
The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

Deep Neural Networks Constrained by Decision Rules

Yuzuru Okajima, Kunihiko Sadamasa
NEC Corporation

1753 Shimonumabe, Nakahara-ku, Kawasaki, Kanagawa 211-8666, Japan
y-okajima@bu.jp.nec.com, k-sadamasa@az.jp.nec.com

Abstract

Deep neural networks achieve high predictive accuracy by
learning latent representations of complex data. However, the
reasoning behind their decisions is difficult for humans to un-
derstand. On the other hand, rule-based approaches are able
to justify the decisions by showing the decision rules lead-
ing to them, but they have relatively low accuracy. To im-
prove the interpretability of neural networks, several tech-
niques provide post-hoc explanations of decisions made by
neural networks, but they cannot guarantee that the decisions
are always explained in a simple form like decision rules be-
cause their explanations are generated after the decisions are
made by neural networks.
In this paper, to balance the accuracy of neural networks and
the interpretability of decision rules, we propose a hybrid
technique called rule-constrained networks, namely, neural
networks that make decisions by selecting decision rules from
a given ruleset. Because the networks are forced to make
decisions based on decision rules, it is guaranteed that ev-
ery decision is supported by a decision rule. Furthermore,
we propose a technique to jointly optimize the neural net-
work and the ruleset from which the network select rules.
The log likelihood of correct classifications is maximized
under a model with hyper parameters about the ruleset size
and the prior probabilities of rules being selected. This fea-
ture makes it possible to limit the ruleset size or prioritize
human-made rules over automatically acquired rules for pro-
moting the interpretability of the output. Experiments on
datasets of time-series and sentiment classification showed
rule-constrained networks achieved accuracy as high as that
achieved by original neural networks and significantly higher
than that achieved by existing rule-based models, while pre-
senting decision rules supporting the decisions.

Introduction
Deep neural networks have achieved great success when ap-
plied to a wide variety of tasks. Their high predictive accu-
racy stems from their ability to learn latent representations
automatically from complex input data. However, the suc-
cess of deep neural networks has renewed interest and dis-
cussion on their long-standing problem: “uninterpretability.”
While the decisions of neural networks are highly accurate,
the reasons behind their decisions are difficult for humans
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to interpret. This lack of interpretability could hinder prac-
tical use of neural networks in real-world applications; thus,
many techniques to give post-hoc explanations of the de-
cisions of deep neural networks have been proposed (Mon-
tavon, Samek, and Müller 2018). As for these approaches, an
explanation of a decision made by a trained neural network
is generated by analyzing input features relevant to the deci-
sions (Simonyan, Vedaldi, and Zisserman 2013; Bach et al.
2015) or approximating the behavior of the neural network
with simpler models (Ribeiro, Singh, and Guestrin 2016;
Zilke, Loza Mencı́a, and Janssen 2016).

On the other hand, the growing interest in interpretabil-
ity has also brought renewed attention to rule-based models.
The high computational power of modern processors has
enabled non-greedy optimization of decision lists (Letham
et al. 2015; Wang and Rudin 2015; Angelino et al. 2017;
Yang, Rudin, and Seltzer 2017). Such optimized decision
lists are highly interpretable and achieve better accuracy
than traditional rule-based models for several datasets. De-
spite the recent improvement of rule-based models, however,
they are less accurate than uninterpretable models because
they cannot exploit the power of uninterpretable features.

In this study, which aims to balance the accuracy of neural
networks and the interpretability of decision rules, we pro-
pose a new model called a rule-constrained network (RCN).
RCNs are neural networks trained to make decisions by se-
lecting decision rules. Given an observed instance, the RCNs
do not directly predict its class label; instead, they select a
decision rule from a given decision rule set so that the obser-
vation satisfies the antecedent of the rule and the consequent
gives a high probability to the correct class. An attention
mechanism using latent representations of rules is incorpo-
rated into the RCN to exploit similarity between rules and
to reduce the number of parameters. In addition, we propose
a method for optimizing the rule set from which the neural
networks select a rule. The optimization is achieved by com-
bining a RCN with a rule-sampling model that models the
ruleset size and the probabilities of the rules being sampled.

An advantage of RCNs is that the decisions are confined
within the reach of the decision rules. For every decision, a
RCN is forced to select one rule that supports the decision.
Thus, any decisions that cannot be justified by decision rules
are never output. This guarantee of the existence of support-
ing rules is a feature of RCNs in contrast to post-hoc ex-
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planation methods, which cannot guarantee the existence of
such rules because their explanations are generated after the
decisions are made by neural networks. Although the deci-
sions are limited by decision rules, a RCN has the potential
to overcome the poor accuracy of pure rule-based models
because rules are selected by a neural network considering
uninterpretable features. Finally, the decisions are control-
lable by changing the hyper parameters of the rule-sampling
model with respect to the ruleset size and the probabilities
of the rules being sampled. This feature makes it possible
to keep the distinct number of rules lower than a given limit
or give priority to human-made rules over automatically ac-
quired rules for promoting the interpretability of the output.

RCNs were evaluated in experiments on time-series and
sentiment classification. They showed accuracy as high as
the original neural networks and significantly higher than
existing rule-based models, while presenting rules support-
ing the decisions. The attention mechanism improved the ac-
curacy of the RCN. The ruleset was optimized according to
the hyper parameters that limit the distinct numbers of rules
or prioritize human-made rules over automatically acquired
rules.

Rule-constrained networks
In this section, we will explain how RCNs are constructed
from a base neural network given a rule set. We propose two
variants, RCN-A and RCN+A.

Let us consider a classification task in which we are given
a raw or unprocessed data representation, x, and its class,
y. Feature engineering is the task of designing a mapping
function, g, so that the classifier can predict y given a feature
representation, x′ = g(x), as input. Here, we focus on se-
quence classification problems like time-series or sentiment
classification. Most traditional classification models, like de-
cision trees or random forests, cannot handle sequences di-
rectly. Instead, they require the sequences to be abstracted
into an unsequenced vector composed of feature values be-
forehand. For example, in the case of time series classifica-
tion, x is a time series consisting of observed values for all
time points. Then, we extract from x a vector composed of
feature values as x′, e.g., the mean, variance or slope of each
interval extracted from the time series with a certain window
size. In the case of sentiment classification, x is a sequence
of words in the target text, and x′ is its bag-of-words repre-
sentation. If the features required for classification are sim-
ple enough, a human expert may be able to design features
manually so that the classification model attains good per-
formance. However, practical problems often requires such
complex features that manual feature engineering fails to
achieve good performance.

Neural networks can avoid this difficulty of feature en-
gineering by representation learning. When a network is
trained to output y given x, its hidden layers learn abstract
latent representations of x. Representation learning not only
eliminates the cost of manual feature engineering but also
achieve better classification accuracy in many tasks. How-
ever, automatically created latent representations are diffi-
cult for humans to understand and significantly degrade the
interpretability of the decisions made by neural networks.

Rule Antecedent Consequent
(Condition) (Class probability)

r0 f0 = ”A” [0.2, 0.8]
r1 f0 = ”B” [0.8, 0.2]
r2 f1 > 2 [0.3, 0.7]
r3 f1 > 2.5 [0.2, 0.8]
r4 f0 = ”A” AND f1 > 2 [0.1, 0.9]
r5 f0 = ”B” AND f1 ≤ 2 [0.9, 0.1]

Figure 1: An example of a decision-rule set. The antecedents
are defined for feature representation x′ = [f0, f1]T . The
consequents are binary class probabilities.

We propose RCNs as a solution to this trade-off between
interpretability and accuracy. RCNs are prohibited from pre-
dicting a class label directly; instead, they predict a rule so
that the observation satisfies the antecedent and the conse-
quent gives high probability to the correct class.

We are given a set of n training instances D =
{(xi, yi)}n−1

i=0 and manually designed feature function g.
Furthermore, it is assumed that a set of decision rules, R =

{rj}|R|−1
j=0 , are given. The antecedents are conditions about

features, and the consequents are class probabilities. An ex-
ample of a decision-rule set is shown in Fig. 1. Such rule sets
can be premined from D by frequent itemset mining tech-
niques like Eclat (Zaki et al. 1997) and FP-Growth (Han,
Pei, and Yin 2000). Recent decision list algorithms (Letham
et al. 2015; Wang and Rudin 2015; Angelino et al. 2017;
Yang, Rudin, and Seltzer 2017) also assume the existence of
premined rules. Note that it is also possible to use random
forests built from training data as a decision-rule set because
each path from the root to a leaf can be seen as a decision
rule. Any other resources can be used as a rule set. For exam-
ple, a rule set for sentiment classification can be built from a
dictionary of positive and negative words.

The consequents of rules are determined as follows. Let
nj,l denote the count of training instances that satisfy the
antecedent of rule rj and belong to class y = l. The conse-
quent of rule rj is the class probability defined by

p(y = l|z = rj) =
nj,l + α∑
l′ nj,l′ + α

(1)

where α is a smoothing factor. This simple count-based def-
inition makes it easy for humans to check the correctness of
rules by counting the instances satisfying the antecedents.

Given a rule set, the RCN takes raw data x and its feature
representation x′ = g(x) as input. Then, it selects a rule
from the rules that are included in R and have antecedents
satisfied by x′. While the rules are just defined over the un-
sequenced feature representation, the RCN selects a rule by
exploiting information in the original data, x, that may be
lost in x′. This procedure helps achieve higher performance
than only using the rules about manual features.

Let us explain how the RCN is constructed from the base
network. The base network is a neural network for k-class
classification of a given task, composed of a base layer of
size (|x|, h), a linear layer of size (h, k), and a softmax func-
tion, as shown in Fig. 2 (a). In this paper, we describe a layer
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has size (nin, nout) when it receives a vector of size nin
and outputs a vector of size nout. The base layer is a layer
or a neural network of any type suitable for the given task,
for example, a CNN for time-series classification and a bi-
directional LSTM (Bi-LSTM) for sentiment classification.

A RCN is constructed by changing the base network so
that it does not predict the class label directly, but predicts
the rule instead. We propose two variants of the RCN. The
first variant, called RCN-A, which means RCN without at-
tention, is constructed as follows. First, the linear layer of
size (h, k) in the base network is replaced with an linear
layer of size (h, |R|) whose output vector corresponds to the
rules in R. Next, we change the softmax activation. We only
apply softmax activation to the elements of the output vec-
tor corresponding to the rules having antecedents satisfied
by x′ and simply ignore the other elements. We call this op-
eration as “filtered softmax.” This operation ensure that the
antecedent of the selected rule is always true for the input in-
stance. By changing the linear layer and softmax activation
of the base network, we obtain RCN-A shown in Fig. 2 (b).
RCN-A receives x and x′ and returns p(z|x,w) 1, namely,
the probability of the rules being selected by the network,
where z is a probabilistic variable for rules, and w repre-
sents the parameters of the neural network. p(z|x,w) is set
to 0 if rule z has antecedents not satisfied by x′.

Here, we explain how to train RCNs without optimization
of the rule set. The RCN can be trained by maximizing the
log likelihood by using backpropagation as follows:

max
∑

(xi,yi)∈D

log p(yi|xi,w)

The conditional probability of y is computed by marginaliz-
ing out rules as follows:

p(yi|xi,w) =
∑
z∈R

p(yi|z)p(z|xi,w)

In the test phase, when a test instance is given as x, the
rule z∗ with the maximum conditional probability given x
is selected via z∗ = arg maxz p(z|x,w), and then the class
y∗ is predicted by taking the class with the maximum condi-
tional probability given z∗ via y∗ = arg max p(y|z∗). Thus,
the predicted class is always presented with one rule sup-
porting the decision.

Next, we introduce the second variant, called RCN+A,
which means RCN with attention. RCN+A has an attention
mechanism that select rules based on the latent represen-
tations of the rules. RCN+A is shown in Figs. 2 (c-1) and
(c-2). Consider matrix V of shape (|R|, h) where the j-th
row represents the latent representation of rule rj . The at-
tention over the rules is obtained by computing the product
of V and the output vector of the linear layer. Then, the at-
tention is used as the input of the filtered softmax. The key
point of RCN+A is how to obtain V , the latent representa-
tions of the rules. We propose to learn the latent representa-
tion of a rule in the form of the mean of the linearly trans-
formed latent representations of the instances that satisfies

1x′ is omitted from the condition of probability because x′ is
determined by x

the precedent of the rule. The aim of this formulation is to
give rules similar latent representations if they have prece-
dents satisfied by similar instances. V is computed as shown
in Fig. 2 (c-2). We precompute truth value matrix T of shape
(|R|, n), where Tj,i = 1 if x′

i satisfies the precedent of rj
and Tj,i = 0 otherwise. Let Norm(T ) denote T normal-
ized as the sum of each row equals 1. Finally, let X denote a
matrix with n rows, where the i-th row is xi. Then, we ob-
tain V = Norm(T )Linear(Base(X)), which can be cal-
culated in neural networks as shown in Fig. 2 (c-2). RCN+A
can be trained in the same way as RCN-A. RCN+A can take
into account the similarity between rules in training. Fur-
thermore, introducing the attention mechanism reduces the
number of parameters because the size of the linear layer is
changed from (h, |R|) to (h, h). These features improved the
accuracy in the experiments.

Ruleset optimization
In this section, we optimize the rule set from which the RCN
selects rules. The RCN and the rule set are trained jointly to
maximize the log likelihood of correct classifications.

An automatically acquired rule set may include abundant
similar or redundant rules. If the RCN is allowed to select
any rules, similar rules may be inconsistently selected, and
the distinct number of rules increases as new instances are
given. This could harm the consistency of explanations and
increase the cost of checking if the rules are reliable. Thus,
we propose a framework for extracting a sufficient subset of
rules for the predictions, within the limit of the distinct num-
ber of rules, from the original, possibly redundant ruleset.

The rule set is optimized by combining the RCN with a
rule-sampling model. First, we sample a subset of the orig-
inal rule set R, which is called the selected rule set. Then,
the RCN makes a decision for each instance by selecting a
rule from the selected rule set. Our goal is to optimize the se-
lected rule set in the training phase so that it contains useful
rules allowing the RCN to make decisions as much as pos-
sible under the given sampling model. The sampling model
consists of the following two stages:

1. Choose θ = c/λ where c ∼Multi(θ0, λ)

2. For each instance:

• Choose z ∼ Categorical(θ)

First, the user specifies θ0, which represents the parameters
of the multinomial distribution that represent the probabil-
ity of the rules to be sampled, and λ, which represents the
number of the rules to be sampled. The selected rule set Rθ
is sampled by extracting λ rules according to θ0 with re-
placement from the original rule set R. Let c denote a count
vector with length |R|, where the j-th element is the count of
rj being sampled. Then, we set θ = c/λ. For each instance
in the training data, rule z is sampled from Categorical(θ).
Thus, rules are sampled twice. The first sample determines
the subset of rules to be used, and the second sample deter-
mines the rules used for instances.

The above-described rule-sampling model is combined
with the RCN as follows.
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Softmax

Figure 2: (a) Base network, (b) RCN-A and (c) RCN+A

p(y|x,w,θ0, λ) =
∑
θ

p(y|x,w,θ)p(θ|θ0, λ) (2)

p(y|x,w,θ) =
∑
z∈R

p(y|z)p(z|x,w,θ) (3)

p(z|x,w,θ) =
p(z|x,w)p(z|θ)∑

z′∈R p(z
′|x,w)p(z′|θ)

(4)

Equations (2) and (3) indicate that the posterior probabil-
ity of y is marginalized over θ and z. Equation (4) indicates
that the posterior probability of z is a normalized product of
p(z|x,f ,w), namely, the posterior based on the RCN, and
p(z|θ), namely, the posterior based on the sampling model.
The normalized product is called the “product of experts”
(Hinton 2002). If rule rj is not included in Rθ, p(z = rj |θ)
is zero. Thus, the RCN combined with the sampling model
as in (4) is forced to select a rule from Rθ.

We want to train the RCN and find θ that maximizes the
likelihood under this combined model. We use the general-
ized EM algorithm. Let X and Y denote the set of xi and
yi in D. We calculate the expected log likelihood with re-
spect to p(θ|Y,X,w,θ0, λ) in the E-step, and we update w
in the M-step. However, the posterior probability of θ is in-
tractable because θ can take |R|λ values. The posterior is
thus approximated by sampling θ based on the Metropolis–
Hastings algorithm. The acceptance rate is given as

A(θ′|θ) = min

(
1,
p(θ′|Y,X,w,θ0, λ))

p(θ|Y,X,w,θ0, λ))

g(θ|θ′)
g(θ′|θ)

)
(5)

= min

(
1,
p(Y |X,w,θ′)p(θ′|θ0, λ))

p(Y |X,w,θ)p(θ|θ0, λ))

g(θ|θ′)
g(θ′|θ)

)
(6)

where g(θ′|θ) is a proposal distribution, and

p(Y |X,w,θ) =
∏

(xi,yi)∈D

p(yi|xi,w,θ)

is computed by (3) and (4).
The proposal distribution, g(θ′|θ), generates θ′ from θ

in the following way. Because θ = c/λ is generated by
Multi(θ, λ) , c has λ counts in total. c′ is generated from
c by removing one count chosen randomly from λ counts,
and one count is added to the rule that is chosen according
to probabilities proportional to

p(z|θ0)
∑
xi∈D

p(z|xi,w). (7)

Then, θ′ = c′/λ is obtained. The ratio of the proposal
probabilities in (6), g(θ|θ′)/g(θ′|θ), is calculated based on
(7). This proposal distribution is designed to add a likely
rule with respect to both the sampling model and the RCN.
Thus, generated proposals are more likely to be accepted
than uniformly random choices. We repeat generation until
we obtain a set of s accepted rules, Θ. Here, s represents the
sample size. Then, w is updated to maximize the following
expected log likelihood:

− 1

|Θ|
∑
θ∈Θ

log p(Y |X,w,θ) (8)

A pseudocode is given in Algorithm 1. After the training,
we take θ with the maximum posterior probability. In the
test phase, just one rule z = arg maxz p(z|x,w,θ) is cho-
sen for each test instance. The distinct number of rules used
in the test phase is guaranteed to be less than or equal to λ.

Experiments
Setup
We evaluated RCNs from the viewpoint of two sequence-
classification tasks: time-series and sentiment classification.
RCNs were compared with CART, random forest (RF),
SVMs with RBF kernel, and scalable Bayesian rule list
(SBRL) (Yang, Rudin, and Seltzer 2017), and the base net-
works the RCNs were based on. SBRL is the state-of-the-art
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Algorithm 1 Generalized EM algorithm

1: for t = 0 to T − 1 do
2: for i = 0 to n do
3: Obtain p(z|x,w) by forward propagation
4: Θ⇐ ∅
5: Choose θ ∼ p(θ|θ0, λ)
6: while |Θ| < s do
7: Choose θ′ ∼ g(θ′|θ)
8: for i = 0 to n do
9: Obtain p(yi|xi,w,θ) by (3,4)

10: Randomly accept θ by (5,6)
11: If accepted, add θ′ to Θ, and θ ⇐ θ′

12: Compute expected likelihood by (8)
13: Update w by backpropagation

technique for rule list optimization scalable for thousands of
rules. We used scikit-learn implementations of CART, RF
and SVMs. The number of decision trees in RF was set
to 100. We used the authors’ R implementation of SBRL,
which works with a rule set premined by Eclat (Zaki et al.
1997). For comparison, both SBRL and RCNs were given
the same rule set mined by Eclat with the minimum sup-
port set to 0.1 and the maximum itemset length set to 2 for
time series and 1 for sentiment classification. Furthermore,
to check the effect of the difference of rule sets, we also ran
RCNs with another rule set extracted by RF with the max-
imum depth set to 4, considering each path is a rule. Both
the Eclat and RF rulesets were added a default rule whose
antecedent is always true for any instances so that at least
one rule is selected by RCNs for each instance. The conse-
quents were computed by (1); the smoothing factor α was
set to 1. RCNs are trained with the Adam optimizer with
its default parameters (Kingma and Ba 2015). The hyperpa-
rameters of CART, RF and SVMs were selected from Table
2 by grid search with five-fold cross validation using training
data. The hyperparameter λ of SBRL was also selected from
100.5, 10, 101.5, 102, 102.5, and 103 by validation. Neural
networks like CNN and LSTM can directly handle sequence
data x as input. The other algorithms cannot directly handle
sequence data and require feature representation x′ as input.
Only RCNs require both x and x′ as input.

The base networks used were CNN for time series (Wang,
Yan, and Oates 2016) and Bi-LSTM for sentiment clas-
sification (Johnson and Zhang 2016). The base networks
were pretrained, and we built RCNs based on the base net-
works, while the weights of the base networks were fixed
in the training of the RCNs. The hidden layer size, h, was
128 for CNN and 512 for Bi-LSTM. The RCNs were first
trained without rule set optimization, i.e., using all rules inR
for time-series and sentiment classification. After that, they
were trained with rule set optimization with sample size s
set to 100.

The datasets we used are summarized in Table 1. For
time-series classification, we used the top five largest bi-
nary classification data from the UCR time series reposi-
tory (Chen et al. 2015). As feature representation x′, we ex-

Table 1: Five time-series and three sentiment datasets. The
columns represent the number of training instances, test in-
stances, features, and rules created by Eclat and RF. Straw,
Prox and Phar represent Strawberry, ProximalPhalanxOut-
lineCorrect and PharangesOutlinesCorrect, respectively.

Name #Train #Test #Feat. #Eclat #RF
Straw 370 613 208 83905 1754
Prox 600 291 48 4241 2200
FordB 810 3636 412 37789 2020
FordA 1320 3601 412 33817 2380
Phar 1800 858 48 3137 2364
IMDB 25000 25000 1000 2633 2690
Elec 25000 25000 1000 2543 2708
Yelp 25000 25000 1000 2551 2804

Table 2: Hyperparameters of CART, RF, and SVMs. ’None’
means no restriction.

CART
criterion ’gini’, ’entropy’
max depth 4, 8, 12, 16, None
min samples leaf 1, 5, 10, 20, 50, 100
RF
criterion ’gini’, ’entropy’
max depth 4, 8, 12, 16, None
min samples leaf 1, 5, 10, 20, 50, 100
max features ’sqrt’, None
SVM
C 0.1, 1, 10, 100, 1e+3,

1e+4, 1e+5, 1e+6

tracted the means, variances, and slopes of the intervals ob-
tained by dividing the time series with different lengths. Be-
cause Eclat requires discretized input, the continuous-value
features were discretized into five intervals with equal fre-
quencies before applying Eclat. For sentiment classification,
three review datasets were used: IMDB for movies, Elec for
electronics products (Maas et al. 2011), and Yelp for local
businesses2. Bag-of-words representations were used as x′,
composed of the top 1000 words with the highest ANOVA
F-values with respect to classes.

Comparison of error rates
We classified the algorithms to be compared into three
classes: transparent, rule-supported, and no-rule. First, an
algorithm is called transparent if its internal mechanism
is simple enough for humans to understand. CART and
SBRL are transparent. Second, an algorithm is called rule-
supported if it is not transparent, but it is able to present
at least one rule that supports the decision. RF is classified
as rule-supported here, because its decisions are based on
majority vote, and it can always find at least one rule that

2Training and test data were extracted from the original Yelp
dataset (https://www.yelp.com/dataset/challenge) so that the Yelp
dataset has the same sizes as the IMDB and Elec datasets.

2500



supports the decision. A RCN is also a rule-supported one;
however, in contrast to RF, RCNs can select just one rule that
explains the decision for each instance, and they can limit
the total number of distinct rules for the whole instance set.
Third, an algorithm is called no-rule if it cannot show any
decision rules. The base networks and SVM are no-rule.

Because we created two different rulesets, our proposed
algorithms now consist of four variants: RCN+A with RF,
RCN+A with Eclat, RCN-A with RF, and RCN-A with
Eclat. For simplicity, we abbreviate ”with the RF (Eclat)
ruleset” as ”with RF (Eclat)”. Among these four, RCN+A
with RF was considered as our primary algorithm because
it can utilize the attention mechanism and the power of RF
rules, and it was compared with the others.

The test error rates are listed in Table 3. The error rate is
equal to 1.0 minus accuracy. Thus, low error rate means high
accuracy. The error rates were averaged over 5 runs, and the
standard errors were smaller than or on the order of the least
significant digit. For the results listed in Table 3, the RCNs
were trained without ruleset optimization; that is, they were
allowed to select any rules in R without a restriction on the
distinct number of rules. The numbers in parentheses repre-
sent the averaged distinct numbers of rules selected by the
RCNs and contained in CART and SBRL. The minimum
error rate for each data set is indicated in boldface. The av-
eraged ranks are shown in the last row.

We tested the statistical significance by applying the
Friedman test and the Holm procedure (Demšar 2006). As a
result, RCN+A with RF was significantly better than SVM,
RF, CART, SBRL, and RCN-A with RF and Eclat (signifi-
cance level α = 0.05). It showed no significant differences
from the base network and RCN+A with Eclat.

The important points of the results are threefold. First,
RCN+A with RF performed better than the existing algo-
rithms that can present decision rules supporting their deci-
sions (RF, CART and SBRL). This supports the effective-
ness of our main idea, i.e., using neural networks to select
decision rules. Second, RCA+A with RF performed bet-
ter than RCN-A with RF even though they used the same
RF ruleset. This means the attention mechanism used in
RCN+A improved the accuracy of RCNs. Third, the differ-
ence between the rulesets, namely, either Eclat or RF, had
little effect on the performance of RCN+A. Thus, the fol-
lowing experiments focused on RCN+A with RF.

In terms of the number of rules, CART and SBRL
prefered less rules than the RCNs, even with the hyper-
parameters determined with validation, because their mod-
els are not designed to handle large rules. In particular, the
probabilistic model of SBRL is designed to assign very low
probability to large rule lists, and thus such rule lists are re-
jected by MCMC sampling.

Examples of the rules selected by RCNs
Here, we present several examples of the rules selected by
RCN+A from the RF ruleset and give interpretations of
them. First, let us start with the Strawberry dataset (Hol-
land, Kemsley, and Wilson ), one of the time-series datasets.
The task is to distinguish the spectrographs of authentic
strawberries (positive instances) from non-strawberry spec-

trographs (negative instances). For each instance, a time se-
ries was generated by measuring absorbance at 235 data
points with different wavenumbers. The data points are or-
dered according to the wavenumbers.3 An example of a tar-
get instance and the rule selected by the RCN are shown in
Fig. 3. The graph at the top of the figure illustrates a negative
or non-strawberry target instance. The solid black line rep-
resents the target, and the gray region represents the range of
typical positive instances (i.e., mean ± standard deviation).
The target seems to deviate from the range of the typical pos-
itive instances. The output of the base network is shown in
the middle of the figure. The base network predicted that the
target is negative with high probability (almost 1), but it did
not give any reason for the decision. On the other hand, the
output of the RCN is shown at the bottom of the figure. The
RCN also gave high probability to the negative class, but it
also presented a decision rule that explains the high proba-
bility. The antecedent is composed of “condition 1” (green)
and “condition 2” (red). Feature “mean from s to e” repre-
sents the mean of the absorbance in interval [s, e). By se-
lecting this rule, the RCN says the target is negative because
95% of the instances that satisfy conditions 1 and 2 are neg-
ative. The green and red boxes represent the regions of the
means satisfying conditions 1 and 2, respectively. The region
for condition 2 deviates from the typical positive instances,
justifying that 95% of the instances are negative. This ex-
ample clearly explains the strength of the RCNs. The impor-
tance of features can be visualized by applying several ex-
isting algorithms (Simonyan, Vedaldi, and Zisserman 2013;
Bach et al. 2015). However, the RCNs not only indicate the
features to be paid attention but also give the thresholds of
those features that lead to the consequent class probability.
Furthermore, it is easy for humans to validate the correctness
of the selected rule by checking and counting the instances
satisfying the antecedent, because the consequent is calcu-
lated by a simple counting-based method shown in (1).

Examples from the IMDB dataset are shown in Fig. 4. The
decision rules are defined for the bag-of-words representa-
tions. “word <= 0.5” means the word does not appear in
the review and “word > 0.5” means the word appears more
than once. The corresponding words in the reviews and the
rules are highlighted in green. Fig. 4 (a) shows an example
of a negative review that is correctly classified as negative by
the selected rule. The selected rule says the review is nega-
tive because it includes two negative words, “horrible” and
“bad”, and it does not include two positive words, “best”
and “perfection”. On the other hand, Fig. 4 (b) shows a pos-
itive review that is incorrectly classified as negative by the
selected rule. The selected rule says the target review does
not include obviously positive and negative words, namely
“perfect”, “ridiculous”, and “bad”. It concludes that it is neg-
ative, but with low confidence of 57%. The target review
actually does not include any positive or negative words. In-
stead, it includes “not to be missed”, which is obviously a
positive phrase for humans, but such a long phrase is hard
to be detected by machine learning models. It can thus be

3Strictly speaking, the Strawberry dataset are not genuine time-
series data because they are not ordered according to time.
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Table 3: Test error rates of baseline algorithms and RCNs (without ruleset optimization) .

No-rule Rule-supported Transparent
Base SVM RCN-A RCN+A RF CART SBRL

set=Eclat set=RF set=Eclat set=RF
Straw .041 .049 .062 (55) .069 (29) .034 (229) .038 (117) .053 .091 (14) .103 (11)
Prox .099 .192 .129 (73) .142 (43) .095 (96) .098 (82) .147 .165 (10) .167 (6)
FordB .123 .303 .203 (84) .355 (239) .129 (189) .120 (444) .286 .355 (35) .363 (4)
FordA .094 .207 .155 (117) .327 (293) .096 (305) .096 (565) .272 .335 (14) .331 (9)
Phar .178 .235 .210 (86) .191 (125) .176 (230) .176 (225) .208 .284 (52) .206 (20)
IMDB .136 .133 .160 (75) .145 (440) .134 (114) .134 (690) .169 .263 (368) .300 (18)
Elec .115 .127 .124 (61) .130 (376) .117 (97) .114 (595) .156 .257 (368) .283 (24)
Yelp .054 .075 .075 (76) .072 (382) .077 (128) .054 (652) .093 .153 (627) .217 (278)
Ave. rank 2.375 5.250 5.125 5.563 2.438 1.813 6.125 8.063 8.250
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AND  mean_from_75_to_80 > 0.092

[Pos:0.05, Neg:0.95]

Figure 3: An example of outputs given an instance from the
Strawberry dataset

inferred that the RCN gives incorrect decision with low con-
fidence because the review has no obviously positive or neg-
ative words.

Limiting ruleset size
The performance of the RCN without ruleset optimization
have been shown so far. Next, let us see the effect of rule-
set optimization. In particular, we evaluated the effect of λ,
which limits the ruleset size. It is expected that choosing
small λ reduces the cost of checking whether the rules are
reliable, because the distinct number of selected rules is re-
duced. However, if we choose too small λ, the ruleset may
be too small, and the decision accuracy may be degraded.
The purpose of this experiment is to evaluate this effect. We
used a uniform distribution over R as θ0 in this experiment.

Measured error rates of RCN+A with RF for different λ

Table 4: Test error rates of RCN+A with RF for different λ

Without λ=1000 λ=100 λ=10
ruleset opt.

Straw .038(117) .035(92) .029(55) .053(10)
Prox .098(82) .119(65) .103(46) .219(10)
FordB .120(444) .109(287) .112(82) .348(10)
FordA .096(565) .092(304) .114(79) .193(10)
Phar .176(225) .182(163) .191(65) .297(10)
IMDB .134(690) .119(361) .119(79) .162(10)
Elec .114(595) .116(342) .118(85) .213(10)
Yelp .054(652) .059(331) .091(80) .187(10)

are listed in Table 4. The numbers in parentheses represent
the distinct numbers of selected rules. The column named
Without ruleset opt. is copied from Table 3 for comparison
with the result obtained under the same setting but without
ruleset optimization. For λ = 1000, the RCNs achieved al-
most the same error rate as that achieved without ruleset op-
timization. However, the distinct number of selected rules is
much lower. This result means many redundant rules were
included in the rules that were selected without ruleset opti-
mization, and the ruleset optimization could remove such re-
dundant rules and gave more succinct explanations in terms
of the ruleset size. The distinct numbers of rules for λ = 100
are lower than those for λ = 1000. Finally, for λ = 10,
the distinct numbers of rules are very low, but the worst er-
ror rates were observed for all of datasets. Thus, changing
λ provides a tradeoff between succinctness and accuracy;
removing redundant rules gives succinct explanations, but
small rulesets may degrade the accuracy of decisions.

Mixing human-made rules
As the final experiment, we mixed human-made rules with
automatically acquired rules for sentiment classification.
In terms of interpretability, it is reasonable to give higher
prior probability to human-made rules than automatically
acquired rules. However, giving them too high prior prob-
abilities may degrade the accuracy of RCNs. The purpose of
this experiment was to experimentally confirm this tradeoff.

We created human-made rules composed of 963 positive
and 1260 negative rules based on the VADER sentiment lex-
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This...... Movie.... Is..... Horrible!!!!!! 
(snip) Pardon my french, but the acting 
was bad as hell!!! 

To share expenses they advertise for 
someone to share the ride.  (snip) 

A real classic comedy from the thirties,
not to be missed.

Quoted from https://www.imdb.com/title/tt0370295/reviews Quoted from https://www.imdb.com/title/tt0025799/reviews

Target review Target review

[Pos:0.04, Neg:0.96]

best <= 0.5 AND horrible > 0.5
AND perfection <= 0.5 AND bad > 0.5

(a) Correct decision

[Pos:0.43, Neg:0.57]

perfect <= 0.5 AND ridiculous <= 0.5
AND bad <= 0.5 AND someone > 0.5

(b) Wrong decision

Output of RCN Output of RCN

[Pos:0.00, Neg:1.00]

Output of base network

[Pos:0.29, Neg:0.71]

Output of base network

Figure 4: Examples from the IMDB dataset

icon (Hutto and Gilbert 2014) by considering the occurences
of positive and negative words as the antecedents of decision
rules. These human-made rules were appended to the auto-
matically acqured rules in the RF ruleset. The original auto-
matically acquired rules were assigned weight 1.0, and the
newly appended human-made rules were assigned weight ρ.
Then, θ0 was obtained by normalizing these weights so that
the sum equals 1. In this experiment, λ was set to 100. We
measured the test error rates of RCN+A with the mixed rule-
set, averaged over 5 runs, for different ρ. The distinct num-
bers of rules selected by RCN+A were also measured.

The results on the IMDB dataset are listed in Table
5. “#RF” represents the distinct number of selected RF
rules, and “#HM” represents the distinct number of se-
lected human-made rules. “HM ratio” represents the ratio
of human-made rules, i.e., #HM/(#RF+#HM). For ρ = 1,
which means the human-made and RF rules were given
equal prior probabilities, the ratio of human-made rules were
very low. On the other hand, for ρ = 100, which means the
human-made rules are given much higher prior probabilities
than those given to the RF rules, the ratio of human-made
rules were high. However, the test error rate for ρ = 100 was
worse than that for ρ = 1. This result means, for ρ = 100, a
larger portion of decisions were explained by human-made
rules at the expense of accuracy. Moderate results were ob-
tained for ρ = 10. The error rate for ρ = 10 was just slightly
worse than for ρ = 1 while the ratios of human rules were
quite high. This experiment showed that the parameters of
RCNs could change the ratio of human-made rules in the
selected rules.

The most frequently selected rules for ρ = 1 and ρ = 100
are listed in Table 6. For ρ = 1, the top ten rules were all se-
lected from the RF ruleset, and they include quite a few un-
intelligible conditions like “minutes <= 0.5”, “also <= 0.5”
and “anything <= 0.5”. It is hard to understand how these
words are related to the sentiment of reviews. On the other
hand, for ρ = 100, many human-rules were frequently se-

Table 5: Results of mixing human-made rules

ρ Error rate #RF #HM HM ratio
1 0.134 77 13 0.14
10 0.145 33 54 0.62

100 0.23 7 72 0.91

lected. They are simple and intelligible, but they have week
predictive power as observed in Table 5.

Related work
Improving the interpretability of machine learning is a ris-
ing research area that includes techniques applicable to gen-
eral machine learning models (Lipton 2016; Doshi-Velez
2017) or techniques especially for neural networks (Mon-
tavon, Samek, and Müller 2018). These techniques can be
classified into three groups. The first group analyzes which
input features are relevant to decisions. SHAP (Lundberg
and Lee 2017) is a general framework for presenting fea-
ture importance based on game theory given a particu-
lar decision. Gradient-based sensitivity analysis (Simonyan,
Vedaldi, and Zisserman 2013) and layer-wise relevance
propagation (Bach et al. 2015) are common approaches
for neural networks. The second group approximates neu-
ral networks with simpler models. LIME (Ribeiro, Singh,
and Guestrin 2016) is a general framework for building a
simper model to approximate the local decision boundaries
around a given decision. Rule extraction from shallow or
simple neural networks was mainly studied in the 1990s
(Andrews, Diederich, and Tickle 1995; Zilke, Loza Mencı́a,
and Janssen 2016), but it cannot be applied to modern com-
plex neural networks like CNN or LSTM. The first and
second groups are just post-hoc analysis, so they never af-
fect the decisions of neural networks and cannot guarantee
that a simple explanation for the decisions always exists.
The third group constrains the neural network with models
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Table 6: Most frequently selected rules

(a) ρ = 1

Rank Freq. Antecedent Consequent Human
[Pos,Neg] -made

1 2394 lame <= 0.5 AND minutes <= 0.5 AND no <= 0.5 AND bad <= 0.5 [0.63,0.37]
2 1711 bad <= 0.5 AND great > 0.5 AND worst <= 0.5 AND pointless <= 0.5 [0.76,0.24]
3 1182 beautiful <= 0.5 AND poor <= 0.5 AND movie > 0.5 [0.55,0.45]
4 1122 acting <= 0.5 AND boring <= 0.5 AND poor <= 0.5 AND anything <= 0.5 [0.57,0.43]
5 997 bad <= 0.5 AND also > 0.5 AND terrible <= 0.5 AND worst <= 0.5 [0.68,0.32]
6 972 both <= 0.5 [0.51,0.49]
7 929 bad > 0.5 AND also <= 0.5 AND steals <= 0.5 [0.21,0.79]
8 692 excellent > 0.5 AND rent <= 0.5 AND thing <= 0.5 [0.84,0.16]
9 686 no > 0.5 AND plot <= 0.5 [0.40,0.60]

10 671 save <= 0.5 AND bad > 0.5 AND bad > 1.5 AND also <= 1.5 [0.12,0.88]

(b) ρ = 100

Rank Freq. Antecedent Consequent Human
[Pos,Neg] -made

1 7895 DEFAULT [0.50,0.50]
2 1980 bad [0.1,0.9] X
3 1709 no [0.1,0.9] X
4 1663 worse <=0.5 AND favorite <= 0.5 AND great > 0.5 AND fantastic <= 0.5 [0.68,0.32]
5 1014 worst > 0.5 AND of <= 4.5 AND sex <= 0.5 AND subtle <= 0.5 [0.06,0.94]
6 619 wonderful <= 0.5 AND even <= 0.5 AND excellent > 0.5 [0.84,0.16]
7 473 worst [0.1,0.9] X
8 471 amazing [0.9,0.1] X
9 433 fun [0.9,0.1] X
10 409 enjoyed [0.9,0.1] X

of simpler forms. Combining neural networks with graphi-
cal models to improve the interpretability was recently pro-
posed (Al-Shedivat, Dubey, and Xing 2017); however this
approach gives explanations in the form of the graphical
models, which are not as interpretable as decision rules. For
the structured prediction problem, a technique to add rela-
tional rules between labels to constrain the consistency of
labels predicted by neural networks has been proposed (Hu
et al. 2016), but its rules describe only a fraction of relations
between labels, and it cannot give an explanation in the form
of decision rules. RCNs belong to the third group and, to our
knowledge, is the first approach that can always present a de-
cision rule that justifies a decision made by neural networks.

Improving the accuracy of rule-based models has also
been researched. Non-greedy optimization of decision lists
(Letham et al. 2015; Wang and Rudin 2015; Angelino et al.
2017; Yang, Rudin, and Seltzer 2017) has been realized with
the help of the high computational power of modern proces-
sors. In these approaches, given a rule set built by associa-
tion mining, a decision rule list composed of rules extracted
from the given rule set is optimized. However, even with
modern processors, solving the optimization problem about
the combination of rules has computational difficulty when
the given rule set is large. Scalable Bayesian rule lists (Yang,
Rudin, and Seltzer 2017), which alleviate this difficulty us-
ing fast bit-vector computation, is the first approach that is

scalable to more than tens of thousands of rules.

Conclusion and future work

To combine the classification accuracy of neural networks
with the interpretability of decision rules, we proposed
a model called rule-constrained networks (RCNs). In this
model, neural networks are forced to select decision rules
from a rule set so that the rules predict correct classes. The
rule set from which rules are taken is also optimized with
given hyper parameters that specify the ruleset size and the
probabilities of rules being selected. The proposed model
guarantees that each decision is always supported by one
decision rule, while the rules used for decisions are selected
from a ruleset with a limited size. The experiments showed
RCNs achieved higher accuracy than existing rule-based
classifiers for time-series classification and sentiment clas-
sification while presenting rules that support the decisions.

The direction of our future work is two-fold. First, the
evaluation of the RCNs will be extended to tasks other than
sequential classification. Second, we should ask human ex-
perts to evaluate RCNs and add, delete or change decision
rules to improve the quality of the ruleset. We believe rules
added by human experts would amplify the interpretability
of RCNs from the viewpoint of the experts themselves.
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