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Abstract
Generalized planning is concerned with the computation of
plans that solve not one but multiple instances of a plan-
ning domain. Recently, it has been shown that generalized
plans can be expressed as mappings of feature values into
actions, and that they can often be computed with fully ob-
servable non-deterministic (FOND) planners. The actions in
such plans, however, are not the actions in the instances them-
selves, which are not necessarily common to other instances,
but abstract actions that are defined on a set of common fea-
tures. The formulation assumes that the features and the ab-
stract actions are given. In this work, we address this limita-
tion by showing how to learn them automatically. The result-
ing account of generalized planning combines learning and
planning in a novel way: a learner, based on a Max SAT for-
mulation, yields the features and abstract actions from sam-
pled state transitions, and a FOND planner uses this infor-
mation, suitably transformed, to produce the general plans.
Correctness guarantees are given and experimental results on
several domains are reported.

Introduction
Generalized planning studies the computation of plans that
solve multiple instances (Srivastava, Immerman, and Zil-
berstein 2008; Bonet, Palacios, and Geffner 2009; Hu and
De Giacomo 2011; Belle and Levesque 2016; Segovia,
Jiménez, and Jonsson 2016). For example, the plan that it-
eratively picks a clear block above x and places it on the
table, achieves the goal clear(x) in any instance of the
Blocksworld where the gripper is initially empty. Once this
general plan or policy is derived, it can be applied to solve
an infinite collection of instances that involve different ini-
tial states, different objects, and different (ground) actions.

In the basic formulation due to Hu and De Giacomo
(2011), a generalized plan is a mapping of observations into
actions that are assumed to be common among all the in-
stances. More recently, this formulation has been extended
by Bonet and Geffner (2018) to account for relational do-
mains like Blocksworld where the sets of objects and actions
change from instance to instance. In the new formulation,
the observations are replaced by a set of boolean and numer-
ical features F and a set of abstract actions AF . These ab-
stract actions are sound and complete if they track the effects
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of the actions on the features in a suitable way. The resulting
generalized plans map feature values into abstract actions,
and soundness ensures that the application of an abstract ac-
tion can be mapped back into the application of a concrete
action with the same effect over the features. Moreover, the
form of the abstract actions ensures that generalized plans
can be computed using fully observable non-deterministic
(FOND) planners, once the generalized planning problem is
transformed into a FOND problem.

Bonet and Geffner’s formulation of generalized planning
assumes that the features and abstract actions are given. In
this work, we address this limitation by showing how the
features and abstract actions can be learned from the prim-
itive predicates used to define the instances and from sam-
pled state transitions. For example, the general policy for
achieving clear(x) is obtained using a FOND planner on an
abstraction that consists of a boolean feature H , that tracks
whether the gripper holds a block, a numerical feature n(x)
that counts the number of blocks above x, and two abstract
actions: one with preconditions ¬H and n(x) > 0, and ef-
fects H and n(x)↓ (decrement of n(x)), and the other with
precondition H and effect ¬H . We here show how to obtain
such policies from STRIPS instances alone, without having
to provide the features and the abstract actions by hand.

This work relates to a number of research threads in plan-
ning, knowledge representation, and machine learning. We
make use of SAT solvers and description logics for learn-
ing features and abstract actions. The abstract actions pro-
vide a model from which the plans are obtained via trans-
formations and FOND planners (Geffner and Bonet 2013;
Ghallab, Nau, and Traverso 2016). The model is not the
model of an instance but a generalized model for obtain-
ing plans that work for multiple instances. In this sense,
the work is different than action model learning (Yang, Wu,
and Jiang 2007) and model-based reinforcement learning
and closer in aims to work on learning general policies
from examples or experience (Martı́n and Geffner 2004;
Fern, Yoon, and Givan 2006; Sukhbaatar et al. 2015; Zhang
et al. 2018). Generalized planning has also been formulated
as a problem in first-order logic (Srivastava, Immerman, and
Zilberstein 2011), and general plans over finite horizons
have been derived using first-order regression (Boutilier,
Reiter, and Price 2001; Wang, Joshi, and Khardon 2008;
van Otterlo, M. 2012; Sanner and Boutilier 2009). Our ap-
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proach differs from first-order approaches in the use of
propositional planners, and from purely learning approaches
in the formal guarantees that are characteristic of planning:
if the learned abstract actions are sound, the resulting gen-
eral plans must be correct.

The paper is organized as follows. We first provide the
relevant background, and then show how features and ab-
stract actions can be learned by enforcing soundness and
completeness over a set of samples, from a pool of candidate
features derived from the domain predicates. The computa-
tional model is then summarized, followed by experimental
results and a discussion.

Background
We review generalized planning, abstract actions, and solu-
tions following Bonet and Geffner (2018).

Generalized Planning
A generalized planning problem Q is a collection of plan-
ning instances P . An instance P is a classical planning
problem expressed in some compact language as a tuple
P = 〈V, I,G,A〉 where V is a set of state variables that
can take a finite set of values (boolean or not), I is a set of
atoms over V defining an initial state s0,G is a set of literals
over V describing the goal states, and A is a set of actions
a with their preconditions and effects, which define the set
A(s) of actions applicable in any state s, and the succes-
sor state function f(a, s), for any state s and a ∈ A(s). A
state is a valuation over V , and a solution to P is an appli-
cable action sequence π = a0, . . . , an that generates a state
sequence s0, s1, . . . , sn where sn is a goal state (makes G
true). In this sequence, ai ∈ A(si) and si+1 = f(ai, si) for
i = 0, . . . , n − 1. A state s is reachable in P if s = sn for
one such sequence. A solution to the generalized problem
Q is a solution to all instances P ∈ Q. The form of such
solutions is described below.

A feature f for a class Q of problems represents a func-
tion φf that takes an instance P from Q and a state s reach-
able in P , and results in a value φf (s). A feature is boolean
if it results in boolean values, and numeric if it results in
numerical values, here assumed to be non-negative. For ex-
ample, H and n(x) are two features in Blocksworld: H ,
boolean, tracks whether the gripper is empty, while n(x),
numerical, tracks the number of blocks above x.

Symbols like x denote parameters whose value depends
on the instance P in Q. For example, if Qclear denotes the
Blocksworld instances with goals of the form clear(x), then
a problem P with goal clear(A) will belong to Qclear and
the value of x in P will be (the block) A.

While instances P in a generalized problemQwould nor-
mally share some structure (Bonet and Geffner 2015), like
the same planning domain and predicate symbols, this is not
strictly necessary. On the other hand, the features f must be
common to all the instances in Q and represent functions
φf (s) that are well defined over all reachable states s.

Abstract Actions
An abstract action for a generalized problem Q and a set F
of features is a pair ā = 〈Pre; Eff 〉 where Pre and Eff are

the preconditions and effects expressed in terms of the set
VF of boolean and numerical state variables associated with
the features. Preconditions and effects over boolean state
variables p are literals of the form p and ¬p, that abbrevi-
ate the atoms p = true and p = false, while preconditions
and effects over numerical state variables n are of the form
n = 0 and n > 0, and n↓ (decrements) and n↑ (increments),
respectively. The language for the abstraction, that combines
boolean and numerical variables that can be decreased or in-
creased by unspecified amounts, is the language of qualita-
tive numerical problems (QNPs). Unlike standard numerical
planning problems (Helmert 2002), QNPs are decidable and
can be solved effectively by means of FOND planners (Sri-
vastava et al. 2011; Bonet et al. 2017).

Features f refer to state functions φf (s) in the instances
P of the generalized problemQ, but to state variables in the
abstraction. An abstract state is a truth valuation over the
atoms p and n = 0 defined over the state variables p and
n associated with the boolean and numerical features. The
abstract state s̄ that corresponds to a concrete state s in an
instance P of Q is the truth valuation that makes p true iff
φp(s) = true, and n = 0 true iff φn(s) = 0. An abstract
action ā is applicable in s if its preconditions are true in s̄.

An action a and an abstract action ā = 〈Pre; Eff 〉 have
the same qualitative effects over the features F in a state
s when both are applicable in s with the same effects on
the boolean features and the same qualitative effects on the
numerical features. If s′ is the result of applying a in s,
this means that (Bonet and Geffner 2018): 1) p ∈ Eff
and ¬p ∈ Pre iff φp(s) is false and φp(s

′) is true (i.e.,
p becomes true), 2) ¬p ∈ Eff and p ∈ Pre iff φp(s) is
true and φp(s

′) is false (p becomes false), 3) n↑ ∈ Eff
iff φn(s′) > φn(s) (n increases), and 4) n↓ ∈ Eff iff
φn(s′) < φn(s) (n decreases).

Example. Let Qclear stand for all Blocksworld instances
with stack and unstack actions and goal clear(x), let F =
{H,n(x)} be the set with the two features above, and let
s be a reachable state in an instance P in Qclear where
the gripper is empty, the atoms on(A,B) and clear(A) are
true, and the block A is above x. In this state s, the ab-
stract action ā = 〈¬H,n(x) > 0;H,n(x)↓〉 and the con-
crete action a = Unstack(A,B) have the same effect over
the features. Indeed, ā and a are both applicable in s, and
while ā makes the variable H true and decreases n(x),
the action a results in a state s′ where φH(s′) is true and
φn(x)(s

′) < φn(x)(s).

Sound and Complete Abstractions
Soundness and completeness are the key properties that en-
able us to reason about the collection of instancesQ in terms
of abstract actions that operate at the level of the features:
Definition 1. A set of abstract actions AF over the features
F is sound relative toQ iff for any reachable state s over an
instance P in Q, if an abstract action ā in AF is applicable
in s̄, there is an action a in P that is applicable in s and has
the same qualitative effects over the features as ā.
Definition 2. A set of abstract actionsAF is complete iff for
any reachable state s over an instance P in Q and any ac-
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tion a in P that is applicable in s, there is an abstract action
ā in AF that is applicable in s̄ and has the same qualitative
effects over the features as a.

Let us say that action a instantiates abstract action ā in
a state s, and ā captures a in s, when a and ā are both ap-
plicable in s and have the same qualitative effects over the
features. Then, soundness means that any abstract action that
is applicable in some reachable state can always be instan-
tiated by a concrete action, while completeness means that
any concrete action that is applicable in some reachable state
is always captured by an abstract action.

It may well be possible that a feature set F does not sup-
port a set of abstract actions AF that is both sound and com-
plete relative toQ. Soundness, however, is crucial for deriv-
ing general plans that are valid. An important intuition is that
the features in F support a set of sound abstract actions AF
when the effects of the concrete actions over F can be pre-
dicted; that is, the qualitative values of the features in a state
s of an instance P , as captured by s̄, determine the possible
ways in which the actual values of the features may change
in the transitions from s to a successor state s′. Hence, if a
and b are two actions applicable in s such that one makes p
true and the other increases the value of n, then in any other
state t such that t̄ = s̄, there should be applicable actions a′
and b′ with the same qualitative effects on p and n.

Example. The abstract action set AF = {ā, ā′} where ā =
〈¬H,n(x) > 0;H,n(x)↓〉 and ā′ = 〈H;¬H〉, defined over
the feature set F = {H,n(x)}, is sound but not complete
relative to Qclear. The actions in AF capture the concrete
actions that pick blocks from above x and put them away, but
not other actions like stacking a block above x, or picking a
block that is not above x.

Solutions
A solution to a problem Q given the features F and abstract
actions AF is a partial function π that maps abstract states
into abstract actions such that π solves all instances P inQ.
The plan or policy π induces a trajectory s0, a0, s1, . . . , sn
in an instance P ofQ iff 1) s0 is the initial state in P , 2) ai is
one of the actions that instantiate π(s̄i) in si, 3) ai is appli-
cable in si and si+1 = f(ai, si), and 4) sn is a goal state of
P , or π(s̄n) is undefined, not applicable in s̄n, or no appli-
cable action an in P instantiates π(s̄n). The policy π solves
P iff all trajectories induced by π reach a goal state of P .

Example. A solution for Qclear with F = {H,n(x)} is
the policy π given by the rules ¬H,n(x) > 0 ⇒ ā and
H,n(x) > 0 ⇒ ā′ for the abstract actions ā and ā′ above.
The policy picks blocks above x and puts them aside (never
above x) until n(x) becomes zero.

Computation
The steps for obtaining policies π for a generalized prob-
lem Q using the features F and abstract actions AF are as
follows (Bonet and Geffner 2018):

1. The state variables VF and the abstract actions AF are
extended with initial and goal formulas IF and GF over
VF to yield the abstraction QF = 〈VF , IF , GF , AF 〉,

which is a QNP. For soundness, IF must be such that the
initial states of instances P in Q all satisfy IF , while all
states that satisfy GF must be goal states of P .

2. The abstraction QF = 〈VF , IF , GF , AF 〉 is converted
into a boolean FOND problem Q′F = 〈V ′F , I ′F , G′F , A′F 〉
by replacing the numerical variables n ∈ N by the sym-
bols n = 0, the first-order literals n = 0 by propositional
literals n = 0, the effects n↑ by effects n > 0, and the
effects n↓ by non-deterministic effects n > 0 |n = 0.

3. The solutions computed by a FOND planner on Q′F are
the strong cyclic solutions of Q′F (Cimatti, Roveri, and
Traverso 1998). Such solutions however do not neces-
sarily solve QF because the non-deterministic effects
n > 0 |n = 0 in Q′F are not fair but conditionally fair:
infinite decrements of n ensure that n = 0 is true eventu-
ally but only when the number of increments of n is finite.
The problem of obtaining solutions of Q′F that only as-
sume conditional fairness, the so-called terminating solu-
tions (Srivastava et al. 2011), is mapped into the problem
of solving an amended FOND Q+

F that assumes standard
fairness (Bonet et al. 2017).1

Theorem 3 (Bonet and Geffner (2018)). If the abstract ac-
tions AF are sound relative to the generalized problem Q,
the solutions to Q+

F computed by FOND planners off-the-
shelf are solutions to Q.

Example. Let us restrictQclear to those instances where the
gripper is initially empty and there are blocks on top of x.
For F = {H,n(x)} and AF = {ā, ā′} as above, QF =
〈VF , IF , GF , AF 〉 may be defined with IF = {¬H,n(x) >
0} andGF = {n(x) = 0}.Q′F is likeQF but with n(x) = 0
regarded as a propositional symbol, n(x) > 0 as its nega-
tion, and the effect n(x)↓ replaced by n(x) > 0 |n(x) = 0.
Since no action in AF increases n(x), the strong solutions
of Q′F are solutions to Qclear (Bonet et al. 2017).

Approximate Soundness and Completeness
The formulation and computational model above, from
(Bonet and Geffner 2018), assume that the features F and
abstract actions AF are given. The contribution of this work
is a method for learning them automatically by enforcing a
form of soundness and completeness over a set of samples:

Definition 4. For a generalized problem Q, a sample set
S is a non-empty set of tuples (s, s′, P ) such that 1) P is
an instance of Q, 2) s is a reachable state in P , 3) s′ is a
successor of s in P ; i.e., s′ = f(a, s) for some action a ∈
A(s), and 4) S is closed in the sense that if (s, s′, P ) ∈ S,
then (s, s′′, P ) ∈ S for any successor s′′ of s in P .

By assuming that sampled states s are tagged with the in-
stance P , we abbreviate the tuples (s, s′, P ) as (s, s′), and
refer to the states s′ in the pairs (s, s′) ∈ S as the succes-
sors of s in S. The closure condition 4) requires that states s
appearing first in pairs (s, s′) must be fully expanded in S;
namely, all possible transitions (s, s′′) must be in the sam-
ple. We call them the expanded states in S.

1Translator available at https://github.com/bonetblai/qnp2fond.

2705



For defining soundness and completeness over a sample
set, we say that a transition (s, s′) and an abstract action ā
have the same qualitative effects over the features, when in
the state s, the action a that maps s into s′ and the abstract
action ā have the same qualitative effects over the features:
Definition 5. A set of abstract actions AF is sound relative
to a sample set S for Q iff for any abstract action ā in AF
applicable in an expanded state s of S, there is a transition
(s, s′) ∈ S with the same qualitative effects over F as ā.
Definition 6. A set of abstract actions AF is complete rela-
tive to a sample set S forQ iff for each transition (s, s′) in S,
there is an abstract action ā in AF with the same qualitative
effects over F that is applicable in s.

For a sufficiently large sample set, the approximate and
exact notions of soundness and completeness converge.

Learning Features and Abstract Actions
In order to learn the features and abstract actions from a sam-
ple set S for Q, we define a propositional formula T (S,F),
where F represents a large pool of candidate features, that
is satisfiable iff there is a set of abstract actions AF over
F ⊆ F that is sound and complete relative to S .

SAT Encoding: T (S,F) and TG(S,F)

For each transition (s, s′) ∈ S and each feature f ∈ F ,
∆f (s, s′) ∈ {+,−, ↑, ↓,⊥} denotes the qualitative change
of value of feature f along the transition (s, s′), which can
go from false to true (+), from true to false (−) or remain
unchanged (⊥), for boolean features, and can increase (↑),
decrease (↓), or remain unchanged (⊥), for numerical fea-
tures. The propositional variables in T (S,F) are then:
• selected(f) for each f ∈ F , true iff f selected (in F ).
• D1(s, t) for states s and t expanded in S, true iff the se-

lected features distinguish s from t; i.e., if s and t dis-
agree on the truth value of some selected feature, either a
boolean or numeric feature,

• D2(s, s′, t, t′) for each (s, s′) and (t, t′) in S, true iff some
selected feature f distinguishes the two transitions; i.e.,
∆f (s, s′) 6= ∆f (t, t′) for some selected feature f .

The first formulas in T (S,F) capture the meaning of D1:

D1(s, t) ⇔
∨
f selected(f) (1)

where f ranges over the features in F with different qual-
itative values in s and t; namely, boolean features p with
different truth values in s and t, and numerical features n for
which the atom n = 0 has different truth values in s and t.

The second class of formulas encode the meaning of D2:

D2(s, s′, t, t′) ⇔
∨
f selected(f) (2)

where f ranges over the features in F that have the same
qualitative values in s and t but which change differently in
the two transitions; i.e., ∆f (s, s′) 6= ∆f (t, t′).

The third class of formulas relateD1 andD2 by enforcing
soundness and completeness over the sample:

¬D1(s, t) ⇒
∨
t′ ¬D2(s, s′, t, t′) (3)

where s and t are expanded states in S, s′ is a successor
of s in S, and t′ ranges over the successors of t in S. This
formula is crucial. It says that if the selected features do not
distinguish state s from t, then for each action a that maps s
into s′, there must be an action b that maps the state t into a
state t′ such that the two transitions (s, s′) and (t, t′) affect
the selected features in the same way. The formula does not
mention the actions a and b because their identity does not
matter; it is just the state transitions that count. In addition,
the formula does not involve abstract actions as they will be
obtained from the transitions and the satisfying assignment.
Indeed, for each transition (s, s′) in the sample, there will
be an abstract action ā that accounts for the transition; i.e.,
with the same qualitative effects over the selected features.
Moreover, ifD1(s, t) andD2(s, s′, t, t′) are both false in the
satisfying assignment, the two transitions (s, s′) and (t, t′)
will be captured by the same abstract action.

The fourth and last class of formulas force the selected
features to distinguish goal from non-goal states as:

D1(s, t) (4)

where s and t are expanded states in S such that exactly one
of them is a goal state. For this, it is assumed that the states
in the sample are labeled as goal or non-goal states.

The SAT theory T (S,F) given by formulas (1)–(4) has
|F| + m2(b2 + 1) propositional variables, where m is
the number of expanded states in S, and b is their aver-
age branching factor (transitions per state). The number of
clauses is bounded by m2(2 + b2 + b+ |F|(b2 + 1)).

We also consider an alternative SAT theory TG(S,F) that
is similar to T (S,F) but smaller. It is obtained by marking
some transitions (s, s′) in S as goal relevant. Then, rather
than creating abstract actions to account for all the tran-
sitions, we only create abstract actions to account for the
marked transitions. This is achieved by drawing the states
s and the transitions (s, s′) in formulas (1) and (2) from the
set of marked transitions in S. The states t and the transitions
(t, t′), on the other hand, are drawn from the whole sample
set S as before. This simplification preserves soundness over
S but completeness is not over S but over the marked transi-
tions in S. The goal-relevant transitions in S are obtained by
computing one plan for each sampled instance P from Q.

Extracting F and AF

For a satisfying assignment σ of the theories T (S,F) and
TG(S,F), let Fσ be the set of features f in F such that
selected(f) is true in σ, and let Aσ be the set of abstract
actions that capture all transitions (s, s′) in S, in the case of
theory T , and the goal-relevant transitions (s, s′) in S, in the
case of TG. The abstract action ā = 〈Pre; Eff 〉 that captures
the transition (s, s′) has the precondition p (resp. ¬p) if p is
a boolean feature in Fσ that is true (resp. false) in s, and has
the precondition n = 0 (resp. n > 0) if n is a numerical
feature in Fσ such that n = 0 is true (resp. false) in s. Sim-
ilarly, ā has the effect p (resp. ¬p) if p is a boolean feature
in Fσ that is true (resp. false) in s′ but false (resp. true) in
s, and the effect n↓ (resp. n↑) if n is a numerical feature in
Fσ whose values decreases (resp. increases) in the transition
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from s to s′. Duplicate abstract actions are removed, and if
two abstract actions ā and ā′ differ only in the sign of a pre-
condition, the two abstract actions are merged into one with
the precondition dropped.

Theorem 7. The theory T (S,F) is satisfiable iff there is a
set of features F ⊆ F and a set of abstract actions AF over
F such that AF is sound and complete relative to S.

Theorem 8. If σ is a satisfying assignment of T (S,F), the
set Aσ of abstract actions over Fσ is sound and complete
relative to S.

Theorem 9. If σ is a satisfying assignment of TG(S,F), the
setAσ of abstract actions over Fσ is sound relative to S and
complete relative to the marked transitions in S.

While the initial and goal expressions IF and GF of the
abstract problem can be learned from the satisfying assign-
ment σ as well, for simplicity, in the examples below they
are provided by hand.2

Different assignments σ result in different feature sets Fσ
and abstract action sets Aσ . Simpler and more meaningful
features are found by minimizing a cost measure such as
|Fσ| or, more generally,

∑
f∈Fσ cost(f). To achieve this, we

cast our problem into a constrained optimization problem,
more specifically, a Weighted Max-SAT problem, where
clauses resulting from the theories T or TG are taken as hard
clauses, and we add, for each feature f ∈ F , a soft unit
clause ¬selected(f) with weight cost(f), defined below.

Feature Pool
The feature pool F used in T (S,F) is obtained from the
predicates encoding the instances in Q that are assumed
to be common to all such instances. From these primitive
predicates and some composition rules, we define a large
set of derived predicates r of arity 1 whose denotation rs
in a state s over an instance P refers to the set of con-
stants (objects) c in P that have the property r in s; i.e.,
rs = {c | r(c) is true in s}. Boolean and numerical features
pr and nr can then be defined from r, denoting the functions
φpr (s) and φnr (s): the first is 0 if |rs| = 0 and else is 1, the
second represents the cardinality |rs| of r in s.

Unary predicates r(x) can be created by definitions of
the form “r(x) iff ∃y[q(x, y) ∧ t(y)]” where q and t are
primitive predicates of arity 2 and 1 respectively. We use in-
stead the syntax and grammar of description logics (Baader
et al. 2003). In description logics, unary and binary pred-
icates are referred to as concepts C and roles R. Descrip-
tion logics have been used for capturing general policies
using purely learning methods (Martı́n and Geffner 2004;
Fern, Yoon, and Givan 2006).

Concepts
The concepts and roles denoted as Cp and Rp represent the
primitive predicates of arity 1 and 2 respectively. The gram-
mar for generating new concepts and roles from them is:

2GF = Gσ may be defined as the DNF formula whose terms
correspond to the abstract states over Fσ that correspond to goal
states in the sample.

• CA ← Cp, Cu, Cx, primitive, universal, nominals:Cu de-
notes universe, Cx denotes {x} for parameter x if any,

• C ← ¬CA, negation on primitive, universal, nominals,

• C ← C u C ′, conjunctions,

• C ← ∃R.C,∀R.C, first denotes {x :∃y[R(x, y)∧C(y)]},
the second denotes {x : ∀y[R(x, y) ∧ C(y)]},

• C ← R = R′, denotes {x : ∀y[R(x, y) = R′(x, y)]},
• R ← Rp, R

−1
p , R+

p , [R
−1
p ]+: primitive, inverse, and tran-

sitive closure of both.

The denotations Cs and Rs for concepts and roles fol-
lows from the rules and the denotation of primitive concepts
and roles. For example, for the concept C : ∃ on+.Cx in
Blocksworld, Cs denotes the set of blocks that are above x.

Candidate Features
The complexity of a concept or role is the minimum num-
ber of grammar rules needed to generate it. The set of con-
cepts and roles with complexity no greater than k is referred
to as Gk. When generating Gk, redundant concepts are in-
crementally pruned. A concept is deemed redundant when
its denotation coincides with the denotation of a previously
generated concept over all states in S. The set F = Fk,
defined from Gk, contains the following features:

• For each nullary primitive predicate p, a boolean feature
bp that is true in s iff p is true in s.

• For each conceptC, a boolean feature bC , if |Cs| ∈ {0, 1}
for all sampled states s, and a numerical feature nC oth-
erwise. The value of bC in s is true iff |Cs| > 0; the value
of nC is |Cs|.

• Numerical features dist(C1, R:C,C2) that represent the
smallest n such that there are objects x1, . . . , xn satis-
fying Cs1(x1), Cs2(xn), and (R:C)s(xi, xi+1) for i =
1, . . . , n. The denotation (R:C)s contains all pairs (x, y)
in Rs such that y ∈ Cs.
The measure cost(f) is set to the complexity of C for nC

and bC , to 0 for bp, and to the sum of the complexities of
C1, R, C, and C2, for dist(C1, R:C,C2). Only features with
cost bounded by k are allowed in Fk.

Computational Model: Summary
The steps for computing general plans are then:

1. a sample set S is computed from a few instances P of a
given generalized problem Q,

2. a pool of features F is obtained from the predicates in
the instances, the grammar, a bound k, and the sample S
(used for pruning),

3. an assignment σ of T (S,F) or TG(S,F) that minimizes∑
f∈Fσ cost(f) is obtained using a Max SAT solver,

4. features F and abstract actions AF are extracted from σ,

5. the abstraction QF = 〈VF , IF , GF , AF 〉 is defined with
initial and goal conditions IF and GF provided by hand
to match Q,
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6. the FOND problem Q+
F , constructed automatically from

QF , is solved with an off-the-shelf FOND planner.

The policy π that results from the last step deals with
propositional symbols that correspond to atoms p and n = 0
for boolean and numerical features p and n in F . When this
policy is applied to an instance P of Q, the value of the fea-
tures f is obtained from the functions φf (s) that they denote.
For example, if n = nC for a conceptC, then φn(s) = |Cs|.

If we write A � B to express that all the states that satisfy
A, satisfy B, the formal guarantees can be expressed as:

Theorem 10. If the abstract actionsAF that are sound rela-
tive to the sample set S are sound, then a policy π that solves
Q+
F is guaranteed to solve all instances P of Q with initial

and goal situations I and G such that I � IF and GF � G.

Experimental Results
We evaluate the computational model on four generalized
problems Q. For each Q, we select a few “training” in-
stances P in Q by hand, from which the sample sets S are
drawn. S is constructed by collecting the first m states gen-
erated by a breadth-first search, along with the states gen-
erated in an optimal plan. The plans ensure that S con-
tains some goal states and provide the state transitions that
are marked as goal relevant when constructing the theory
TG(S,F), which is the one used in the experiments. S is
closed by fully expanding the states selected. The value of
m is chosen so that the resulting number of transitions in S,
which depends on the branching factor, is around 500. The
bound k for F = Fk is set to 8. Distance features dist are
used only in the last problem. The Weighted-Max Solver is
Open-WBO (Martins, Manquinho, and Lynce 2014) and the
FOND planner is SAT-FOND (Geffner and Geffner 2018).
The translation from Q′F to Q+

F is very fast, in the order of
0.01 seconds in all cases. The whole computational pipeline
summarized by the steps 1–6 above is processed on Intel
Xeon E5-2660 CPUs with time and memory cutoffs of 1h
and 32GB. Table 1 summarizes the relevant data for the
problems, including the size of the CNF encodings corre-
sponding to the theories T and TG.

Clearing a block. Qclear contains the Blocksworld in-
stances with goals of the form clear(x) and stack/unstack
actions. The primitive predicates, i.e., those appearing in
the instances P of Qclear, are on(·, ·), clear(·), ontable(·),
holding(·), and handempty. For this problem, a single
training instance P with 5 blocks suffices to learn an ab-
stract model from which a general plan is computed. The set
of features F learned from the theory TG is:

– H : holding (whether some block is being held),

– X : holding u Cx (whether block x is being held),

– n(x) : |∃ on+.Cx|, (number of blocks above block x).

The set AF of abstract actions learned is:3

– put-aside = 〈¬X,H;¬H〉,
3Feature and action names are provided to make their meaning

explicit; the meaning follows from their syntactic form.

– pick-above-x = 〈¬X,¬H,n(x) > 0;H,n(x)↓〉.
The abstractionQF = 〈VF , IF , GF , AF 〉 forQclear is set

with IF = {¬H,¬X,n(x) > 0} and GF = {n(x) = 0}.
As mentioned above, since no action increments the variable
n(x), the strong-cyclic solutions of Q′F solve Qclear. One
such policy is found with the FOND planner in 0.46 seconds.
The plan implements a loop that applies the pick-above-x
action followed by put-aside, until x becomes clear.

Stacking two blocks. Qon consists of Blocksworld in-
stances with goals of the form on(x, y), and initial situations
where the blocks x and y are in different towers. The primi-
tive predicates are the same as in Qclear. Three training in-
stances are used to learn F from TG; F contains the boolean
features E, X and G, for the gripper being empty, the block
x being held, and x being on block y, and the numerical fea-
tures n(x) and n(y) that count the number of blocks above
x and y respectively. The learned set of actions AF is:
– pick-ab-x=〈E,¬X,¬G,n(x)>0, n(y)>0;¬E,n(x)↓〉,
– pick-ab-y=〈E,¬X,¬G,n(x)=0, n(y)>0;¬E,n(y)↓〉,
– put-aside-1 = 〈¬E,¬X,¬G,n(x) = 0;E〉,
– put-aside-2 = 〈¬E,¬X,¬G,n(x) > 0, n(y) > 0;E〉,
– pick-x = 〈E,¬X,¬G,n(x) = 0, n(y) = 0;¬E,X〉,
– put-x-aside=〈¬E,X,¬G,n(x) = 0, n(y) > 0;E,¬X〉,
– put-x-on-y = 〈¬E,X,¬G,n(x) = 0, n(y) = 0;E,¬X,
G, n(y)↑〉.
The abstraction QF with IF = {E,¬X,¬G,n(x) > 0,

n(y)>0} andGF = {G} is translated into the FOND prob-
lemQ+

F which is then solved by the planner in 7.56 seconds.
The resulting policy solves the generalized problem Qon: it
implements a loop to clear block x, followed by a loop to
clear block y, picking then x and placing it on y.

Gripper. Qgripper involves a robot with grippers whose
goal is to move a number of balls from one room into a tar-
get room x. Each gripper may carry one ball at a time. The
STRIPS predicates are at-robby(l), at-ball(b, l), free(g),
carry(b, g) that denote, respectively, whether the robot (the
ball) is at location l, whether gripper g is free, and whether
gripper g carries ball b, plus unary type predicates room,
ball, and gripper.

Pipeline 1–6 is fed with two instances P from Qgripper
with two rooms each, one with 4 balls and the other with 5.
The set of features that is learned from the theory TG is:
– X : at robby u Cx (whether robby is in target room),
– B : |∃ at.¬Cx| (number of balls not in target room),
– C : |∃ carry.Cu| (number of balls carried),
– G : |free| (number of empty grippers).
The set of abstract actions AF that is learned is:

– drop-ball-at-x = 〈C > 0, X;C↓, G↑〉,
– move-to-x-half-loaded=〈¬X,B = 0, C > 0, G>0;X〉,
– move-to-x-fully-loaded = 〈¬X,C > 0, G = 0;X〉,
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T (S,F) TG(S,F)

n |S| |F| np nc np nc tSAT |F | |AF | tFOND |π|
Qclear 1 927 322 535K 59.6M 7.7K 767K 0.01 3 2 0.46 5
Qon 3 420 657 128K 25.8M 18.3K 3.3M 0.02 5 7 7.56 12
Qgripper 2 403 130 93K 4.7M 8.1K 358K 0.01 4 5 171.92 14
Qreward 2 568 280 184K 11.9M 15.9K 1.2M 0.01 2 2 1.36 7

Table 1: Results: n is number of training instances P , |S| is number of transitions in S , |F| is size of feature pool, np and nc
are numbers of propositions and clauses in T (S,F) and TG(S,F), tSAT is time for SAT solver on TG, |F | and |AF | are number
of selected features and abstract actions, tFOND is time for planner, and |π| is size of the resulting policy. Times in seconds.

– pick-ball-not-in-x = 〈¬X,B > 0, G > 0;B↓, G↓, C↑〉,
– leave-x = 〈X,C = 0, G > 0;¬X〉.

The abstraction QF with IF ={B>0,¬X,G>0, C=0}
and GF = {B = 0, C = 0} is translated into Q+

F which
is solved by the planner in 171.92 seconds. The resulting
policy provably solves Qgripper, meaning that it works for
any number of grippers and balls.

Collecting rewards. Qreward contains instances where an
agent needs to navigate a rectangular grid to pick up re-
wards spread on the grid while avoiding blocked cells. This
is a variation of an example by Garnelo, Arulkumaran, and
Shanahan (2016). The STRIPS instances have the primitive
predicates reward(·), at(·), blocked(·) and adjacent(·, ·)
that denote the position of the rewards, of the agent, of the
blocked cells, and the grid topology respectively. Pipeline
1–6 is fed with two instances of the problem of sizes 4 × 4
and 5×5, and having different distributions of blocked cells
and rewards. Two numerical features are learned:

– R : |reward| (number of remaining rewards),

– D :dist(at, adjacent:¬blocked, reward) (distance from
current cell to closest cell with reward, traversing adja-
cent, unblocked cells only).

The learned set of abstract actions is:

– collect-reward = 〈D = 0, R > 0;R↓, D↑〉,
– move-to-closest-reward = 〈R > 0, D > 0;D↓〉.

The resulting abstractionQF with IF = {R > 0, D > 0}
andGF = {R = 0} is translated intoQ+

F which is solved by
the planner in 1.36 seconds. The policy moves the agent one
step at a time towards the uncollected reward that is closest,
as measured by the numerical feature D. Once the reward
is reached, the reward is consumed, and the process repeats
until there are no more rewards to be collected.

Discussion
The computational bottleneck of the approach is in the size
of the SAT theories used to derive the features and the ac-
tions. This is the reason why we have chosen to use the more
compact theories TG in the experiments. Additional ideas,
however, are required to improve scalability and to make the
computational model captured by steps 1–6 more robust.

From the point of view of expressivity, it is not clear how
restrictive is the assumption that the features can be obtained
from a pool of features defined from the primitive predicates
and a general grammar. A relevant argument made by Bonet
and Geffner (2018) is that generalized problems over do-
mains with bounded width (Lipovetzky and Geffner 2012)
have compact policies in terms of features f whose value
φf (s) can be computed in polynomial time for any state s.
It is an open question whether such features are captured
by the proposed grammar, or a suitable variation. The fea-
ture language, however, seems adequate for dealing with ar-
bitrary goals, once goal predicates are added to the set of
primitive predicates. Goal predicates are “copies” pG of the
primitive predicates p that appear in the goal, and have fixed
interpretation4 (Martı́n and Geffner 2004).

Finally, our formulation can be extended to handle non-
deterministic actions. For this, it is sufficient to replace the
formula (3) that links D1 and D2 atoms with a formula as-
serting that, if two states s and t are indistinguishable (i.e.,
¬D1(s, t)), then for each action a in s, there is an action b in
t such that the set of transitions (t, b, t′) generated by b in t
cannot be distinguished from the set of transitions (s, a, s′)
generated by a in s. For this, transitions (s, s′) in the sam-
ple would need to be tagged with the actions that generated
them as (s, a, s′).

Summary and Future Work
We have introduced a scheme for computing general plans
that mixes learning and planning: a learner infers an abstrac-
tion made up of features and abstract actions by enforcing
soundness and completeness over the samples, and a plan-
ner uses the abstraction, suitably transformed, to compute
general plans. The number of samples required for obtaining
correct general plans is small, as the learner does not have
to produce plans; it just has to learn the relevant features for
the planner to track. Unlike purely learning approaches, the
features and the policies are transparent, and the scope and
correctness of the resulting general plans can be assessed.

There is an interesting relation between sound and com-
plete abstractions, on the one hand, and the ideas of dimen-
sionality reduction and embeddings in machine learning,
on the other (Hamilton, Ying, and Leskovec 2017). Sound

4If p is a primitive predicate that appears in the goal, for any
state s and tuple ū of objects, s � pG(ū) iff p(ū) holds in the goal.
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and complete abstractions map the states of the problem in-
stances, whose size is not bounded, into valuations over a
small and bounded set of features, while preserving the es-
sential properties of states; namely, how they are changed by
actions and whether they denote goal states or not. An inter-
esting challenge for the future is to generalize the proposed
methods to other contexts, such as learning from “screen
states” in video games, where the sampled states have no
known structure and there are no primitive predicates. One
way for achieving this would be precisely by learning em-
beddings that yield sound and complete abstractions or suit-
able approximations.

Acknowledgments
B. Bonet is partially funded by 2018 Cátedra de Excelencia
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