ1 for all j ≤ i
φ1 Uφ2 ι, w, j |= φ2 for some j ≥ i, and

ι, w, k |= φ1 for all k ∈ Ji, j − 1K
φ1Sφ2 ι, w, j |= φ2 for some j ≤ i, and

ι, w, k |= φ1 for all k ∈ Jj + 1, iK

P∼pφ µK({w′ ∈ ΩK | ι, w′, i |= φ}) ∼ p,
where ∼ ∈ {<,≤,=,≥, >}

Table 2: Entailment of Boolean TPQs under interpretation ι.

Temporal Probabilistic Queries. To query temporal data
in the OBDA framework, extensions of conjunctive queries
with operators from linear temporal logic (LTL) have
been considered and well-investigated as temporal queries
(TQs) (Borgwardt and Thost 2015). When applied on a tem-
poral probabilistic KB, an assignment of the answer variables
in a TQ becomes an answer with a certain probability, depend-
ing on the query, we might be interested only in answers that
holds with a certain minimal or maximal probability. Rather
than just assigning an overall probability threshold, we might
want to mark parts of the query with different probability up-
per and lower bounds. For example, in the scenario sketched
in the introduction, the smart-phone could be equipped with
a motion sensor to detect the probability that the patient is
currently exercising, and one might want to detect situations
in which the probability of them exercising is low, while the
probability of his blood pressure being above some threshold
is high.

To be able to describe all this, we extend TQs with proba-
bility operators. A temporal probabilistic query (TPQ) is of
one of the following forms, where q is a CQ, φ1 and φ2 are a
TPQs, p ∈ [0, 1] and ∼ ∈ {<,≤,=,≥, >}.

q | ¬φ1 | φ1 ∧ φ2 | φ1 ∨ φ2 | #φ1 | ♦φ1 | 2φ1 | φ1 Uφ2

#−φ1 | ♦−φ1 | 2−φ1 | φ1Sφ2 | P∼pφ1

The propositional operators, # (next), ♦ (eventually), U
(until) are found in TQs, while P∼p is the operator that we
add to this language. Note that due the disjunction operator,
we can also express unions of conjunctive queries (UCQs),
which are simply disjunctions of CQs. The answer variables
of a TPQ φ are the answer variables of the CQs in φ. A TPQ
φ is Boolean if every variable in φ is bound by an existential
quantifier.

In order to define the semantics of TPQs, we have to take
into consideration the two dimensions in which queries refer
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to a temporal probabilistic model. While the temporal opera-
tors refer to the time line in a single possible world, for the
probability operators we have to aggregate the probabilities
of the possible worlds in which a query is entailed.

Let K be a TPKB, ι a model of K, and φ a Boolean TPQ.
For a single possible worldw ∈ ΩK and a time point i, we say
that φ is satisfied at w, i under ι, in symbols ι, w, i |= φ iff
the conditions in Table 2 are satisfied. Note that the temporal
operators refer to the time line of a single possible world, for
which they are defined as in (Borgwardt and Thost 2015). In
contrast, the probability operators refer to the current time
point in multiple possible worlds, and are defined similar to
the probabilistic concept constructor in Prob-ALC (Gutiérrez-
Basulto et al. 2017). A Boolean TPQ φ is satisfied in an
interpretation ι at i, in symbols ι, i |= φ, iff ι, w, i |= φ for
all w ∈ ΩK. It is entailed by the TPKB K at i, in symbols
K, i |= φ, iff ι, i |= φ for all models ι of K. φ is satisfiable
in K at i iff there exists a model ι of K s.t. ι, i |= φ. Note
that satisfiability is complementary to entailment: namely, φ
is satisfiable in K at i iff K, i 6|= ¬φ.

Now given a TPKB K, a TPQ φ with answer variables ~x,
a time point i > 0, and a mapping σ : ~x→ NI, σ is a certain
answer for φ in K at i iff K, i |= φ′, where φ′ is the result
of applying σ on φ. As common, since computing answers
for TPQs can be seen as a search problem that uses Boolean
TPQ entailment, we focus on the decision problem of query
entailment, and may refer to Boolean TPQs simply as TPQs.
Example 3. We consider a slight variation of the query from
the introduction.

P>.8(#−5♦(HighBPP(x) ∧#♦HighBPP(x)))

For x = p and time point 5, the query below the probability
operator is entailed in every model of the possible worlds w1,
w2, w3 and w5, which together have a probability of 0.834.
Consequently, p is an answer to the query at time point 5.
Now consider the variation where the probability operators
are moved inside.

#−5♦(P>.8(HighBPP(x)) ∧#♦P>.8(HighBPP(x)))

This corresponds to the situation where at least twice in
the last 5 time units, the probability of having a high blood
pressure was above 0.8. As this probability is only once above
this bound, this query is not entailed.

The complexity of TPQ entailment for various DLs is
shown in Figure 1, where we compare against the complex-
ity of classical query entailment (left column), and distin-
guish the cases based on whether NRrig = ∅ (middle col-
umn) or NRrig 6= ∅ (right column). All complexities remain
tight independent on whether we admit rigid concept names
(NCrig 6= ∅). Note that the EXPSPACE-result for ELH re-
mains tight even without any TBox. Results marked with
(pos) regard positive TPQs, which we discuss towards the
end of the paper.

Hardness of TPQ Entailment
We show that TPQ satisfiability, and thus entailment, is EXP-
SPACE-hard even if T = ∅ and NCrig = NRrig = ∅, by
reduction of the exponential variant of the corridor tiling

0

1

2

3

1

2

3

0

2

3

0

1

3

0

1

2

0

1

2

3

1

2

3

0

2

3

0

1

3

0

1

2

0

1

2

3

1

2

3

0

2

3

0

1

3

0

1

2

0

1

2

3

1

2

3

0

time

w
or

ld
s

Figure 2: Illustration of how the counters are used in the
possible worlds.

problem (van Emde Boas 1997). In this problem, we are
given a set T of tile types, two special tile types ts,te ∈ T ,
a natural number n, and two functions v and h of compat-
ibility constraints v : T → 2T (vertical) and h : T → 2T

(horizontal). The input is an instance of the exponential cor-
ridor tiling problem if there exists a number m ∈ N and a
tiling f : J0,mK× J0, 2n − 1K→ T such that f(0, 0) = ts,
f(m, 0) = te, and for all x ∈ J0,mK and y ∈ J0, 2n − 1K,
if x < m, f(x + 1, y) ∈ h(f(x, y)) and if y < 2n − 1,
f(x, y + 1) ∈ v(f(x, y)).

We use n concept names Ai to mark the different possible
worlds w ∈ ΩK with a counter, such that in interpretations ι
that satisfy both the TPQ and the TPKB, ι, w, j |= Ai(a) iff
the ith bit of the counter is 1 at time point j, and ι, w, j 6|=
Ai(a) iff the ith bit is 0 at time point j. The ipABox A1 =
{Ai(a) ∼ 0.5 | i ∈ J1, nK} assigns every possible world a
different counter value. Our query makes sure that the counter
values are increased for each time point. Figure 2 illustrates
this idea. Each possible world corresponds to a row in the
tiling, with its counter value at time point 1 denoting the row
number.

At each time point, two possible worlds can be recognised
by simple queries: the one whose counter value is 0 (which
satisfies

∧
1≤i≤n ¬Ai(a)), and the one whose counter value

is 2n − 1 (which satisfies
∧

1≤i≤nAi(a)). Unless the latter
one represents the last row, these worlds correspond to neigh-
bours in the tiling, which means that for these worlds, we
can enforce the vertical tiling conditions with the following
query, where L(a) is an assertion that marks the last row, and
for a tile type t ∈ T , Bt(a) expresses that the current cell has
a tile of type t.

2
∧
t1∈T

Bt1(a) ∧
∧

i∈J1,nK

Ai(a) ∧ ¬L(a)


→

∨
t2∈v(t1)

P=1

 ∧
i∈J1,nK

¬Ai(a)

→ Bt2(a)


As we can only check the vertical tiling conditions for one
pair of rows at a time, we represent each cell by up to 2n

succeeding time points in each possible world, switching to
the next tile only when the counter reaches 2n − 1. The re-
maining details of the reduction can be found in the extended
version of the paper. The hardness for ALC with rigid roles
follows from the non-probabilistic case (Baader, Borgwardt,
and Lippmann 2015).
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Theorem 1. The lower bounds regarding general TPQs in
Figure 1 hold.

Deciding TPQ Entailment
We show the complexity upper bounds for general queries
shown in Figure 1, where we again focus on the complemen-
tary problem of query satisfiability.

The main idea is to define appropriate abstractions of mod-
els of the TPKB K = 〈T , (Ai)i∈J1,nK〉 which we call quasi-
models, and then show how an abstraction that witnesses the
satisfiability can be guessed and verified within the targeted
complexity bound. We first define the structure to represent
single time points, which we call quasi-states. We can assume
without loss of generality that φ contains only the operators
∧, ¬, U , S and P∼p, since the remaining operators can be lin-
early encoded using known equivalences. Denote by sub(φ)
the sub-queries of φ and set T (φ) = {ψ,¬ψ | ψ ∈ sub(φ)}.
A quasi-state is now a mappingQ : ΩK → T (φ) that satisfies
the following conditions:

S1 ¬ψ ∈ Q(w) iff ψ 6∈ Q(w),
S2 for all ψ1∧ψ2 ∈ T (φ): ψ1∧ψ2 ∈ Q(w) iff ψ1 ∈ Q(w)

and ψ2 ∈ Q(w), and
S3 for all P∼p(ψ) ∈ T (φ): P∼p(ψ) ∈ Q(w) iff µK({w |

ψ ∈ Q(w)}) ∼ p.

The quasi-state abstracts probabilistic interpretations at a
single time point by assigning queries to each possible world
according to the semantics of the atemporal operators in
our query language. To incorporate the temporal dimension,
we consider unbounded sequences of quasi-states (Qi)i≥1,
which we call quasi-models for K, and which have to satisfy
the following conditions for i ≥ 1 and w = (A′i)i∈J1,nK ∈
ΩK:

Q1 if i ∈ J1, nK, then 〈T ,A′i〉 6|= ¬
(∧

ψ∈X ψ
)

, where
X = {ψ ∈ Qi(w) | ψ is a CQ or a negated CQ}.

Q2 for all #ψ ∈ T (φ), #ψ ∈ Qi(w) iff ψ ∈ Qi+1(w),
Q3 for all #−ψ ∈ T (φ), #−ψ ∈ Qi+1(w) iff ψ ∈ Qi(w),
Q4 for all ψ1 Uψ2 ∈ T (φ), ψ1 Uψ2 ∈ Qi iff there exists

j ≥ i s.t. ψ2 ∈ Qj(w) and for all k ∈ Ji, j − 1K,
ψ1 ∈ Qk(w), and

Q5 for all ψ1Sψ2 ∈ T (φ), ψ1Sψ2 ∈ Qi iff there exists
j ≤ i s.t. ψ2 ∈ Qj(w) and for all k ∈ Jj − 1, iK,
ψ1 ∈ Qk(w).

Again, the intuition behind these conditions is given di-
rectly by the semantics of the temporal operators.

To handle rigid names, we need an additional structure to
make sure that the queries assigned to different time points in
a possible world correspond to a sequence of interpretations
that respects rigid names. Let {q1, . . . , qn} be the CQs that
occur in the query φ. For each w ∈ ΩK, we guess the set
S(w) ⊆ 2{q1,...,qm} of sets of queries that are allowed be
satisfied together at a time point in w, and thus obtain a
mapping S : ΩK → 22{q1,...,qm}

. To be consistent with the
rigid names, S(w) has to correspond to a set of interpretations
that agree on the rigid names, where each set of queries

corresponds to one interpretation. To also take into account
the ABoxes, we use a second mapping a : ΩK × J1, nK →
2{q1,...,qn}, which for each w ∈ ΩK assigns elements from
S(w) to the ABoxes in w. Given such mappings S and a, we
say that a quasi-model (Qi)i≥1 is compatible to S and a if
for every i ≥ 0 and w ∈ ΩK:
Q6 Qi(w) ∩ {q1, . . . , qm} ∈ S(w), and
Q7 if i ∈ J1, nK, Qi(w) ∩ {q1, . . . , qm} = a(w, i).

The following definition captures when S and a corre-
spond to a model of K that respects rigid names.
Definition 4. Let w = (A′i)i∈J1,nK ∈ ΩK, S : ΩK →
22{q1,...,qm}

and a : ΩK × J1, nK → 2{q1,...,qm}, where
S(w) = {X1, . . . , Xk}. Then, S is called r-satisfiable wrt.
w and a iff there exist (classical) interpretations J1, . . . ,Jk,
I1, . . . , In such that
R1 the interpretations are models of T ,
R2 for any two interpretations I, I ′ ∈
{J1, . . . ,Jk, I1, . . . , In}, we have ∆I = ∆I

′

and XI = XI
′

for all X ∈ Nrig,
R3 for all i ∈ J1, kK, Ji |=

∧
q∈Xi

q ∧
∧
q 6∈Xi

¬q, and
R4 for all i ∈ J1, nK, Ii |=

∧
q∈a(w,i) q ∧

∧
q 6∈a(w,i) ¬q and

Ii |= A′i.
S is r-satisfiable wrt. a, if for all w ∈ ΩK, S is r-satisfiable
wrt. w and a.

Note that the interpretations J1, . . . ,Jk in the interpre-
tation correspond to the elements {X1, . . . , Xk} = S(w),
so that Condition R2 ensures that we can find sequences of
interpretation that respect rigid names.
Lemma 5. Wrt. the size of K and φ, r-satisfiability for L-
TPKBs can be decided in

1. NEXPTIME for L = ELH,
2. NEXPTIME for L = SHQ if NRrig = ∅,
3. 2-EXPTIME for L ∈ {SHIQ,SHOQ,SHOI}, and
4. it is decidable for L = ALCHOIQ.

Proof(Sketch). We define a classical KB based on the map-
pings a and a world w ∈ ΩK which encodes the interpreta-
tion of non-rigid names Y ∈ (NC ∪ NR) \ Nrig for different
elements Xi ∈ Si(w) using fresh names Y i. A similar trans-
lation is applied to the CQs q ∈ Xi. We can then reduce
the properties in Definition 4 to a query entailment prob-
lem, where the KB and the query are of exponential size
with respect to the input. While query entailment for ALCI
and ALCO is 2-EXPTIME-hard (Lutz 2007; Ngo, Ortiz, and
Simkus 2016), we obtain by inspection of the procedures
in (Glimm et al. 2008; Glimm, Horrocks, and Sattler 2008;
Calvanese, Eiter, and Ortiz 2009) that this particular query en-
tailment test can be performed in 2-EXPTIME. For SHQ and
NRrig = ∅, the complexity follows from results in (Baader,
Borgwardt, and Lippmann 2015).

Quasi-models are indeed sufficient to witness the satisfia-
bility of a TPQ. If the quasi-model is additionally compatible
to mappings S and a s.t. S is r-satisfiable wrt. a, then they wit-
ness the satisfiability of a TPQ from TKBs with rigid names.
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Crucially for our complexity result, it is further sufficient to
focus on quasi-models that have a regular shape.

Lemma 6. φ is satisfiable in K at time point i iff there exists
mappings S : ΩK → 22{q1,...,qm}

and a : ΩK × J1, nK →
2{q1,...,qm} and a quasi-model (Qj)j≥1 for K such that

1. φ ∈ Qi(w) for all w ∈ ΩK,
2. (Qj)j≥1 is compatible with S and a,
3. S is r-satisfiable wrt. to a, and
4. (Qj)j≥1 is of the form Q1, . . . Qm(Qm+1, . . . Qm+o)

ω ,
where m and o are both double exponentially bounded
in the size of K.

Theorem 2. The complexity upper bounds for general TPQs
in Figure 1 hold.

Proof (Sketch). We first guess the numbers m and o from
Lemma 6. If Nrig 6= ∅, we additionally guess the mappings
S and a and verify that S is r-satisfiable wrt. a. We now
guess the quasi-states Q1, . . ., Qm+o one after the other,
where we carefully make sure that all the conditions in the
definition of quasi-states and quasi-models are satisfied, and
verify that Qm+o is compatible to Qm+1. This procedure
runs in exponential space if r-satisfiability can be decided in
exponential space, and in double exponential time if deciding
r-satisfiability requires double exponential time.

Positive TPQs
It turns out that for EL, we can obtain better complexity
bounds if we restrict ourselves to positive TPQs, which are
TPQs that do not use the operators ¬, P<p and P=p. The
probability operators P<p and P=p can be seen as implicit
negation operators, as they express the non-entailment of
a query φ in some possible worlds, whereas P>pφ only ex-
presses the positive entailment of φ in some possible worlds.
The examples used in this paper all use only positive TPQs.

Definition 7. A TPQ is positive iff it does not use the opera-
tors ¬, P<p, P≤p and P=p.

For DLs that have negation, our reduction used to show
EXPSPACE-hardness can be adapted to query entailment for
positive TPQs. As we reduced the corridor tiling problem
to query satisfiability, the corresponding query entailment
problem is of the formK |= ¬φ, where φ is the defined query.
By pushing negations inside, we obtain a query in which
every probability operator is of the form P>0 or P≥1, and
negation only occurs in front of concept names. Therefore, for
any DL extending ALC, the complexity bounds established
in the last sections remain tight even for positive TPQs. In
contrast toALC, EL has the canonical model property, which
makes it possible to test for entailment in different possible
worlds independently. This allows for a strategy in which the
TPQ is evaluated “inside out”, by first evaluating the most
nested probability operators, and then proceeding on the next
level. Due to the known closure properties of the complexity
class PP, we obtain a PPNP complexity upper bound if the
nesting depth of the probability operators is bound, which
we show to be tight, and otherwise a PNP upper bound. This
approach further allows us to establish tight complexity for

data complexity, where the size of the query is assumed to be
fix, marked in Figure 1 with (pos,dat).

Theorem 3. The complexity results regarding positive TPQs
in Figure 1 hold.

Conclusion
We introduced a framework for representing and querying
temporal probabilistic data within the ontology-based query
answering paradigm, and established tight complexity bounds
for most common description logics. While for expressive
DLs starting from ALCI and ALCO, adding both the tem-
poral and the probabilistic dimension comes at no additional
cost compared to classical query answering, for ALC and be-
low, reasoning becomes harder both in comparison to purely
temporal and purely probabilistic query answering. For in-
stance, probabilistic query answering is EXPTIME-complete
for ALC and PPNP-complete for EL, and for NRrig = ∅, it is
EXPTIME-complete for ALC and PSPACE-complete for EL,
which contrasts with our EXPSPACE-hardness that occurs al-
ready without a TBox. For EL, this situation can be improved
if we forbid negation in the query language, in which case
temporal probabilistic query answering is not harder as in the
atemporal case. We believe that our technique for showing
the upper bound here could also be used for practical imple-
mentations. We are currently looking at how query rewriting
techniques for simpler DLs such as DL-Lite could be used
for this in connection with existing probabilistic database
systems.
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