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Abstract

Randomized clinical trials (RCTs) like those conducted by
the FDA provide medical practitioners with average effects
of treatments, and are generally more desirable than observa-
tional studies due to their control of unobserved confounders
(UCs), viz., latent factors that influence both treatment and
recovery. However, recent results from causal inference have
shown that randomization results in a subsequent loss of infor-
mation about the UCs, which may impede treatment efficacy
if left uncontrolled in practice (Bareinboim, Forney, and Pearl
2015). Our paper presents a novel experimental design that
can be noninvasively layered atop past and future RCTs to not
only expose the presence of UCs in a system, but also reveal
patient- and practitioner-specific treatment effects in order to
improve decision-making. Applications are given to personal-
ized medicine, second opinions in diagnosis, and employing
offline results in online recommender systems.

1 Introduction
Randomized Clinical Trials (RCTs) are considered the gold-
standard for evidence generation throughout the empiri-
cal sciences; annually, the FDA alone spends billions of
dollars conducting thousands of RCTs to vet new drugs
and medical treatments (Giffin et al. 2010). RCTs are dis-
tinctly superior to observational studies in that the assigned
treatment is randomized, as opposed to allowing the ac-
tors (e.g., physicians, patients) to decide treatment them-
selves. This randomization provides control for confound-
ing bias (Pearl 2000, Ch. 6), which appears due to the ex-
istence of unobserved confounders (UCs) generating un-
controlled variations to the treatment and outcome. Ran-
domization of the treatment allocation constitutes one of
the pillars of modern experimental design (Fisher 1951;
Wainer 1989) and broadly, within the scientific method itself.

As recent results from causal inference have demon-
strated (Bareinboim, Forney, and Pearl 2015), the control
for UCs provided by RCTs may yield population-level treat-
ment outcomes, but comes with a cost: information about
individual- or unit-level patient and prescriber characteristics
is lost, and the treatment selection mechanisms that exist
in practice remain unmeasured. Such scenarios are moti-
vated by many instances of confounded decision-making
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from the medical domain (White 2005; Brookhart et al. 2010;
Cormack et al. 2018), in which “despite their attention to
evidence, studies repeatedly show marked variability in what
healthcare providers actually do in a given situation” (Stead,
Starmer, and McClellan 2008). In the case where this vari-
ability is due to UCs, better treatment policies than those
practiced may exist (Ruberg and Shen 2015).

The focus on more individualized treatment effects (ITEs)
has fallen under a variety of headings in the medical and
statistical sciences, including “personalized medicine” (Ham-
burg and Collins 2010), the “effect of treatment on the
treated (ETT)” (Pearl 2000; Pearl, Glymour, and Jewell
2016), and “c-specific effects” (Pearl 2017). Yet, for all
of these labels, the data sciences still lack an empirical
methodology for measuring ITEs without strong assump-
tions within the model, about the UCs, or about the treat-
ments. Closer attempts (Bareinboim, Forney, and Pearl 2015;
Forney, Pearl, and Bareinboim 2017) have come from the on-
line decision-making domain, in which counterfactual treat-
ment effects akin to the ETT are measured, but imply that
UCs have already evaded detection following an offline RCT.
Related work has examined ITEs and attempted to measure
counterfactual outcomes from observational data, but cru-
cially, assume the inexistence of UCs (Papangelou et al. 2018;
Shalit, Johansson, and Sontag 2016).

The present work takes a data-scientific perspective to
traditional empirical inquiry, acknowledging that the best
tools available to machine learning may yield analyses that
are only as rich as the data provided. As RCTs are likely to
remain the dominant tool for experimentation, the current
effort explores approaches that enhance, rather than replace,
their findings. Specifically, we make three primary contribu-
tions: (1) We begin by formalizing a causal interpretation for
the differing treatment policies of actors (e.g., prescribing
physicians) in confounded decision-making scenarios, called
heterogeneous-intent (HI). (2) We then introduce a new ex-
perimental procedure for the early detection of UCs and HIs
through a technique that can be layered atop a traditional,
offline RCT; moreover, this technique can be used to salvage
ITEs from existing RCT results. (3) Finally, we algorithmi-
tize an online recommender system that exploits the common
practice of second-opinions in diagnostics, and can employ
the results of (2) to maximize personalized treatment efficacy
with minimal learning and in the presence of UCs.
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2 Example: The Confounded Physicians
We begin with a motivating example depicting UCs in med-
ical decision-making. In this scenario, physicians regularly
prescribe one of two FDA-approved drugs to treat a certain
condition. Each of the drugs, denoted X ∈ {0, 1}, have
been shown to be equally effective at treating the condition
in a randomized clinical trial (RCT); specifically, for pa-
tient recovery Y ∈ {0, 1} where Y = 1 = y1 indicates
recovery, the study found a 70% recovery rate for each drug,
i.e., P (y1|do(x)) = 0.7 ∀ x ∈ X . In reviewing her own
patient records, one physician confirms this recovery rate,
noting that the recovery rates of each patient she has treated,
P (y1|x) = 0.7 ∀ x ∈ X , are also recovering at the experi-
mentally reported rates. However, consulting with a colleague
in her practice, she finds some discrepancy.

Supposing that patient populations between physicians are
exchangeable, we will consider only two of many such possi-
ble unobserved confounding factors that may affect both treat-
ment and recovery. The first is the patient’s socio-economic
status (SES), encoded as either low-SES (S = 0) or high-
SES (S = 1). A patient’s SES may be heuristically assessed
by the physician (for example, through anecdotal indica-
tors or appearance of the patient) and influence their treat-
ment based on differences between the short- or long-term
expenses of different therapies (Van Ryn and Burke 2000;
Haider et al. 2015). Consider also that SES may covary with
certain nutritional quality, such that higher SES patients may
have access to better or more diverse meals that interact with
the given treatments.

The second UC is the patient’s treatment request, which
can be influenced by Direct-to-Consumer Advertising
(DTCA) (Lyles 2002; Ventola 2011). In particular, a patient
may request a treatment (R = 1) or not (R = 0), which may
influence a physician’s decision if they decide to accommo-
date such requests. Consider also that an indirect pathway
may link the medication requested to certain recovery co-
variates; e.g., drugs advertised on a sports station will be
observed by patients who tend to get better exercise, and thus
have better cardiovascular health (which may then interact
with the treatments).

Recall that different physicians can have diverse treat-
ment policies. In particular, consider that more accommo-
dating physicians will attempt to honor their patients’ re-
quests for one medication over the other, but are also in-
fluenced by their perception of each patient’s SES. Physi-
cians of this “type” assign treatment by the structural equa-
tion, X ← fP1

X (S,R) = XOR(S,R). Now, suppose an-
other type of physician is aware of the influences of DTCA,
and consciously (though without record) refuses to let pa-
tient requests influence their decisions; as such, these physi-
cians’ treatments can be modeled by the structural equation
X ← fP2

X (S) = S.
Furthermore, from an omniscient viewpoint, we note that

there is an even patient distribution over SES and requesters
for each drug i.e., P (r, s) = 0.25 ∀ r ∈ R, s ∈ S. As such,
the true probabilities of recovery under each confounder state
are listed in Table 1(a); the FDA’s experimental study, and
the observations of the accommodating (P1) and stringent

Table 1: (a) Recovery rates as a function of drug choiceX , pa-
tient SES status S, and patient treatment requestR. (b) Recov-
ery rates according to the FDA experiment, P (y1|do(X)), the
observations of physicians 1 PP1(y1|X) and 2 PP2(y1|X).

(a) S = 0 S = 1

P (y1|X,S,R) R = 0 R = 1 R = 0 R = 1

X = 0 0.70 0.80 0.60 0.70
X = 1 0.90 0.70 0.70 0.50

(b) P (y1|do(X)) PP1(y1|X) PP2(y1|X)

X = 0 0.70 0.70 0.75
X = 1 0.70 0.70 0.60

physicians (P2), are shown in Table 1(b).
Scrutinizing this data, we see that the observational treat-

ment policy of physician P1 represents a case of invisible
confounding; viz., P (Y |do(X)) = PP1(Y |X) ∀ x, x′ ∈ X ,
yet there are indeed confounding factors present in the sys-
tem that the observational, experimental, and counterfactual
distributions over recovery do not reveal alone. The plight of
physician 2 is not entirely better; while the recovery rates as-
sociated with the ostensibly optimal drug X = 0 are superior
in two configurations of S,R, and it appears as though P2

receives more discriminant information about the UCs com-
pared to P1 (since P (Y |do(X)) 6= PP2(Y |X) ∀ x ∈ X)
we can see from Table 1(a) that there exist conditions under
which X = 1 is actually the optimal assignment choice.

This scenario highlights two important problems in the
domain of personalized medicine: (1) the influence of UCs
in the diagnostic system may not be revealed in the FDA’s
experimental trials, and can affect physicians in practice, and
(2) even in juxtaposing observational and experimental data
(Tab. 1(b)), UCs can still evade detection (see, for example,
P1 above). These two points assert the need for a mechanism
for reconciling differences in subjective physician treatment
policies and their outcomes.

3 Background
To address the problems posed in the previous section, we
begin by modeling confounded decision-making scenarios
using the language of Structural Causal Models (SCM) to dis-
tinguish the observational, experimental, and counterfactual
outcome distributions and articulate the notions of confound-
ing and intent.
Definition 3.1. (Structural Causal Model) (Pearl 2000, pp.
204-207) A Structural Causal Model is a 4-tuple, M =
〈U, V, F, P (u)〉 where: (1)U is a set of background variables
(also called exogenous), that are determined by factors out-
side the model. (2) V is a set {V1, V2, ..., Vn} of endogenous
variables that are determined by variables in the model, viz.
variables in U ∪V . (3) F is a set of functions {f1, f2, ..., fn}
such that each fi is a mapping from (the respective domains
of) ui ∪PAi to Vi where Ui ⊆ U and PAi ⊆ V \Vi and the
entire set F forms a mapping from U to V . In other words,
each fi in vi = fi(pai, ui), i = 1, ..., n assigns a value to Vi
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that depends on (the values of) a select set of variables. (4)
P (u) is a probability function defined over the domain of U .

A key assumption in a confounded decision-making
(CDM) scenario is that the deciding agents do not possess
the fully-specified SCM (i.e., the identities and states of all
unobserved variables and structural equations), but rather,
have a partially-specified model of causal assumptions. In
these settings, the key insight from (Bareinboim, Forney, and
Pearl 2015) was that, for every decision variable, actors could
condition on their “natural” treatment choice (i.e., the deci-
sion that they would have made reactively to the UCs, as
realized in the observational setting) as a context in which to
make a final choice. This observational treatment choice is
known as the actor’s intent.

Definition 3.2. (Intent) For all variables requiring an ac-
tor’s decision Πi ∈ Π in a SCM M , let the actor’s intended
choice IΠi,t = iΠi,t be the choice that the actor would make
observationally for unit t and the present unit’s configuration
of UCs Ut = ut. Formally, for parents of Πi, pa(Πi), let
IΠi,t = fΠi(pa(Πi)t, uΠi,t).

By choosing the treatment that maximizes the intent-
specific reward (i.e., recovery), actors could control for some
of the UC state that is otherwise summarized by an experi-
mental maximization criteria. Intent-specific reward quanti-
ties were shown to be counterfactual, corresponding to the
known counterfactual Effect of the Treatment on the Treated
(ETT), of the format P (Yx|x′). The new maximization cri-
teria for actors in CDM scenarios was deemed the Regret
Decision Criteria.

Definition 3.3. (Regret Decision Criteria (RDC)) (Barein-
boim, Forney, and Pearl 2015) The Regret Decision Criteria
states that an agent’s intended action I = i ∈ X serves as
evidential context for the state of its environment, in which it
may then interventionally act. RDC agents thus maximize the
reward Y from a counterfactual perspective, such that the
optimal action x∗ ∈ X , conditioned on the intended action
x′, is defined as: x∗ = argmaxx∈X P (Yx|x′)

RDC is a counterfactual optimization criteria because the
intended action x′ and executed action x need not be equiv-
alent, but was shown to be empirically estimable. The pur-
pose of RDC was to minimize the lost rewards in a CDM
setting as a function of each trial’s UCs Ut = ut without
knowing the identity nor state of U . RDC was shown to be
produce superior policies compared to traditional, experi-
mental techniques, by which the optimal action is defined as
x∗ = argmaxx∈X P (Yx).

The present work seeks to take the contributions of RDC
in the online CDM domain and make several extensions: (1)
Note that the above definitions rest upon the assumption that
all actors’ intent-generating functions are equivalent; in the
following section, we relax this assumption to generalize
to problems like those faced by the Confounded Physicians.
Using this new formalism, we (2) show how RDC’s procedure
in the online decision-making domain can be generalized to
offline experimental design, and finally, (3) how (2) can be
used to the benefit of online decision-making.

4 Heterogeneous Intent
Returning to the Confounded Physicians example, suppose
each physician collects data on their intent-specific recov-
ery rates of each drug (results displayed in Table 2); this
procedure simply requires they acknowledge their intended
treatment choice, and then sample the available treatments
under that context. Perhaps surprisingly, the intent-specific
recovery rates of P1 appear to be no different than the ob-
servational and experimental recovery rates for each drug.
Maximizing via RDC, the expected recovery rate of P1’s
patients will be 70%, and a marginally better 72.5% for P2.

Table 2: Results P (Yx = 1|x′) of RDC dynamic experiments
conducted by physicians P1 and P2.

x′P1 = 0 x′P1 = 1 x′P2 = 0 x′P2 = 1

x = 0 0.70 0.70 0.75 0.65

x = 1 0.70 0.70 0.80 0.60

The physicians face a perplexing situation in which the
results of P1’s RDC experiment suggest that no confounding
exists, yet P2’s seems to suggest that there does. They ponder
which is the correct interpretation, and more importantly, how
they may improve the recovery rates of their patients. The
first insight towards addressing this goal is to acknowledge
that P1 and P2 possess heterogeneous intents for treatment,
as defined below.

Definition 4.1. (Heterogeneous Intents (HI)) Let A1 and
A2 be two actors within a CDM instance, and MA1 be the
SCM associated with the choice policies of A1 and likewise
MA2 be the SCM associated with the choice policies of A2.
For any decision variable X ∈ ΠM and its associated intent
I = fx, the actors are said to have heterogeneous intent if
fA1

I ∈ FMA1 and fA2

I ∈ FMA2 are distinct, viz., if fA1

I 6=
fA2

I .

Acknowledging that actors in the system may experience
HI for the same treatment choice allows us to expand an
SCM to account for multiple intent functions that, if sensitive
to the UCs in even slightly different ways, can improve the
accuracy of the learned parameters compared to the true
reward distribution. By assumption, the learning agent does
not possess the fully-specified model of the task, and as such,
will never be able to explicitly estimate P (U |IA1 , ..., IAa).
That said, the benefits of conditioning on HIs are tangible in
the HI specific reward distribution alone.

In the Confounded Physician scenario, consider the recov-
ery rates associated with each drug in the context of each
physicians’ intent configuration. Although an extreme case,
Tab. 3 shows that we have not only recovered the “true” re-
ward distribution without ever knowing the identities of U ,
but also, knowing the intents of each IEC in concert, can
obtain a superior average recovery rate (77.5%) that is higher
than either physician’s RDC maximization alone (70.0% and
72.5% for P1 and P2, respectively, Tab. 2).

The merit of combining intended treatments from differ-
ent practitioners is not foreign to medicine; both patient-
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Table 3: Recovery rates P (Yx = 1|IP1 , IP2) for each drug
given the intents of physicians P1 and P2. Optimal treatments
are indicated by asterisks (*).

IP1 = 0 IP1 = 1
IP2 = 0 IP2 = 1 IP2 = 0 IP2 = 1

X = 0 0.70 ∗0.70 ∗0.80 0.60
X = 1 ∗0.90 0.50 0.70 ∗0.70

and practitioner-requested “second opinions” are common-
place and influential in the treatment process, and have
been the subjects of recent studies (Vashitz et al. 2012;
Meyer, Singh, and Graber 2015). The novel focus of this
work is to study these concerted opinions at a more systemic
level, and then determine if and how physicians with HI may
aid the diagnostic process at a smaller scale. To do so, we
aggregate the individual actors’ SCMs into one that models
them together.
Definition 4.2. (HI Structural Causal Model (HI-SCM)) A
Heterogeneous Intent Structural Causal Model (HI-SCM)
MA is an SCM that combines the individual SCMs of actors
A = {A1, A2, ..., Aa} such that each decision variable in
MA is a function of each actors’ individual intents.

The utility of an HI-SCM can be seen in the distinction be-
tween a learning agent (i.e., an intelligent system attempting
to maximize treatment efficacy) and an actor (i.e., a decision-
maker like a physician) in a CDM task; the agent’s objective
is to use its available data to recommend the best treatment
to the deciding actors. Fig. 1 depicts an agent’s prototypical
HI-SCM; to reinforce the value of these models, consider
the scenario wherein IP1 = 0, IP2 = 0. Consulting the HI
recovery rates under this condition, an agent using an HI-
SCM could suggest treatment X = 1 with expected recovery
rate of 90% (Tab. 3), compared to the individual actors’ 70%
(P1) and 80% (P2) intent-specific recoveries (Tab. 2), and the
FDA experiment’s 70% recoveries (Tab. 1(b)).

Yet, the Confounded Physicians scenario exemplifies a
fortunate case in which the actors’ combined intents yields
fruitful information about the state of the UCs compared to
either intent alone. In general, it would be naı̈ve to assume
that every actor contributes new knowledge to the system,
and instead, a recommender agent can attempt to filter those
that do not. Towards this end, consider that actors with ho-
mogeneous intent (i.e., that have the same intent structural
equations), provide equivalent information about the state
of the UCs. Namely, consider two actors with equivalent in-
tent functions in our prototypical HI-SCM (Fig. 1), and their
implications for intent-specific treatment outcomes:

fA1

I (U) = fA2

I (U)⇒ P (U, IA1) = P (U, IA2)

⇒ P (Yx|IA1) = P (Yx|IA2)

= P (Yx|IA1 , IA2)

As a consequence, the intents of “like” actors can be clus-
tered, and thus the dimensionality of the conditioning set is
reduced. To do so, we define the notion of an Intent Equiva-
lence Class for actors with the same intent functions:

Figure 1: Graphical model of a prototypical HI-SCM MA

for a recommender agent viewing unit t, actor intents Iat ,
decision variable Xt, outcome Yt, unobserved confounders
Ut, and agent history Ht.

Definition 4.3. (Intent Equivalence Class (IEC)) In a HI-
SCM MA, we say that any two actors Ai 6= Aj belong to
separate intent equivalence classes Φ = {φ1, φ2, ..., φm} of
intent functions fI if fAiI 6= f

Aj
I .

The intents IAk , IAp of two actors Ak 6= Ap in the same
IEC, φr = {Ak, Ap, ...}, are thus exchangeable, and can
be instead summarized by annotating with their IEC, φr;
e.g., in our prototypical HI-SCM, we can represent IEC-
specific treatment outcomes for two actors in the same IEC
as follows: φ1 = {A1, A2} ⇒ P (Yx|IA1) = P (Yx|IA2) =
P (Yx|IA1 , IA2) = P (Yx|Iφ1).

Using IECs to cluster equivalent actors reduces sampling
requirements for each HI combination, but the primary ben-
efit of considering separate IECs in concert is the ability to
form superior treatment policies. Just as (Bareinboim, Forney,
and Pearl 2015; Forney, Pearl, and Bareinboim 2017) demon-
strated that intent-specific treatment maximizations would al-
ways be superior to experimental, we show that IEC-specific
maximizations are superior to each actors’ individually.
Theorem 4.1 (IEC-Specific Reward Superiority). LetX be a
decision variable in a HI-SCM MA with measured outcome
Y , and let Iφi and Iφj be the heterogeneous intents of two
distinct IECs φi, φj in the set of all IECs in the system, Φ.
Maximized HI-specific rewards will always be at least as high
as homogeneous, namely:

max
x∈X

P (Yx|Iφi) ≤ max
x∈X

P (Yx|Iφi , Iφj ) ∀φi, φj ∈ Φ

See appendix for proof.
Thm. 4.1 thus provides a new maximization target for

treatment selection in CDM scenarios, which extends RDC:
Definition 4.4. (HI Regret Decision Criteria (HI-RDC)) In
a CDM scenario modeled by an HI-SCM MA with treatment
X , outcome Y , actor intended treatments IAi , and set of
actor IECs Φ = {φ1, ..., φm}, the optimal treatment x∗ ∈ X
is the one that maximizes the IEC-specific treatment outcome,
or formally: x∗ = argmaxx∈X P (Yx|Iφ1 , ..., Iφm)

Vitally, HI-RDC relies on knowing the IECs to which ac-
tors belong, which (by Def. 4.3) requires knowledge of each
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actors’ intent functions. In practice, however, these functions
are not known by recommender agents a priori, nor will the
actors in the presence of UCs (i.e., when influencing fac-
tors are unknown even to them). As such, agents require an
empirical means of clustering actors into IECs that befits
application of HI-RDC in pursuit of maximizing treatment
efficacy. Because intents are observational in nature, they can
likewise be observationally sampled over a number of units,
and then grouped according to the following criteria:

Theorem 4.2 (Empirical IEC Clustering Criteria). Let
Ai, Aj be two actors modeled by a HI-SCM, and IAi , IAj
their intents for some decision. Actors Ai, Aj are clustered
into the same IEC, {Ai, Aj} ∈ φr, whenever their intended
actions over the same units correlate, as their intent-specific
treatment outcomes will agree. Formally:

ρ(IAi , IAj ) = 1⇒ {Ai, Aj} ∈ φr ∈ Φ

⇒ P (Yx|IAi) = P (Yx|IAi , IAj )

See appendix for proof.

The requirement of Thm. 4.2 that actor intents perfectly
correlate for admission into the same IEC is done to sup-
port the theoretical development of HI-RDC, but is typically
too stringent for application; in a future section, we demon-
strate that this criteria can be softened according to some
agent-defined tolerance to account for actor-specific noise.
Because Thm. 4.2 shifts the actor IEC clustering from a func-
tional comparison to an empirically sampled one, we require
strategies for collecting and then exploiting these samples.

The new treatment-efficacy maximization target provided
by HI-RDC (Def. 4.4), coupled with the Empirical IEC Clus-
tering Criteria (Thm. 4.2) can be applied in a similar fashion
to online recommender systems as originally presented by
(Bareinboim, Forney, and Pearl 2015). However, there are
two problems with leaping directly into the online domain:
(1) in the absence of any prior knowledge about the actors
the agent would be advising, the ethics of exploratory recom-
mendations (i.e., treatment suggestions that are intended to
adequately sample IECs and HI-specific treatment effects)
are somewhat dubious, and may take time to converge to the
optimal treatment policy; and (2) if UCs are indeed present
in the system (at which point HI-RDC becomes applicable
to deconfound in the online domain), and the confounded
treatments have already undergone experimental vetting, this
implies that they were approved for use without knowledge
of possible confounding.

Motivated by these problems, we next detail techniques in
both offline and online experimental design that can detect
the influence of UCs with simple additions to the traditional
RCT procedure, and then use the enriched data that results to
inform an online recommender system.

HI-Randomized Clinical Trials
Consider now an RCT in a CDM scenario modeled by a HI-
SCM. For a single participant (or unit) t and randomized treat-
ment Xt, this means that all observational causal influences
of treatment assignment are severed, as by the do(Xt = xt)
operation, and the influence of any UCs summarized across

Figure 2: Depiction of an HI-RCT, with (left) the traditional
RCT procedure, and (right) the additional HI collection lay-
ered on top.

experimental conditions. Assuming that individuals in the
experimental population are representative of those treated
in practice, any physician’s intended treatments for each par-
ticipant in the RCT can be compared to the treatment that
was randomly assigned. Before examining the merit of this
comparison, we define this procedure as a HI-RCT:

Definition 4.5. (HI Randomized Clinical Trial (HI-RCT))
Let X be the treatment of a Randomized Clinical Trial (RCT)
in which all participants are randomly assigned to some
experimental condition via intervention do(X = x) with
measured outcome Y . Furthermore, let Φ = {φ1, ..., φm} be
the set of all IECs for actors in the HI-SCM MA for which
the RCT is meant to apply. A Heterogeneous Intent RCT (HI-
RCT) is an RCT wherein treatments are randomly assigned
to each participant, but in addition, the intended treatments
IΦ of sampled actors are collected for each participant.

Fig. 2 depicts the HI-RCT procedure, and demonstrates
how the added component of actors’ HI collection (right) re-
quires no changes to the traditional RCT procedure (left). In
the standard RCT paradigm, (1) a participant’s pre-treatment
demographics, health history, and other relevant factors are
collected, after which (2) they are randomly assigned to some
experimental condition, and (3) the results of that treatment
by some dependent measure (e.g., recovery) are observed.
In the enhanced HI-RCT paradigm, (1) a participant’s pre-
treatment data is shared with actors who would typically as-
sign treatment (e.g., prescribing physicians), (2) those actors
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provide their intended1 treatment for this participant which,
crucially, may be different from that which was randomly
assigned, and (3) the results of the randomly assigned treat-
ment can be compared in meaningful ways to those intended
by practitioners, yielding the following data:

(1) Actor IECs (Φ), by examining ρ(Ai, Aj) between ac-
tors Ai, Aj , IECs can be determined using Thm. 4.2. (2)
Experimental Treatment Effects (Yx), the interventional data
recorded in a traditional RCT, ignoring actor HIs, which is
useful for predicting population-level treatment effects. (3)
Observational Treatment Effects (Yx|IAi , x = IAi), when
the intent of an actor matches the randomly assigned treat-
ment, which can be used to predict the influence of UCs
on treatment efficacy if left uncontrolled. (4) Counterfac-
tual Treatment Effects (Yx|IAi , x 6= IAi), when the intent
of an actor disagrees with the randomly assigned treatment,
which can be used to identify actors with superior / inferior
treatment policies and detect UCs. (5) HI-Specific Treatment
Effects (Yx|Iφ1 , ..., Iφm), when multiple IECs exist in the
system, HI-specific treatment effects can be determined.

Apart from the individual utility of each of the datasets
mentioned above, a new comparative criteria emerges that
can detect confounding beyond the traditional juxtaposition
of observational and experimental data:
Theorem 4.3. (HI-RCT Confounding Criteria) In a CDM
scenario modeled by an HI-SCM MA with treatment X ,
outcome Y , actor intended treatments IAi , and set of actor
IECs Φ = {φ1, ..., φm}, there exists some unobserved2 U
such that X ← U → Y whenever ∃ x ∈ X, iΦ ∈ IΦ :
P (Yx) 6= P (Yx|iΦ). See appendix for proof.

Note that the traditional test for confounding, P (Y |X) 6=
P (Y |do(X)) (Pearl 2000, Ch. 3), is subsumed by Thm. 4.3
since P (Y |x) = P (Yx|x′) ∀x = x′. However, in the Con-
founded Physicians scenario, the traditional test fails from the
perspective of P1, who may have misled agents to conclude
no confounding; a comparison of Tabs. 1(b) and 3, however,
reveals the presence of UCs.

HI-Online Recommender Systems
If an offline, HI-RCT study detects the presence of UCs in
treatment selection, we now examine how a recommender
agent can attempt to repair for their harmful influence in
the online setting. Returning to the Confounded Physicians
example, suppose an HI-RCT has revealed confounding for
the treatments under consideration by P1, P2; since the UCs
cannot be directly controlled for (as they are latent), the pre-
scription of HI-RDC (Def. 4.4) is to learn the IECs for actors
in the practice, and then consult their intents for each patient
to maximize the chance of recovery. This task is known in the
reinforcement learning community as the Multi-armed Ban-
dit (MAB) problem, and specific to the confounded decision-
making domain, a MAB problem with UCs (MABUC):

1The actors do not know the intents of other actors, nor the
randomly assigned treatment or outcome. HIs can be collected
before or after execution of the RCT component if these assumptions
are met since intent is a pre-treatment variable, I = Ix.

2Assuming that any observed confounders have been controlled
for (see back-door criterion, (Pearl 2000, Ch. 3)).

Definition 4.6. (Multi-armed Bandits with Unobserved
Confounders (MABUC)) (Bareinboim, Forney, and Pearl
2015) A MABUC problem is characterized as a sequential de-
cision problem over T trials / units, in which a learning agent
attempts to maximize rewards Y through choice between k
treatments (or arms) x ∈ {x1, ..., xk} as decided by the
agent’s policy Π, history H , and UC state of advised actors
U . A metric of the agent’s success in a MABUC problem is
its cumulative u-regret, namely, the difference (over all trials)
between the optimal arm x∗(ut) under that trial’s configura-
tion of UCs ut, and the arm chosen by the agent according
to Π, xt, or formally: Ru =

∑T
t=1 P (yx∗(ut)|ut)− yxπt

In a MABUC in which actors experience HI, the task is
slightly complicated and decomposes into two learning prob-
lems: (1) learning the IECs of actors in the system, and (2)
learning the optimal treatment in any UC context, using the
actors’ intents as proxies for the UC state. Suppose the online
agent had access to the results of an HI-RCT in the same
domain, which had revealed a diverse, but possibly inexhaus-
tive, set of IECs Φoff . In the case where the IECs of the
actors in the online setting are a subset of those in the offline,
viz. Φon ⊆ Φoff , the agent need only answer problem (1);
if a mapping from Φon → Φoff can be established, the opti-
mal treatment is immediately available via HI-RDC from the
HI-RCT’s data (assuming, as is typically the case for FDA
experiments, the HI-RCT has sufficient power to reveal these
effects). In the case where this mapping does not exist (i.e.,
Φon 6⊆ Φoff ), it is still possible to use the HI-RCT data to
accelerate learning in the online domain.

To investigate the relationship between Φoff ,Φon, actors
in the online setting can be subjected to a calibration unit
set, a small questionnaire composed of participant data from
the HI-RCT on which they are then asked to provide their
intended treatment. By undergoing this calibration, actor
IECs can be learned before the agent is required to make
recommendations for live patients, and in the case where
the online actors’ intents correspond to any of the HI-RCT
actors’ intents, a mapping between Φon → Φoff can be
made. That said, units chosen from the HI-RCT to compose
the calibration set are not best chosen randomly, but can be
heuristically selected to improve discriminance over IECs.
Definition 4.7. (Actor Calibration-Set Heuristic) Selection
of some n > 0 calibration units from an offline HI-RCT
datasetD can be used to learn the IECs of agents in an online
domain before commencing recommendation. Selection can
be guided by three heuristic scores h(t) = hc(t) + hd(t) +
ho(t) for the quality of each unit t in the HI-RCT dataset:

1. Consistency: how consistent actors of the same IEC φr =
{A1, ..., Ai} intended to treat a unit,
hc(t) = (#IAt ∈ φr agreeing with majority)/|φr|

2. Diversity: how often a configuration of IΦ has been chosen,
favoring a diverse set of IEC intent combinations,
hd(t) = 1/(# of times IΦ appears in calibration set)

3. Optimism: a bias towards choosing units in which the ran-
domly assigned treatment xt was optimal and succeeded,
or suboptimal and failed, ho(t) =
1(P (Yxt |IΦ

t ) > P (Yx′ |IΦ
t ) ∀ x′ ∈ X \ xt)1(Yt = 1) +

1(P (Yxt |IΦ
t ) < P (Yx′ |IΦ

t ) ∃ x′ ∈ X \ xt)1(Yt = 0)
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Algorithm 1 HI-RDC-RCT agent, parameterized by HI-RCT
data D, number of samples in the calibration set n, and IEC
clustering tolerance τ such that Thm. 4.2 allows for noisy
correlation between IEC actor intents, ρ(IAi , IAj ) ≥ 1− τ .

1: procedure HI-RDC-RCT-INIT(D, n, τ )
2: calSet← h(D, n, τ) . (Def. 4.7)
3: H ← calSet . Agent history gets calSet IA, X, Y
4: procedure HI-RDC-RCT-RECOMMEND(t, n, τ )
5: iAt ← fIA(ut) . Unit’s actor intents from UCs
6: Φ← IECs(IAt , H, τ) . IEC clustering (Thm. 4.2)
7: xt ← π(H, IAt ,Φ) . Policy selects arm (Def. 4.4)
8: yt ← fY (ut, xt) . Observe outcome
9: H ← {iAt , xt, yt} . Update history

The calibration set is thus composed:
h(D, n) = {t ∈ D : n highest h(t)}

In the CDM domain, Def. 4.7 serves as a curator for this
initial questionnaire, with scores (1, 2) ensuring adequate
discriminance to detect a new actor’s IEC, and score (3)
leveraging knowledge about IEC-optimal treatments gathered
from the HI-RCT.3

5 Experimental Results
To validate the efficacy of the methodologies detailed in the
previous sections, we first simulated an offline HI-RCT and
then used the resulting data to inform an online HI-RDC
agent in a HI-MABUC setting.4

HI-RCT Simulation. The Confounded Physicians sce-
nario was simulated by pairing the intents of 3 actors belong-
ing to one of two IECs Φ = {φ1, φ2} corresponding to noisy
versions of the lenient and stringent physicians in Section
2 (the same structural equations as physicians P1, P2, but
with 4% error to simulate random noise in human decision-
making).5 To demonstrate ideal conditions with large datasets
(akin to an FDA RCT), the sample was comprised of 10, 000
units D = {t ∈ [1, 10, 000] : IAt , Xt, Yt}. IEC clusters were
correctly established using Thm. 4.2 with tolerance τ = 0.1.

HI-RDC Simulation. With the results of the HI-RCT in
hand, we next examined online recommender agents in the
MABUC domain within the same Confounded Physicians
scenario. The simulations consisted of N = 1000 Monte
Carlo (MC) repetitions each composed of T = 10, 000 units
/ trials. At each trial, the state of the UCs was sampled ut ∼
P (U), the intents of 10 actors belonging to the same two
IECs as in the HI-RCT were instantiated iAt ← fIA(ut), the
agent’s policy π selects an arm xt, and an outcome yt to that
choice is observed. After all MC repetitions were completed,
the average, cumulative u-regret (Def. 4.6) was assessed as a
metric for each agent’s performance.

3These scores assume the offline and online populations are ex-
changeable, as can be formalized via definitions of transportability.

4Simulation source code available at:
https://github.com/Forns/hi-mabuc-aaai19

5To account for this noise, HI-RDC agents selected a trial’s IEC
intent by plurality vote of individual actors in each IEC, though
future study can be invested in more sophisticated approaches.

Figure 3: Comparison of agents in Confounded Physicians
problem: cumulative u-regret as a function of trial t.

Agent Policies. To make fair comparisons to the results
of (Bareinboim, Forney, and Pearl 2015; Forney, Pearl, and
Bareinboim 2017) in the MABUC domain, all compared
agents explore and exploit treatments using the Thompson
Sampling procedure (Ortega and Braun 2014). Performance
(Fig. 3) was compared between the following agents (from
worst to best performance):

1. HI-RDC-A, maximized HI-specific rewards as an actor-
intent RDC agent but without attempting to cluster actors
by their IEC (thus, no calibration from an HI-RCT).

2. HI-RDC-L, maximized HI-specific rewards as an IEC-
intent HI-RDC agent by learning actor IECs (but without
calibration from an HI-RCT).

3. HI-RDC-RCT-R, maximized HI-specific rewards as an HI-
RDC agent by clustering actors into IECs; this agent also
started with a calibration set of size n = 20, but where
datum in the calibration set were chosen at random from
the simulated HI-RCT.

4. HI-RDC-RCT-H, same as (3) but with calibration sam-
ples chosen by Def. 4.7 (agent described in Alg. 1 w/
calibration set size of n = 20).

5. Oracle, a contextual bandit learner (Langford and Zhang
2008) that (unfairly) treats the state of the UCs as ob-
served factors at each trial and treats them as a context (no
calibration from an HI-RCT).

6. Oracle w/ Calibration, same as (4) but with a curated
calibration set (Def. 4.7) of size n = 20 in which the
values of all UCs are also known in each sample.

Note: the oracles are not realizable agents as they rely on
observations about the unobserved; they are intended as yard-
sticks against which to compare the other agents.

Results. HI-RDC-RCT-H significantly outperforms its
competitors on metrics of u-regret. In general, HI-RDC may
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only partially recover the state of the UCs, in which case
sublinear u-regret is not possible. That said, between each
non-Oracle agent, noteworthy comparisons demonstrate the
benefit of clustering actors into IECs (significant difference
in u-regret between HI-RDC-A (M = 153.52, SD = 49.48)
vs. HI-RDC-L (M = 68.13, SD = 69.27), t(1998) =
31.71, p < .001), and merit of calibration set selection heuris-
tics over random selection (significant difference in u-regret
between HI-RDC-RCT-R (M = 67.28, SD = 68.26) vs.
HI-RDC-RCT-H (M = 46.78, SD = 52.94), t(1998) =
7.50, p < .001).

6 Conclusion
The historical reliance on RCTs as the chief means of scien-
tific inquiry suggests that there are rich opportunities to use
the formalization of heterogeneous intent (HI) in order to ex-
pand their findings; not only do HI-RCTs mingle the findings
of observational and experimental studies, but provide new,
counterfactual and HI-specific outcomes that can be used
to improve personalized diagnostic and treatment policies.
While HI-RCTs are useful for detecting previously invisible
UCs, we detail a new online recommender agent (employing
HI-RDC) to correct for the influence of UCs already manifest
in practice. This new agent serves as a “driver-assist” for
treatment selection, can benefit from the commonplace prac-
tice of diagnostic second-opinions, and can use the results of
an HI-RCT to minimize learning.
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