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Abstract

The goal of task transfer in reinforcement learning is migrat-
ing the action policy of an agent to the target task from the
source task. Given their successes on robotic action planning,
current methods mostly rely on two requirements: exactly-
relevant expert demonstrations or the explicitly-coded cost
function on target task, both of which, however, are inconve-
nient to obtain in practice. In this paper, we relax these two
strong conditions by developing a novel task transfer frame-
work where the expert preference is applied as a guidance. In
particular, we alternate the following two steps: Firstly, letting
experts apply pre-defined preference rules to select related
expert demonstrates for the target task. Secondly, based on
the selection result, we learn the target cost function and tra-
jectory distribution simultaneously via enhanced Adversarial
MaxEnt IRL and generate more trajectories by the learned
target distribution for the next preference selection. The theo-
retical analysis on the distribution learning and convergence of
the proposed algorithm are provided. Extensive simulations on
several benchmarks have been conducted for further verifying
the effectiveness of the proposed method.

1 Introduction
Imitation Learning has become an incredibly convenient
scheme to teach robots skills for specific tasks (Wang et
al. 2017; Pathak et al. 2018; Yu et al. 2018; Stadie, Abbeel,
and Sutskever 2017; Sermanet et al. 2018; Edmonds et al.
2017). It is often achieved by showing the robot various
expert trajectories of state-action pairs. Existing imitation
methods like MAML (Finn, Abbeel, and Levine 2017) and
One-Shot Imitation Learning (Duan et al. 2017) requires
perfect demonstrations in the sense that the experts should
perform the same as they expect the robot would do. How-
ever, this requirement may not always hold since collecting
exactly-relevant demonstrations is resource-consuming.

One possible relaxation is assuming the expert to perform
a basic task that is related but not necessary the same as
the target task (sharing some common features, parts, etc).
This relaxation, at the very least, can reduce the human effort
on demonstration collecting and enrich the diversity of the
demonstrations for task transfer. For example in Figure 1, the
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Figure 1: Problem statement and method introduction. As an
example, we want to transfer a multi-joint robot from moving
towards arbitrary directions (basic task) to moving forward
(target task). Our preference-based task transfer framework
iterate following two steps. 1. Querying expert for preference-
based selection; 2. Learning distribution and cost simultane-
ously from selected samples, doing policy optimization and
re-generating more samples, which would have the same
distribution as the selected ones.

expert demonstrations contain the agent movements along an
arbitrary direction, while the desired target is to move along
only one specified direction.

Clearly, it does not come for free to learn target action pol-
icy from the relaxed expert demonstrations. More advanced
strategies are required to transfer the action policy from the
demonstrations to the target task. The work by (De Gemmis
et al. 2009) suggests that using experts’ preference as a super-
vised signal can achieve nearly optimal learning result. Here,
the preference refers to the highly-abstract evaluation rules or
choice tendency of a human for making comparison and selec-
tion among data samples. Indeed, the preference mechanism
has been applied in many other scenarios, such as complex
tasks learning (Wirth et al. 2017), policy updating (Christiano
et al. 2017), and policy optimization combing with Inverse
Reinforcement Learning (IRL) (Wirth and Fürnkranz 2013)
to name a few.

However, previous preference-based methods mainly fo-
cus on learning the utility function behind each comparison,
where the distribution of trajectories is never studied. How-
ever, this would be inadequate for task transfer. The impor-
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tance of modeling distribution comes from two aspects: 1.
Learning the trajectory distribution takes a critical role in
preference-based selection, which will be discussed lately;
2. With the distribution, it is more convenient to provide a
theoretical analysis of the efficiency and stability of the task
transfer algorithm (See Section 3.4).

In this work, we approach the task transfer by utilizing
the expert preference in a principled way. We first model
the preference selection as a rejection sampling where a hid-
den cost is proposed to compute the acceptance probability.
After selection, we then learn the distribution of the target
trajectories based on the preferred demonstrations. Since the
candidate demonstrations would usually be insufficient after
selection, we augment the demonstrations with the samples
of the current learned trajectory distribution and perform
the preference selection and distribution learning iteratively.
The distribution here acts as the knowledge which we make
the transfer on. The theoretical derivations prove that it can
improve the preference after each iteration and the target
distribution will eventually converge.

As the core of our framework, the trajectory distribution
and cost learning are based on but has advanced the Max-
imum Entropy Inverse Reinforcement Learning (MaxEnt
IRL) (Ziebart et al. 2008) and its adversary version (Finn
et al. 2016). The MaxEnt IRL framework models the trajec-
tory distribution as the exponential of the explicitly-coded
cost function. Nevertheless in MaxEnt IRL, computing the
partition function requires MCMC or iterative optimization,
which is time-consuming and numerically unstable. Hence
in adversary MaxEnt IRL, it avoids the computation of the
partition function by casting the whole IRL problem into
optimization of a generator and a discriminator. Although the
adversary MaxEnt IRL is more flexible, it never delivers any
form of the cost function, which is crucial for down-stream
applications and policy learning. Our method enhances the
original adversary MaxEnt IRL by redefining the samples
from the trajectory level to the state-action level and devise
the cost function using the outputs of the discriminator and
generator. With the cost function, we can optimize the gener-
ator by any off-the-shelf reinforcement learning method and
then the optimal generator could be used as a policy on the
target task.

To summarize, our key contributions are as follow.
1. We propose to perform imitation learning from related but

not exactly-relevant demonstrations by making use of the
expert preference-based selection.

2. We enhance the Adversarial MaxEnt IRL framework for
learning the trajectory distribution and cost function simul-
taneously.

3. Theoretical analyses have been provided to guarantee the
convergence of the proposed task transfer frameworks.
Considerable experimental evaluations demonstrate that
our method obtains comparable results with other algo-
rithms that require accurate demonstrations or costs.

2 Preliminaries
This section reviews fundamental conceptions and introduces
related works to our method. Before further introduction, we

first provide key notations used in this paper.
Notations. For modeling the action decision procedure of
an agent, The Markov Decision Processes (MDP) without
reward (S,A, T , γ, µ) is used, where S denotes a set of
states which can be acquired from environment; A denotes
a set of actions controlled by the agent; T = p(s′|s, a)
denotes the transition probability from state s to s′ by ac-
tion a; γ ∈ [0, 1) is a discount factor; µ is the distribu-
tion of the initial state s0; π(a|s) defines the policy. A
trajectory is given by the sequence of state-action pairs
τi = {(s(i)0 , a

(i)
0 ), (s

(i)
1 , a

(i)
1 ), · · · }. We define the cost func-

tion parameterized by θ over a s-a pair as cθ(a, s), and de-
fine the cost over a trajectory as Cθ(τi) =

∑
t cθ(a

(i)
t , s

(i)
t )

where t is time step. A trajectory set is formulated by n expert
demonstrations, i.e. Bi = {τi}ni=1.

2.1 MaxEnt IRL
Given a demonstration set B, the Inverse Reinforcement
Learning (IRL) method (Ng, Russell, and others 2000)
seeks to learn optimal parameters θ of the cost function
Cθ(τi). The solution could be multiple when using insuf-
ficient demonstrations. The MaxEnt IRL (Ziebart 2010;
Boularias, Kober, and Peters 2011) handles this ambiguity
by training the parameters to maximize the entropy over
trajectories, leading to the optimization problem as:

max
θ
−
∑
τ

p(τ) log p(τ)

s.t. Ep(τ)[Cθ(τi)] = EpE(τ)[Cθ(τi)], τi ∈ B,∑
i

p(τi) = 1, p(τi) ≥ 0.

(1)

Here p(τ) is the distribution of trajectories; pE(τ) is the prob-
ability of the expert trajectory; E[·] computes the expectation.
The optimal p(τ) is derived to be the Boltzmann distribution
associated with the cost −Cθ(τ), namely,

p(τ) =
1

Z
exp(−Cθ(τ)). (2)

Here Z is the partition function given by the integral of
exp(−Cθ(τ)) over all trajectories.

2.2 Generative Adversarial Networks
Generative Adversarial Networks (GANs) provides a frame-
work to model a generatorG and a discriminatorD simultane-
ously.G generates sample x ∼ G(z) from noise z ∼ N(0, I)
, while D takes x as input, and outputs the likelihood value
D(x) ∈ [0, 1] indicates whether x is sampled from under-
lying data distribution or from generator (Goodfellow et al.
2014)

min
D
LD =Ex∼pdata

[logD(x)]

+ Ez∼N(0,I)[log(1−D(G(z))]

min
G
LG =Ez∼N(0,I)[− logD(G(z))]

+ Ez∼N(0,I)[log(1−D(G(z))].

(3)
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Generator loss LG, discriminator loss LD and optimiza-
tion goals are defined as (3). Here LG is modified as the
sum among logarithm confusion and opposite loss of D for
keeping training signal in case generated sample is easily
classified by the discriminator.

3 Methodology
Our preference-based task transfer framework consists of 2
iterative sub-procedures: 1) querying expert preference and
construct a selected trajectory samples set; 2) learning the
trajectory distribution and cost function from this samples
set for re-generating more samples for next episode. Start-
ing from the demonstrations of the basic task, the trajectory
distribution and cost function we learned are improved con-
tinuously. Finally, with the learned cost function, we can
derive a policy of the target task.

The following sections will cover the modeling and anal-
ysis for all the two steps mentioned above. In Section 3.1,
we will introduce the hidden-cost model for modeling the
expert preference-based selection. Then in Section 3.2, our
enhanced Adversarial MaxEnt IRL for distribution and cost
learning will be presented. We will combine the above
two components to develop a preference-based task trans-
fer framework and provide the theoretical analysis on it.

3.1 Preference-based Sampling and Hidden Cost
Model

The main idea of our task transfer framework is transfer-
ring trajectory distribution with sample selection. Different
from other transfer learning algorithms, the selection in our
method only depends on preference provided by experts in-
stead of any quantities. The preference of expert here could
be abstract conceptions or rules on the performance of agents
in target task, which are hard to directly be formalized as
cost functions or provided numerically by the expert. In our
preference-based cost learning framework, however, we only
require experts to choose their most preferred samples among
the given set generated on the last step, and try to use the
selection result as the guidance on migrating the distribution
from current policy to the target task policy.

We migrate the distribution by preference-based selection
of samples in current set, the agent should be able to generate
feasible trajectories on target task, which requires the proba-
bility of a trajectory on current task to be non-zero whenever
the probability of that trajectory on target task is non-zero,
and there should exist one finite value M (which indicates
the expected rejections made before a sample is accepted)
that

∀τ,∃M ∈ (0,∞) s.t. Mp(τ ∈ Bi) > p(τ ∈ Btar), (4)

where Bi and Btar are feasible trajectory sets of current task
and target task respectively. In previous section, we have
shown that under MaxEnt IRL, the expert trajectories are
assumed to be sampled from a Boltzmann distribution with
negative cost function as energy. For an arbitrary trajectory

τ , there will be

p(τ ∈ Bi) = p(τ) =
exp(−Ci(τ))

Zi
∝ exp(−Ci(τ))

p(τ ∈ Btar) = ptar(τ) =
exp(−Ctar(τ))

Ztar
∝ exp(−Ctar(τ)),

(5)

where Ci and Ctar are ground truth costs over a trajectory of
current and target task, while ci and ctar are corresponding
cost functions. During selection, we suppose that the expert
intends to keep the trajectory τ which have lower cost value
on target task, which means the preference selection proce-
dure could be seen as a rejection sampling over set Bi with
acceptance probability

psel(τ) =
ptar(τ)

Mpi(τ)
=

Zi
MZtar

exp (Ci(τ)− Ctar(τ))

∝ exp (−Ctar(τ) + Ci(τ)) .
(6)

We define the gap between target cost and current cost as
hidden cost ch(s, a) = ctar(s, a)−ci(s, a) and for trajectory
Ch(τ) = Ctar(τ)− Ci(τ). Thus we can view Ch as a latent
factor, or formally, a negative utility function (Wirth et al.
2016) that indicates the preference and at the same while
indicates the gap between target distribution and current dis-
tribution. Lower expectation of Ch over the set of samples
indicates greater acceptance possibilities and indicated cur-
rent distribution to be more similar as target one. After each
step, by reintroducing the accept rate, the probability of a
sample presenting in the set after ith selection should be

pi+1(τ) = p(selected(τ)|τ)pi(τ)

=
Zi

MZtar
exp(Ci(τ)− Ctar(τ))

1

Zi
exp(−Ci(τ))

∝ exp(−Ctar(τ)).

(7)

With preference-based sample selection, the trajectory dis-
tribution is expected to approach to the one under the target
task finally. The convergence analysis will be provided in
Section 3.4.

3.2 Enhanced Adversarial MaxEnt IRL for
Distribution and Cost Learning

In the previous section, we introduce how the preference-
based sample selection works in our task transfer framework.
However, since the task transfer is an iterative process, we
need to generate more samples with the same distribution
as the selected samples set to keep it selectable by experts.
Additionally, a cost function needs to be extracted from the
selected demonstrations to optimize policies. With our en-
hanced Adversarial MaxEnt IRL, we can tackle these prob-
lems by learning the trajectory distribution and unbiased cost
function simultaneously.

Adversarial MaxEnt IRL (Finn et al. 2016) is a recently
proposed GAN-based IRL algorithm that explicitly recovers
the trajectory distribution from demonstrations. We enhance
it to meet the requirements in our task transfer framework.
Our enhancement is twofold:
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• Redefining the GAN from trajectory level to state-action
pair level to extract a cost function that can be directly
used for policy optimization.

• Although the GAN does not directly work on trajectory
anymore, we prove that the generator can still be a sampler
to the trajectory distribution of demonstrations.

We first briefly review the main ideas of Adversarial Max-
Ent IRL. In this algorithm, demonstrations are supposed to
be drawn from a Boltzmann distribution (2), and the op-
timizing target can be regarded as Maximum Likelihood
Estimation(MLE) over trajectory set B

min
θ
Lcost = Eτ∼B [− log pθ(τ)]. (8)

The optimization in (8) can be cast into an optimization
problem of a GAN (Goodfellow et al. 2014; Finn et al. 2016),
where the discriminator takes the form as followed

D(τ) =
p(τ)

p(τ) +G(τ)
=

1
Z exp(−C(τ))

1
Z exp(−C(τ)) +G(τ)

. (9)

Finn et al. showed that, when the model is trained to opti-
mal, the generator G will be an optimal sampler of the trajec-
tory distribution p(τ) = exp(−C(τ))/Z. However, we still
cannot extract a closed-form cost function from the model.
As a result, we enhanced it to meet our requirements.

Since the cost function should be defined on each state-
action pair, we first modified the input of the model in (9)
from a trajectory to a state-action pair

D(s, a) =
1
Z exp(−c(s, a))

1
Z exp(−c(s, a)) +G(s, a)

. (10)

The connection between the accurate cost c(s, a) and outputs
D(s, a), G(s, a) of GANs can be established

c̃(s, a) := c(s, a) + logZ

= log(1−D(s, a))− logD(s, a)− logG(s, a).
(11)

Here we define c̃(s, a) = c(s, a) + logZ as a cost esti-
mator, while c(s, a) is the accurate cost function. Since the
partition function Z is a constant while cost function is fixed,
it will not affect the policy optimization, which means that
c̃ can be directly integrated in common policy optimization
algorithms as a unbiased cost function.

Notice that, after this modification, there will be several
issues we need to address. Firstly, since the GAN is not de-
fined on trajectory anymore, the equivalence between Guided
Cost Learning and GAN training need to be re-verified. We
will discuss it in Section 3.4. Moreover, it is not straight-
forward whether G(s, a) is a sampler to the distribution of
demonstrations.

We now show that when G is trained to optimal, the distri-
bution of trajectories sampled from it is exactly the distribu-
tion p(τ) of demonstrations:

Assumption 1. The environment is stationary.

Lemma 1. Suppose that we have an expert policy
πE(a|s) to produce demonstrations B, a trajectory τ =
{(s0, a0), (s1, a1), · · · } is sampled from πE . Then τ will
have the same probability as drawn from p(τ) if Assump-
tion 1 holds (p(τ) is the trajectory distribution of B).

Proof. We first introduce the environment model pe(s′|s, a)
and the state distribution ps(s). In Reinforcement Learning,
environment is basically a condition distribution over state
transitions (s′, s, a). Thus the probability of a given trajectory
τ = {(s0, a0), (s1, a1) · · · } will be

p(τ) = ps(s0)
∏
t=0

πE(at|st)pe(st+1|st, at). (12)

Now we sample a trajectory τ with πE by executing roll-
outs. Under Assumption 1, the environment model pe for
sampling τ from πE will be the same as sampling the demon-
strations B, while ps(s) =

∫∫
pe(s

′|s, a) ds da is also iden-
tical. Therefore, the probability of sampling τ can be derived
as

q(τ) = ps(s0)
∏
t=0

πE(at|st)pe(st+1|st, at). (13)

It’s obvious that p(τ) = q(τ).

Lemma 2. (Goodfellow et al. 2014) The global minimum of
the discriminator objective (3) is achieved when pG = pdata.

For a GAN defined on state-action level, with Lemma 2,
pG = pdata = πE , πE is the expert policy for producing
demonstrations. Then with Lemma 1, it’s obviously that the
trajectory sampled with G(s, a) will have the same density
as p(τ), which means that G(s, a) can still be a sampler to
the trajectory distribution of demonstrations.

We formulate the minimization of generator loss as a policy
optimization problem. We regard the unbiased cost estimator
c̃(s, a) as the cost function instead of LG in (3), and G as a
policy π. Thus the policy objective will be

Lπ = E(s,a)∈B [log(1−D(s, a))− logD(s, a)] +H(π)
whereH(π) = E(s,a)∈B [− log π(a|s)] .

(14)

This is quite similar to the generator objective used by
GAIL (Ho and Ermon 2016) but with an extra entropy penalty.
We’ll compare the performances of cost learning between
our method and GAIL in Section 4.

3.3 Preference-based Task Transfer
The entire task transfer framework is demonstrated in Al-
gorithm 1, which combines the hidden cost model for
preference-based selection and enhanced Adversarial Max-
Ent IRL for distribution and cost learning. With this frame-
work, a well-trained policy on the basic task can be trans-
ferred to target task without accurate demonstrations or cost.

Comparing to Section 3.2, we adopt a stop condition with
ε and M which indicates the termination of the loop, and an
extra selection constraint which is observed to be helpful for
stability in preliminary experiments. In practice, the param-
eters of Gφi

and Dωi
can be directly inherited from Gφi−1
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and Dωi−1 when i > 1. Compare to initialize from scratch,
this will converge faster in each iteration, while the results
remain the same.

Algorithm 1 Preference-based task transfer via Adversarial
MaxEnt IRL
Input:

Demonstrations set B0 on basic task.
Stop indicator ε, maximum episode M . Preference rules,
or emulators which provides selection results.

Output:
Transferred policy πt.

i = 0
Initialize generator Gφ0

, discriminator Dω0
;

1: repeat
2: i← i+ 1
3: for step s in {1, · · · , N} do
4: Sample trajectory τ from Gφi ;
5: Update Dωi with binary classification error in (3)

to tell demonstration τE ∈ Bi−1 from sample τ ;
6: Update Gφi

using any policy optimization method
with respect to Lπ in (14);

7: end for
8: Sampling with Gφi

, and collect B̃i;
9: Query for preference to select trajectory in B̃i to ob-

tain retained samples Bi, dropped samples Bi, and
guarantee |Bi| is no more than half of |B̃i|;

10: Random sample β|Bi| trajectories from Bi and put
them back into Bi;

11: until |Bi|/|B̃i| < ε or i =M
12: return πt ← Gφi

3.4 Theoretical Analysis
In this section, we will discuss how can our framework learn
the distribution from trajectories in each episode and finally
transfer the cost function to target task. Remember the core
part in our framework: Transferring the trajectory distribution
from p0 to ptar. There is a finite loop in this process, during
which we query for preference as psel(τ) ∝ exp{−Ch(τ)}
and improve the distribution pi for each episode i. If the
distribution improves monotonically and the improvement
can be maintained, we can guarantee the convergence of our
method, which means that ptar can be learned. Then the cost
function ci we learned together with pi will also approach
to the cost for target task ctar. This intuition is shown as
following:

Proposition 1. Given a finite set of trajectories B sampled
from distribution p(τ) and an expert with select probabil-
ity (6), the hidden cost over a trajectory Eτ∼p[−Ch(τ)] is
improved monotonically after each selection.

This proposition can be proved with some elementary
derivations. Here we only provide the proof sketch. Since all
the trajectories inB are sampled from corresponding distribu-
tion p(τ), the expect cost can be estimated. Notice that we use
a normalized select probability psel(τ) = exp(−Ch(τ))/Z.

Thus the estimations of expectation before and after the se-
lection will be

Eτ∼p[−Ch(τ)] ≈
1

|B|

|B|∑
i=0

(−Ch(τi))

Eτ∼p′ [−Ch(τ)] ≈
|B|∑
i=0

psel(τi)(−Ch(τi)) /
|B|∑
i=0

psel(τi).

(15)

Obviously, trajectories after selection can not be seen as
samples drawn from p, here we use p′, which can be re-
garded as an improved p. Under linear expansion of cost,
Eτ∼p′ [−Ch(τ)] ≥ Eτ∼p[−Ch(τ)] can be proved. Thus the
expect cost over a trajectory is improved monotonically.

Then we need to re-verify that whether the proposed state-
action level GAN in our enhanced Adversarial MaxEnt IRL
is still equivalent to Guided Cost Learning (Finn, Levine, and
Abbeel 2016):

Theorem 1. Suppose we have demonstrations B =
{τ0, τ1, · · · }, a GAN with generator Gφ(s, a), discriminator
Dω(s, a). Then when the generator loss LG = Eτ∼p[log(1−
Dω(s, a)) − log(Dω(s, a))] is minimized, the sampler loss
in Guided Cost Learning (Finn, Levine, and Abbeel 2016)
Lsampler = DKL(q(τ) || exp(−C(τ))/Z) is also mini-
mized. q(τ) is the learned trajectory distribution, and Gφ is
corresponding sampler.

Since the Lsampler is minimized along with LG, when the
adversarial training ends, an optimal sampler of q(τ) can be
obtained. Now we need to prove B is drawn from q(τ):

Theorem 2. Under the same settings in Theorem 1,
when the discriminator loss is minimized, the cost loss
in Guided Cost Learning Lcost = Eτ∼B [Cθ(τ)] +
Eτ∼G[exp(−Cθ(τ))/q(τ)] is also minimized. Thus the
learned cost Cθ(τ) is optimal for B. Refer to Theorem 1,
B is drawn from q(τ).

In Theorem 2, MaxEnt IRL is regarded as a MLE of (2),
while the unknown partition function Z needs to be estimated.
Therefore, training a state-action level GAN is still equivalent
to maximizing the likelihood of trajectory distribution. Thus
we can learn the optimal cost function and distribution under
the current trajectory set B at the same time.

With Proposition 1, we can start from an arbitrary tra-
jectory distribution p0 and trajectory set B0 drawn from
it. Then we can define a trajectory distribution iteration as
pi+1(τ) ∝ pi(τ) exp{−Ch(τ)} (Haarnoja et al. 2017). Then
expected hidden cost over a trajectory Eτ∼pi [−Ch(τ)] im-
proves monotonically in each episode. With Theorem 1, 2, by
strictly recovering the improved distribution as pi+1 from
trajectory set (after selection), our algorithm can guarantee
to maintain the improvement of expect cost over a trajectory
to next episode.

Under certain regularity conditions (Haarnoja et al. 2017),
pi converges to p∞. For trajectories that sampled from the
target distribution ptar(τ), their corresponding select proba-
bility (6) will approach to 1. Thus ptar(τ) = exp(−Ch(τ)−
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Figure 2: Results of distribution learning under four MuJoCo environments. Here the demonstrations are provided by an expert
policy (PPO) under a known cost function. We compare the average cost value among trajectories generated by an oracle (an ideal
policy that always obtains maximum return), PPO (sample generator, acts as the expert), GAIL (a state-of-the-art IRL algorithm)
and our distribution learning method. The results show that our method can finally achieve nearly the same performance as the
expert. As we discussed in Section 4.1, we can verify that our method can learn the distribution from demonstrations.

Figure 3: Results of cost learning and task transfer. We com-
pare the average returns among an oracle (an ideal policy that
always obtains maximum return), an expert policy trained
with the cost of target task, and our method. The results show
that our algorithm can adapt to new task efficiently within
4 ∼ 6 episodes, and achieves nearly the same performance
as the expert.

Cb(τ))/Z can be a fixed point of this iteration when the itera-
tion starts from pb(τ) = exp(−Cb(τ))/Z. Since all the non-
optimal distribution can be improved this way, the learned
distribution will converge to ptar(τ) at infinity. As we have
showed before, with a limited demonstrated trajectories B
sampled from arbitrary trajectory distribution p(τ), an op-
timal cost c(a, s) can be extracted through our enhanced
Adversarial MaxEnt IRL proposed in Section 3.2. There-
fore, the target cost ctar can also be learned from transferred
distribution ptar.

4 Experiments
We evaluate our algorithm on several control tasks in Mu-
JoCo (Todorov, Erez, and Tassa 2012) physical simulator
with pre-defined ground-truth cost function cb(s, a) on ba-
sic tasks and ctar(s, a) on target tasks in each experiments,
Cb(τ) and Ctar(τ) are accumulated costs over trajectory τ
for basic and target task respectively. All the initial demon-
strations are generated by a well-trained PPO using cb, and

during the transfer process, preference is given by emulator
with negative utility function (or hidden cost over a trajectory)
Ch = Ctar−Cb. The select probability follows the definition
in (6). For performance evaluation, we use averaged return
with respect to ctar(s, a) as the criterion.

4.1 Overview
In experiments, we mainly want to answer three questions:
1. During the task transfer procedure, can our method recover

the trajectory distribution from demonstrations in each
episode?

2. Starting from a basic task, can our method finally transfer
to the target task and learn the cost function of it?

3. Under the same task transfer problem, can our method
(based on preference only) obtain a policy with compa-
rable performance, compared to other task transfer algo-
rithms (based on accurate cost or demonstrations)?
To answer the first question, we need to verify the distri-

bution learning part in our method functionally. Since our
enhanced Adversarial MaxEnt IRL is built upon MaxEnt IRL,
the recovered trajectory distribution can be reflected as a cost
function, and the trajectories we learn from being generated
by the optimal policy under that cost. Intuitively, given the ex-
pert trajectories τPPO generated by PPO and its corresponding
cost Ctar(τPPO), if we can train a policy which can generate
τ with similar average Ctar(τ), we believe that the trajectory
distribution can be recovered.

To answer the second question, we evaluate the complete
preference-based task transfer algorithm under some cus-
tomized environments and tasks. In each environment, we
transfer current policy under basic task to the target one.
During the transfer process, expert preference (emulated by
computer) is given as a selection result only, while any infor-
mation of cost or selecting rule is unknown to the agent. We
also train an expert policy with PPO and ctar(s, a) for com-
parison. In each episode, we generate τi using our learned
policy and record Ctar(τi). If the average Ctar(τi) finally
approaches to Ctar(τPPO), we can verify that our method can
learn the cost function of target task.

To answer the third question, we compare our method
with MAML (Finn, Abbeel, and Levine 2017), a task transfer
algorithm requiring accurate ctar. We use averaged cost on
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target task in each episode (we consider gradient step in
MAML the same as episode in our method) for evaluation,
to see whether the result of our method is comparable.

4.2 Environments and Tasks
Here we outline some specifications of the environments and
tasks in our experiments:

• Hopper, Walker2d, Humanoid and Reacher: These en-
vironments and tasks are directly picked from OpenAI
Gym (Brockman et al. 2016) without customization. Since
they are only used for functionally verifying our distribu-
tion learning part and comparing with the original GAIL
algorithm, there are no transfer settings.

• MountainCar, Two Peaks→ One Peak: In this environ-
ment, there are two peaks for the agent to climb. The basic
task is to make the vehicle higher, while the target task is
climbing to a specified one.

• Reacher, Two Targets→Center of Targets: In this envi-
ronment, the agent needs to control a 2-DOF manipulator
to reach some specified targets. For the basic task, there
will be two targets, and the agent can reach any of them,
while in target task the agent is expected to reach the cen-
tral position between the two targets.

• Half-Cheetah, Arbitrary→ Backward: In this environ-
ment, the agent needs to control a multi-joint (6) robot
to move forward or backward. The two directions are all
acceptable in the basic task, while only moving backward
is expected in the target task.

• Ant, Arbitrary→ Single: This environment enhances the
Half-Cheetah environment in two aspects: First, there will
be more joints (8) to control; Second, the robot can move
to arbitrary directions. In the basic task, any directions are
allowed, while only one specified direction is expected in
the target task.

4.3 Distribution and Cost Learning
We first concern the question whether our method can recover
the trajectory distribution from demonstrations during the
task transfer procedure. Experiment results are shown in
Figure 2. All the selected control tasks are equipped with
high-dimensional continuous state and action spaces, which
can be challenging to common IRL algorithms. We find that
our method achieves nearly the same final performance as
the expert (PPO) that provides the demonstrations, indicating
that our method can recover the trajectory distribution. Also,
comparing with other state-of-the-art IRL methods like GAIL,
our method can learn a better trajectory distribution and a
cost function more efficiently.

4.4 Preference-based Task Transfer
In Figure 3, we demonstrate the transfer results on two envi-
ronments. The transfer in Reacher environment is more diffi-
cult than MountainCar toy environment. The reason would
be that the later one can be clustered easily since there are
only two actual goals that a trajectory may reach, and the
target goal (to reach one specified peak) is exactly one of

Figure 4: Results of comparison with other methods. We
evaluate our algorithm under the transfer environments intro-
duced by (Finn, Abbeel, and Levine 2017). For the baselines,
MAML requires accurate ctar when transferring, Pretrained
means pre-training one policy from a basic task using Be-
havior Cloning (Ross, Gordon, and Bagnell 2011) then fine-
tuning. Random means optimizing a policy from randomly
initialized weights. The results show that our method can
obtain a policy with comparable performance with MAML
and other baselines.

them. In Reacher environment, although the demonstrations
in the basic task still seem to be easily clustered, the target
task cannot be directly derived from any of the clusters. In
both two transfer experiments, the adapted policies produced
by our algorithm show nearly the same performances as the
experts that directly trained on these two target tasks. As the
transferred policy is trained with the learned cost function,
we can conclude that our algorithm can transfer to target task
by learning the target cost function. In our experiments, we
find that within less than 10 episodes and less than 100 query-
ing number at each episode can sufficiently derive desired
performance. Another potential improvement of our method
is to apply some commutable rules to simulate the human
selection and reduce the querying time.

4.5 Comparison with Other Methods
We compare our method with some state-of-the-art task trans-
fer algorithms including MAML (Finn, Abbeel, and Levine
2017). Results are shown in Figure 4. Half-Cheetah environ-
ment is pretty similar to MountainCar for the limited moving
directions. However, its state and action space dimensions
are much higher, which increase the difficulties for trajectory
distribution and cost learning. Ant is the most difficult one
among all the environments. Due to its unrestricted moving
directions, the demonstrations on the basic task are highly
entangled. The results illustrate that our method achieves
comparable performances to those methods that require the
accurate cost of the target task on the testing environments.
Notice that, for some hard environment like Ant, our method
may run for more episodes than MAML, since our algorithm
only depends on preference, the results can still be convincing
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and impressive.

5 Conclusion
In this paper, we present an algorithm that can transfer poli-
cies through learning the cost function on the target task with
expert-provided preference selection results only. By mod-
eling the preference-based selection as rejection sampling
and utilizing enhanced Adversarial MaxEnt IRL for directly
recovering the trajectory distribution and cost function from
selection results, our algorithm can efficiently transfer poli-
cies from a related but not exactly-relevant basic task to the
target one, while theoretical analysis on convergence can be
provided at the same time. Comparing to other task transfer
methods, our algorithm can handle the scenario in which
acquiring the accurate demonstrations or cost functions from
experts is inconvenient. Our results achieve comparable task
transfer performances to other methods which depend on
accurate costs or demonstrations. Future work could focus on
the quantitative evaluation of the improvement on the trans-
ferred cost function. Also, the upper bound on the sum of
total operating episodes could be analyzed.
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