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Abstract
This article deals with strategic voting under incomplete in-
formation. We propose a descriptive model, inspired by po-
litical elections, where the information about the vote inten-
tions of the electorate comes from public opinion polls and a
social network, modeled as a graph over the voters. The vot-
ers are assumed to be confident in the poll and they update
the communicated results with the information they get from
their relatives in the social network. We consider an iterative
voting model based on this behavior and study the associated
“poll-confident” dynamics. In this context, we ask the ques-
tion of manipulation by the polling institute.

Introduction
Strategic voting occurs in many scenarios, principally in po-
litical elections. Voters may manipulate, by not revealing
their true preferences in the ballot they submit, in order to
avoid an unfortunate outcome. Although one would desire
to prevent this behavior, no voting rule is immune to voter
manipulation (Gibbard 1973; Satterthwaite 1975), leading
to consider other ways to grasp strategic voting, via for in-
stance game-theoretical analysis. Manipulation in voting is
commonly modeled as a strategic game where the players
are voters, assumed to be rational, who look for the appropri-
ate ballot to obtain the best possible outcome in the election,
according to their preferences. Iterative voting (Meir 2017)
is an iterated version of this game where the voters deviate
by rounds. The deviations can be interpreted as the responses
to a succession of polls, or as the description of changes in
voting intentions considering tactical voting strategies.

The players are traditionally assumed to know all the oth-
ers’ vote. However, this assumption appears highly unrealis-
tic, especially for political elections where the set of voters is
actually very large. From this observation, an important lit-
erature begins to develop in order to face with uncertainty in
voting. Several approaches can be enumerated: the Bayesian
approach assuming that the voters think in terms of proba-
bilities over the possible voting profiles (Myerson and We-
ber 1993; Hazon et al. 2008), the knowledge-based approach
via modal logic frameworks (Chopra, Pacuit, and Parikh
2004; Van Ditmarsch, Lang, and Saffidine 2012), the local-
dominance approach with uncertainty thresholds (Meir, Lev,
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and Rosenschein 2014; Meir 2015), the information func-
tion approach which assumes that only a given type of infor-
mation is communicated to the voters (Endriss et al. 2016;
Reijngoud and Endriss 2012), or the partial orders approach
where the voters consider a set of possible profiles ac-
cording to partial votes (Conitzer, Walsh, and Xia 2011;
Dey, Misra, and Narahari 2016). The most part of these
works considers a risk-averse behavior, in the sense that the
voters manipulate if they are sure that their deviation does
not produce a worse outcome. Even if it appears as a ratio-
nal behavior, it does not really capture the behavior of real
voters who might actually manipulate even if they are not
guaranteed to obtain at least a better outcome in any case.

We argue that the voters adopt an elementary behavior re-
garding the information they dispose of. Inspired by political
elections, we assume that the voters have two sources of in-
formation: the public opinion polls and the social networks.
Opinion polls punctuate the election campaign in many
countries, and represent an important part of the election
process. Many studies aim at understanding how they af-
fect voting (Brams 1982; Forsythe et al. 1993; Fredén 2017).
Concerning social networks (Easley and Kleinberg 2010;
Jackson 2008), they occupy an increasingly important place
in our lives. For a particular citizen, they constitute a tool
to have an idea of the population opinions, even if this
vision can be biased. The social networks are a natural
channel for acquiring information in context of uncertainty
in voting (Chopra, Pacuit, and Parikh 2004; Clough 2007;
Sina et al. 2015; Tsang and Larson 2016).

In a context where the polls offer a large part of the in-
formation available to the voters, a natural question is: what
happens if the polling institute does not say the truth about
the scores of the candidates? In fact, can the polling insti-
tute manipulate the election? This question is related to the
problem of election control (Faliszewski and Rothe 2016),
i.e., how an external agent can influence and manipulate the
election. While usually this agent manipulates by adding /
deleting candidates or votes, or even links of a social net-
work (Sina et al. 2015), we suppose that the polling institute
may lie during the communication of the results.

We investigate an iterative voting model where the vot-
ers trust the results of an opinion poll and have all the same
prior assumption about the distribution of the votes, which
is given by the poll. The voters update this belief about the
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vote intentions of the society by observing the strategic de-
viations of their relatives in the social network. The strategic
behavior of voters is then conditioned by personal pivotal
thresholds modeling their willingness to deviate and how
strong is their belief, in a same way as non-myopic voters
(Obraztsova et al. 2016), or as in local-dominance (Meir,
Lev, and Rosenschein 2014). All these parameters enable to
define a new best-response dynamics, called poll-confident.
Two configurations are investigated: a local dynamics with
one initial poll, and a global dynamics where the results of
several polls are announced along the election. Convergence
results are provided, stating that local dynamics are guaran-
teed to converge for some classes of graphs representing the
social network. However, in general, it is computationally
hard to recognize convergent instances for both dynamics.
Experiments are given for testing the practical convergence
of the dynamics and the quality of their outcomes. Then, we
study the computational complexity of manipulation from
the polling institute, proving that it is hard even for simple
graphs. Beyond the general hardness of the problem, we pro-
vide simple heuristics that are efficient in practice.

We present in the first section our model and the poll-
confident dynamics in their local and global version. Then
we analyze their convergence, before finally investigating
the manipulation from the polling institute.

Poll-Confident Iterative Voting Model
Notations
Let N = {1, . . . , n} be a set of n agents (or voters), and
M = {x1, . . . , xm} a set of m candidates. Each voter i has
a strict preference order �i over M . The whole preference
profile is denoted by �= (�1, . . . ,�n). A voting rule com-
putes the winner of the election. We consider single-winner
elections and use, in case of ties, a deterministic tie-breaking
rule, based on a linear order B over the candidates.

We focus on the Plurality rule, and we denote Plurality
associated with B by f . Plurality corresponds to a mapping
f : Mn → M , where each voter is asked to submit a ballot
bi ∈ M , meant to represent her preferred candidate. Given
a profile of ballots b ∈ Mn, the score of each candidate
x under Plurality is given by sb(x) = |{i ∈ N : bi =
x}|. The winner of Plurality in voting profile b maximizes
score sb, i.e., f(b) ∈ arg maxx∈M sb(x). By simplicity, we
sometimes write f(s) to designate the Plurality winner of a
voting profile having s as a vector of scores.

We consider a strategic game where at each step, a single
voter can change her vote if she thinks that she will be better
off with this new strategy. The strategy profile at step t is
denoted by bt. If different voters can deviate at the same
step t, the deviator is arbitrarily chosen among them, unless
we specify a particular turn function τ as part of the instance.

An opinion poll is undertaken from the initial voting pro-
file b0, where the voters are assumed to give their real pref-
erences (the agents do not have enough information to ma-
nipulate yet), i.e., b0 is truthful. The result ∆0 of this initial
poll is communicated to the agents, via a vector of scores
describing the Plurality score of each candidate.

Though the agents are aware of the initial poll, they do

not know all the deviations of the agents. We suppose that
the agents are embedded into a social network G = (N,E),
which is a directed graph over the agents. We denote by
G[N ′] the subgraph induced by N ′ ⊆ N . We always care
about the direction in the graph: a complete graph contains
all the arcs, a clique refers to a complete subgraph, and a
cycle to a closed directed path. The graph is transitive if
the binary relation over N represented by E is transitive.
An arc (i, j) ∈ E means that agent i can observe the bal-
lot of agent j at any time. We denote by Γ(i) the set of
agents that agent i can observe, i.e., Γ(i) = {j ∈ N :
(i, j) ∈ E} ∪ {i}. For a voting profile b, the score of
candidate x that agent i is able to observe is denoted by
sib(x) = |{j ∈ Γ(i) : bj = x}|. An instance of the game is
a tuple I = (N,M,�,b0, G, {pi}i∈N ), where {pi}i∈N are
integer thresholds defining the strategic type of the voters.

Poll-confident dynamics
The voters have two sources of information about the current
scores: the results of the initial poll and the current votes of
their relatives, i.e., their direct successors in the network.
The question is how they aggregate these informations. We
assume that the voters base their belief on the results of the
poll, updated with the votes of their relatives. The strength
of this belief is conditioned by personal pivotal thresholds.

In fact, each voter has her own belief about the score of
the candidates. We denote by Bti : M → N the believed
score function of agent i at the tth step of the game. Initially,
B0
i = ∆0 for all voters i since the voters trust the poll. We

may see Bti and ∆0 as m-tuples where the jth coordinate
represents the believed and the announced score of candidate
xj , respectively. At a step t of the game, the believed score
function of the agents is updated only if a relative deviates.
Definition 1 (Score Belief Update). The update of the be-
lieved score function of agent i at step t+ 1, after the devia-
tion of an agent j from candidate x to candidate y at step t
is given by Bt+1

i := Bti ⊗ (j, x, y), where

[Bti ⊗ (j, x, y)](z) =


Bti (z)− 1 if z = x and j ∈ Γ(i)

Bti (z) + 1 if z = y and j ∈ Γ(i)

Bti (z) otherwise

Note that for any voter i and any step t, Bti = ∆0 if
Γ(i) = {i} and i did not deviate, andBti = sbt if Γ(i) = N .

We define a best response for agent i at step t, w.r.t. her
belief and her strategic behavior. A pivotal threshold pi is
associated with each voter i; we denote it by p when pi is
the same for all the voters. The pivotal threshold of a voter
represents her willingness to deviate to a new strategy on the
basis of her belief about the scores. This can measure how
much the voters are uncertain about their belief or represent
the threshold from which they think that their vote is piv-
otal and matters in the election, notably by influencing the
other votes. It also enables to model “sincere” voters, averse
to manipulation. This threshold defines for each voter i a set
of potential winners at step t, denoted by PW t

i , representing
the candidates that are still able to win the election, accord-
ing to voter i. The believed winner of agent i at step t w.r.t.
Bti is denoted by ωti . We denote by Bt,\ii the believed score
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function of voter i at step t where the current vote of agent i
is not taken into account, and by ωt,\ii its associated winner.
Definition 2 (Potential winner). A candidate x belongs to
PW t

i for voter i at step t if, without considering the current
vote of i, at most pi votes are necessary to x for winning the
election, i.e., Bt,\ii (ω

t,\i
i )−Bt,\ii (x) + 1{ωt,\i

i Bx} ≤ pi.
A best response at step t for voter i is defined as the candi-

date that i prefers among the potential winners PW t
i \{ωti}.

Definition 3 (Best response). A ballot approving candidate
y is a best response for voter i at step t if y ∈ PW t

i \ {ωti}
and for all x ∈ PW t

i such that x 6= y, y �i x.
A strategy profile is a ∆0-equilibrium iff for every agent

there is no best response or the best response corresponds to
her current vote. Observe that the classical iterative voting
setting, where the current votes are common knowledge and
the voters consider that they are pivotal if they are able to
change the outcome, corresponds in our model to an instance
where the social network is a complete graph and p = 1. In
such a context, our formulated best response is a “direct”
best response (Meir et al. 2010), and a ∆0-equilibrium is a
Nash equilibrium, i.e., a stable state regarding unilateral de-
viations with complete information about the current votes
(Aumann and Brandenburger 2014). When the social net-
work is a complete graph, our best response corresponds to
an NM-Plurality response (Obraztsova et al. 2016) and to a
local-dominant strategy (Meir, Lev, and Rosenschein 2014)
if b0 is truthful, where the distance metric between voting
profiles is an `1-norm. A sequence of best response devia-
tions is illustrated in the following example.
Example 1. Consider an instance where n = m = 4, with
x1 B x2 B x3 B x4, p1 = 2 and p2 = p3 = p4 = 1. The
social network G and the preferences � are as follows.

1 2 3 4
1 : x1 � x3 � x2 � x4
2 : x2 � x4 � x3 � x1
3 : x3 � x4 � x1 � x2
4 : x4 � x2 � x3 � x1

Consider the following sequence of best responses. Each
state bt is represented by sbt and f(bt). At each step t, an
arrow designates the deviation performed by voter i men-
tioned below the arrow, believing the score function Bt,\ii
mentioned above the arrow. The deviations are in bold.
(1, 1, 1, 1):x1

(1,0,1,1)−−−−−→
2

(1, 0, 1,2):x4
(1,1,0,1)−−−−−→

3
(1, 0, 0,3):x4

(1,1,1,0)−−−−−→
4

(1,1, 0, 2):x4
(1,2,0,0)−−−−−→

3
(2, 1, 0, 1):x1

From b0, agent 2 changes her vote to candidate x4 because
she prefers x4 to the winner x1. Agent 1 observes this move
but has a pivotal threshold of 2: she still believes that x1 can
win so her best response is her current vote. Agent 3 did not
observe any move, and thus believes in the initial scores,
leading to her deviation to x4. This belief also holds for
agent 4 who deviates to x2. Agent 3 observes this move while
believing that agent 2 has not deviated and so she moves
to x1. Now, no agent can deviate given the information she
gets, so profile b4 := (x1, x4, x1, x2) is an equilibrium.

The information contained in the poll, updated by the
observations given by the network, as well as the pivotal

thresholds characterizing the best responses, enable to de-
fine a dynamics of the strategic game, that we call poll-
confident dynamics. We say that the poll-confident dynam-
ics converges if any sequence of deviations leads to a ∆0-
equilibrium, and we say that the dynamics can cycle if there
exists a sequence of deviations where we come back to a
previous strategy profile. Such a poll-confident dynamics,
defined according to one initial poll, is said to be local.

Global poll-confident dynamics
We define, analogously to the local poll-confident dynam-
ics, a global poll-confident dynamics where several polls are
communicated to the voters. In fact, each time the (local)
poll-confident dynamics converges, the scores at the equi-
librium are communicated via a poll. A sequence of devi-
ations within global dynamics is a sequence of states (b0,
b0,1, . . . ,b0,t0 ,b1,1, . . . ,b1,t1 , . . . ,bt,1, . . . ,bt,tt), where
bi,j is the strategy profile at ith global step and jth local
step. For each 0 ≤ k ≤ t− 1, there is a poll ∆k+1 between
state bk,tk and state bk+1,1 which announces the scores of
bk,tk . Initial poll ∆0 is given between initial state b0 and
state b0,1. For all 0 ≤ k ≤ t, sequence (bk,1, . . . ,bk,tk)
represents the deviations of the local dynamics with initial
poll ∆k, which leads to the ∆k-equilibrium bk,tk . We as-
sume that the voters do not keep in memory the history of
the previous global steps. At each global step, the voters be-
have in the same way as in the initial one.

The global poll-confident dynamics can cycle if there
exists a sequence of deviations (b0,b0,1, . . . ,b0,t0 , . . . ,

bt,1, . . . ,bt,tt) such that there are k < k′ where bk
′,tk′ =

bk,tk or bk
′,tk′ = b0, or if the associated local poll-

confident dynamics cycles. A stable state regarding the
global dynamics is called a global equilibrium.
Observation 1. For a unanimous pivotal threshold p = 1,
a state b is a global equilibrium iff b is a Nash equilibrium.

A global equilibrium b is either b0 or a ∆t-equilibrium
for some step t. In any case, its scores are announced either
by ∆0 or by ∆t+1, leading to complete information about b.

Convergence to Poll Equilibria
In this section, we study the convergence of the poll-
confident dynamics and the quality of the equilibria. Despite
some positive results, in the general case, it is difficult to rec-
ognize the instances for which the dynamics converges.

Convergence properties
The deviation of each agent depends on the information she
has about the game. If she sees nobody deviating after her
deviation, then a voter has no reason to deviate again.
Observation 2. Any agent i such that Γ(i) = {i} deviates
at most once for any voting rule and any threshold pi.

Obs. 2 implies that the local dynamics converges for any
voting rule if E is empty. A condition on the graph can be
further derived to ensure the convergence of the dynamics.
Proposition 1. If G is a directed acyclic graph (DAG), then
the local dynamics converges from any initial state within
O(n2) steps, for any voting rule and any thresholds pi.
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Proof. Suppose the dynamics cycles within the subset of
agents N ′ ⊆ N . Obs. 2 implies that the outdegree of each
agent i in N ′ in G is not equal to zero. Yet, a DAG contains
at least one sink, i.e., a vertex of null outdegree, and a sub-
graph of a DAG is still a DAG. Contradiction. A deviation
of a sink can push at most n− 1 other agents to deviate. By
iteratively removing a sink of G and counting the deviations
caused by a sink in the new graph, we get that the sequence
of deviations is of size O(n2).

If the network does not contain cycles, then convergence
is ensured. Actually, this is especially the presence of cycles
in the graph that enables the dynamics to cycle. However,
we can prevent cycles in the dynamics to occur if the cycles
of the graph are in fact cliques, i.e., the network is transitive,
and the dynamics converges in a complete graph.

Proposition 2. If the local dynamics eventually converges
from any initial state after g(n,m) steps for a complete
graph, then the dynamics converges from any initial state
within O(n · g(n,m)) steps when the network is transitive.

Proof. Let N ′ be a minimal subset of agents for who the
dynamics cycles. All the agents i in a clique C of G have
the same believed scores Bti at any step t: by transitivity,
Γ(i) = Γ(j) for all i, j ∈ C. So, since the dynamics is guar-
anteed to converge when all the current votes are known,
G[N ′] is not a clique. By Prop. 1, there must be a cycle in
G[N ′]. But a cycle along agents N ′′ ⊆ N in a transitive
graph implies that G[N ′′] is a clique. So, G[N ′] includes a
set of cliques. Since there is no visibility of the deviations
between two disjoint connected components, G[N ′] is con-
nected. The agents in N ′ can be partitioned into the groups
N ′1, . . . , N

′
k w.r.t. their level of knowledge: each G[N ′i ] for

i ∈ [k] is a set of disjoint cliques and any agent in N ′i can
only observe some agents in N ′j for j ≤ i. Each agent in a
group N ′i deviates according to the deviations of agents in⋃
j≤iN

′
j , because she cannot observe other deviations. So,

a cycle in the dynamics within N ′ implies a cycle in the dy-
namics within

⋃
j≤iN

′
j . By minimality ofN ′,N ′ is a single

clique, contradiction. It is possible to see a transitive graph
as a DAG whose nodes are cliques. So, any sequence of de-
viations is of length O(n · g(n,m)).

When the thresholds are heterogeneous, the dynam-
ics may cycle even for a complete graph (Obraztsova et
al.[2016]’s Thm. 3). However, from Meir et al.[2010]’s Thm.
3, the local dynamics converges from any initial state within
O(nm) steps when p = 1 and the graph is complete.

Corollary 1. The local dynamics is guaranteed to converge
from any initial state within O(n2m) steps when p = 1 and
the graph is transitive.

Moreover, this can be generalized to unanimous pivotal
thresholds under some condition on the turn function τ , in
the spirit of (Meir, Lev, and Rosenschein 2014)’s Prop. 6. A
deviation of agent i from x to y is called a (1)-compromise
move if x �i y and a (2)-opportunity move if y �i x.

Proposition 3. If the turn function τ always selects (2)-
moves before (1)-moves, then the local dynamics converges

within O(nm) steps from any initial state when p is unani-
mous and the graph is complete.

Proof. A (2)-move implies that the rank, in the deviator’s
preferences, of the candidate approved in the new ballot
is strictly better than the previous approved candidate. So,
there are at most n(m− 1) consecutive (2)-moves. By defi-
nition of τ , there exists a state t0 where no agent has incen-
tive to perform a (2)-move. One can prove by a complete
induction that, for any step t ≥ t0, where an agent i deviates
from x to y, the following holds: (I) the score of the win-
ner does not decrease, (II)

⋃
j∈N PW

t+1
j ⊆

⋃
j∈N PW

t
j ,

(III) x �i y, and (IV ) after this move, no agent can deviate
to x. The details are omitted due to space limitations.

Corollary 2. If τ selects (2)-moves before (1)-moves, then
the local dynamics converges withinO(n2m) steps from any
initial state when p is unanimous and the graph is transitive.

However, for a general graph, knowing whether the local
dynamics can cycle is difficult, even when p = 1.

Theorem 1. Knowing whether the local dynamics can cycle
is NP-hard, even for unanimous pivotal threshold p = 1.

Proof. We perform a reduction from the NP-complete prob-
lem 2P1N-SAT (Yoshinaka 2005) defined as follows: given
a set C = {C1, . . . , Cr} of r clauses over a set X =
{x1, . . . , xv} of v variables, where each variable occurs
twice as a positive literal and once as a negative literal, is
C satisfiable? The clauses can be indexed such that each first
occurrence of a variable is a positive literal, because the orig-
inal proof of NP-hardness relies on such an instance. We as-
sume such a restriction. Each clause Ci contains ri literals.

We construct an instance I = (N,M,�,b0, G, p = 1).
The set M of candidates includes candidates a, d, y, z and
clause-candidates ci for each i ∈ [r]. The tie-breaking B is
defined as: d B y B z B cr B cr−1 B · · · B c1 B a. The
set N of agents includes agents A, D, Y and Z, and literal-
agents Lij for each jth literal of clause Ci. The preferences
are as follows (all candidates not listed are ranked in arbi-
trary order within [. . . ]):
Lij : y � ci � cr � ci−1 � [. . . ]
A : a � y � d � [. . . ] Y : y � z � d � [. . . ]
D : a � d � y � [. . . ] Z : z � y � cr � [. . . ]

We add 3v(r + 2) + r dummy voters, where 3v + 1 among
them rank ci first for each candidate ci, 3v rank d first and 3v
rank z first. Every candidate, except a and d, obtains 3v + 1
votes, and d has 3v votes. The initial winner is y, thanks to
B. In the network G, all the agents of a same clause form
a clique. There is an arc from each agent of clause Ci to
each agent of clause Ci−1. There is an arc from each agent
of clause C1 to agents D and Z, and from agents Z and Y
to the agents of clause Cr. Agent Z points to A and Y , and
A points to D. There is an arc from agent Lij to agent L`k
if i < ` and the agents correspond to opposite literals. The
graph construction is illustrated in Fig. 1.

We claim that C is satisfiable iff the local dynamics can
cycle in I. One can prove that the only possible cycle within
the dynamics involves the agents Y , Z and exactly one agent
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x1 x2

x3

C1

x1 x2

x4

C2

x2 x3

x4

C3

x1 x3

x4

C4

D A Z Y

Figure 1: Construction of G for a 2P1N-SAT instance where
C1 = (x1∨x2∨x3),C2 = (x1∨x2∨x4),C3 = (x2∨x3∨x4)
and C4 = (x1∨x3∨x4). The literals (we keep for the figure
the literal name) in a same circle are in a same clause; the
arcs from or to the circles concern every agent inside.

related to each clause. Moreover, if there are two agents cor-
responding to opposite literals among the deviating agents
related to the clauses, then the cycle does not occur. The
proof of the equivalence is omitted by lack of space.

Concerning the global poll-confident dynamics, they are
not guaranteed to converge, even when the associated local
dynamics always converges and for pivotal threshold p = 1.

Proposition 4. The global dynamics may cycle even when
G is empty and for unanimous pivotal threshold p = 1.

Proof. Consider an instance where n = 4 and m = 3, with
x1 B x2 B x3, p = 1, an empty graph and the preferences:
1: x2 � x1 � x3, 2: x3 � x1 � x2, 3: x1 � x2 � x3 and
4: x3 � x1 � x2. Here is a cycle within 2 global steps (the
polls are given in bold at the beginning of the lines):

[1,1,2] (1, 1, 2):x3
(1,0,2)−−−−→

1
(2, 0, 2):x1

(0,1,2)−−−−→
3

(1, 1, 2):x3

[1,1,2] (1, 1, 2):x3
(0,1,2)−−−−→

1
(0, 2, 2):x2

(1,0,2)−−−−→
3

(1, 1, 2):x3

In this case, the cycle mimics simultaneous moves.

For a general graph, we can prove that it is NP-hard to
know whether the global dynamics can cycle, even for unan-
imous pivotal threshold p = 1, through another reduction
from 2P1N-SAT. We omit this proposition by lack of space.

Experiments on the quality of poll equilibria
To conclude this section, we present some experiments over
10,000 generated instances with 100 voters and 10 candi-
dates, under impartial culture for the preferences and ran-
dom Erdös and Rényi[1959]’s graphs (see Fig. 2). We ob-
serve the frequency of convergence of the dynamics and the
frequency of electing a Condorcet winner (for Condorcet do-
mains) within the equilibria. We stop the iterative process
only when an equilibrium is reached or a cycle is hit. The
results are given w.r.t. the density of the graphs and the piv-
otal thresholds. We examine unanimous thresholds of value
1, 5 and 10 and heterogeneous ones uniformly distributed
over the voters with values in [1..5] or [1..10].

The dynamics, both in their local and global version,
mostly converge, especially for sparse or dense graphs.
When p = 1 or p = 10, they almost always converge,
contrary to the other thresholds for which we observe less
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Figure 2: Frequency of convergence and Condorcet effi-
ciency for local/global dynamics under different thresholds

convergent profiles, in particular when the density is around
0.25. This can be explained by the fact that when p = 10,
most voters stay with their truthful ballot, and when p = 1
only a few candidates are potential winners. This is not the
case for heterogeneous thresholds and p = 5, because the
agents can have very various best strategies. Concerning the
Condorcet efficiency, we observe a slight increase when the
graph is denser, which can be explained by the gain of in-
formation. Moreover, the quality of the outcome is better for
global dynamics, which appears natural since the voters reg-
ularly obtain more information about the current profile.

We have conducted the same experiments for graphs
closer to real social networks, such as scale-free networks or
networks with homophily where the agents are linked w.r.t.
their preferences. However, it seems that the poll-confident
dynamics behave as in random graphs of corresponding den-
sity. This highlights the role of the quantity of information
possessed by the voters in the quality of poll equilibria.

Manipulation of the Opinion Poll
In our model, the voters base their belief on the results of the
poll. If we consider the polling institute as an agent who has
her own preferences over the candidates, then the question
of manipulation from the polling institute naturally arises.
The polling institute as an agent is denoted by π and her
preferences are expressed via a linear order�π over the can-
didates. We assume in this section that all the voters have the
same pivotal threshold p.

Concretely, the manipulations of π must be restricted in
order to satisfy some likelihood conditions. For instance, π
could not announce that a candidate has no point if at least
one voter has voted for it, otherwise this voter would know
that the polling institute is lying. This credibility require-
ment is described more generally in the following definition.

Definition 4 (Likelihood condition). The vector of scores ∆
is a plausible result to the poll under strategy profile b if
∆(x) ≥ maxi∈N sib(x), for every candidate x.

We assume that any manipulation performed by π satisfies
the likelihood condition. Let the manipulation margin be the
number of points which are available after having fulfilled
the likelihood condition. We firstly ask whether it is possible
for institute π to enforce the election of a given candidate x.

Definition 5 (ELECTION ENFORCING). Given candidate x
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and instance I, is there a poll score vector ∆ such that the
local dynamics converges to a ∆-equilibrium electing x?

This problem is computationally hard even when the net-
work is a DAG. We denote by PW (∆) the set of poten-
tial winners announced by ∆, w.r.t. the unanimous pivotal
threshold p. The set PW (∆) includes all the candidates for
which the addition of p votes approving them is sufficient to
win the election, according to ∆.

Theorem 2. ELECTION ENFORCING is NP-hard even when
the social network is a DAG and p = 1.

Proof. We reduce from 3-SAT and consider an instance of r
3-clauses {C1, . . . , Cr} and v variables {x1, . . . , xv}.

We construct a set of agents N including: a set Y of r
clause-agents Yi for i ∈ [r], sets Y ′ and L of 3r literal-
agents Yij and Lij for i ∈ [r] and j ∈ [3], a set L′ of agents
L′ijk for i ∈ [r], j ∈ [3] and k ∈ [3] referring to 3 copies of
the literals, sets Z1 and Z2 (whose union is denoted by Z)
of respective agents Z1

i and Z2
j for i ∈ [4r−1] and j ∈ [11],

a set X of agents Xi for i ∈ [10], and agents X ′1 and X ′2.
The set of candidates M contains candidates z, x′ and x, the
set C` of clause-candidates ci for i ∈ [r], and the set Lit
of literal-candidates `ij for i ∈ [r] and j ∈ [3]. In graph G,
there is an arc from Yi to Lij and from Y ′ij to L′ijk, for all
i ∈ [r], j, k ∈ [3]. There is an arc from Lij to Li′j′ if i > i′

and the jth literal of ith clause is the opposite of the j′th literal
of i′th. In the sets Z2 and X , there is one agent, say respec-
tively Z2

1 and X1, who is connected to all the agents in the
set. Let ρ be a linear order over C`∪Lit and ρ−1 its reverse
order. The preferences are as follows (i+ 1 = 1 if i = s):
Yi : z � ci � x � ρ Zji : z � ρ−1 � x
Y ′ij : z � `ij � x � ρ−1 Xi : x � z � ρ
Lij : ci � `ij � z � ρ−1 � x X ′1 : x′ � z � ρ
L′ijk : `ij � `i+1 k � z � ρ � x X ′2 : x′ � z � ρ−1

where ρ and ρ−1 are assumed to be defined without the can-
didates already mentioned in the preference order.

The turn function τ is such that {L,L′} �τ {Y, Y ′}, and
Lij �τ Li′j′ for i′ > i. The tie-breaking rule B is such that
x B z B `11 B · · · B `13 B · · · B `r1 B · · · B `r3, and
p = 1.

We claim that all the clauses are satisfiable iff polling in-
stitute π can enforce the election of x in the local dynamics.

At b0, each Lij and L′ijk vote respectively for ci and `ij ,
and agents Yi and Y ′ij respectively observe it. So, by the like-
lihood condition, each candidate y ∈ C` ∪ Lit must have at
least 3 points in the poll, i.e., ∆(y) ≥ 3. Each agent in X
votes for x and this is visible for X1, thus ∆(x) ≥ 10. All
the sets Y , Y ′ and Z vote for candidate z, but only agent
Z2
1 has a non-null outdegree for observing that, and thus

∆(z) ≥ 11, whereas the real score of z is 8r + 10. X ′1 and
X ′2 vote for x′ so ∆(x′) ≥ 1. To summarize, the margin of
manipulation for institute π is 8r. We can prove that the only
strategy for π to make xwin is to assign 8 more points to one
literal-candidate associated with each clause, and the new
points cannot be given to literal-candidates corresponding
to opposite literals. The winner announced in this poll is z.
We omit the details of the equivalence, by lack of space.

Beyond the computational hardness of manipulating the
poll in the worst-case, we explore a heuristic perspective.
For all experiments, we run 10,000 instances of 100 voters
and 10 candidates, where the preferences are generated in
impartial culture, and the graphs are randomly generated via
Erdös and Rényi[1959]’s model for different densities.

Algm. 1 constructs a poll score vector where, as much as
possible, there are only two best candidates. The intuition is
that, if π wants to make a target candidate x elected then,
as much as the manipulation margin allows, she predicts as
the winner a “specter” candidate y, that π wants to show
as a threat to the voters, and x as a potential winner. More
precisely, after having fulfilled the likelihood condition (l. 2-
4), points are added to x until it becomes a potential winner
(l. 5-6). Then, we rise the score of y until one more point to
y would remove x from the set of potential winners (l. 7-8),
in order to quickly increase the gap with other candidates
while keeping x in PW (∆). At this point, y is the winner in
∆ and x is at the limit of PW (∆). Now we simultaneously
increase the scores of x and y (l. 9-11) in order to further
eliminate other candidates from PW (∆). If there remains
one point at the end, we assign it to x if that does not make
it the winner, or otherwise to the last ranked candidate in ∆
by safety (l. 12-14). The process stops if at some step the
manipulation margin is not sufficient.

Algorithm 1: Margin rebalance on two candidates
Input: I, state b, target x ∈M , specter y ∈M
Output: ∆: communicated scores of the poll from b

1 margin← n ;
2 foreach z ∈M do
3 ∆(z)← maxi∈N sib(z);
4 margin← margin−∆(z);
5 while margin > 0 and x /∈ PW (∆) do
6 ∆(x)← ∆(x) + 1; margin← margin− 1;
7 while margin > 0 and x remains in PW (∆) if ∆(y)

is increased by 1 do
8 ∆(y)← ∆(y) + 1; margin← margin− 1;
9 while margin > 1 do

10 ∆(x)← ∆(x) + 1; ∆(y)← ∆(y) + 1;
11 margin← margin− 2;
12 if margin = 1 then
13 if p > 1 then ∆(x)← ∆(x) + 1;
14 else `← arg minz∈M ∆(z); ∆(`)← ∆(`) + 1;
15 return ∆;

Algm. 2 is a heuristic based on Algm. 1 where we choose,
as a specter candidate y, the candidate that is the most dis-
liked compared to target candidate x. We aim at creating a
situation where only two candidates, x and y, are favorites in
the election. One of them, the “specter” y, is mostly disliked
by the population but is announced the winner with a slight
lead over x. One could think that, in reaction, a large part of
the electorate will report her ballot to the other candidate x.

We present experiments in Fig. 3, where the targets are
the Condorcet winner (for Condorcet domains), the Borda
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Algorithm 2: Heuristic for ELECTION ENFORCING

Input: I, state b, target x ∈M
Output: ∆: communicated scores of the poll from b

1 Sort the candidates M \ {x} in decreasing order of the
number of voters who prefer x to the candidate;

2 foreach specter y ∈M \ {x} do
3 ∆← Algm. 1(I,b, x, y);
4 if f(∆) = y and x ∈ PW (∆) then return ∆;

5 return Algm. 1(I,b, x, arg maxz 6=x maxi∈N sib(z));

winner, the truthful winner (the winner of b0) and the best
candidate in B. The frequency of election of the target can-
didate is given in a context of poll manipulation via Algm. 2
or no manipulation. For the sparsest graphs, this frequency
is at least twice higher with Algm. 2 than without manipu-
lation. In global dynamics, there is manipulation from π at
each global step, that is why the results are slightly better.
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Figure 3: Algm. 2 in global/local dynamics (p = 1 or 5)

From a different perspective, instead of enforcing the
election of a specific candidate, institute π could try to per-
form best responses at each global step, with immediate ben-
efits in the associated local dynamics, in the same myopic
spirit as a voter in iterative voting. In other words, π manip-
ulates at each global step in order to make elected her best
possible candidate at the end of the next local dynamics.

However, as Thm. 2 states, such a best response is hard
to compute, even for a DAG. Consequently, we restrict the
manipulation of π to a simple move exposed in Algm. 1: try-
ing to favor only two candidates. We derive Algm. 3 where a
manipulated poll score vector ∆ is built by Algm. 1 for every
couple of candidates (x, y), and the associated sequence of
local deviations is tested. We choose the poll score that leads
to an equilibrium, in the tested local dynamics, electing the
best candidate for π. In order to efficiently test the sequence
of local deviations, we restrict to cases where the dynam-
ics is guaranteed to converge after a polynomial number of
steps, i.e., when the network is acyclic or transitive (Prop. 1
and cases of Cor. 1 and 2). We thus consider spanning sub-
graphG′ of networkG that is either empty, acyclic or transi-
tive. Since Maximal Acyclic Subgraph and Maximum Tran-
sitive Subgraph are NP-complete problems, we use simple
classical approximations for computing these subgraphs.

The results, presented in Fig. 4, are good for π. These
results show the average of the rank in �π of the final win-
ner when the dynamics converges (lower is better). For both

Algorithm 3: Restricted poll manipulation move
Input: I, turn function τ , preferences �π , state b,

acyclic / transitive spanning subgraph G′ of G
Output: ∆: communicated scores of the poll from b

1 foreach target x ∈M do
2 foreach specter y ∈M \ {x} do
3 ∆y ← Algm. 1(I,b, x, y);
4 R(y)← f(∆y-eq.) in I with G← G′ and τ ;

5 return ∆y for which R(y) is the best in �π;

types of dynamics, the rank with manipulation is clearly bet-
ter than without manipulation, with a large gap for sparse
graphs. The gap decreases with the increase of the density.
For global dynamics, the results are very good for π, es-
pecially for sparse graphs until density 0.4. Like Algm. 2,
the results deteriorate with the increase of the density. This
is related to the likelihood condition, making the manipula-
tion margin decreasing with the increase of the density, until
the complete graph, where no manipulation is possible for π
since every agent has complete information.
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Figure 4: Algm. 3 in global/local dynamics (p = 1 or 5)

Conclusion
We have studied a best response dynamics where the vot-
ers aggregate the informations from opinion polls and social
networks, and adopt a strategic behavior conditioned by piv-
otal thresholds. We showed the convergence of the dynam-
ics for some classes of graphs but in general it is difficult to
recognize instances with cycles. However, it turns out that
practically, the dynamics mostly converges. The quality of
the equilibria depends on the density of the network: better
outcomes are found in dense graphs (there is more informa-
tion). The equilibrium analysis allows to underline the bias
produced by partial information and the dependency on the
information sources, raising the question of election control.

Actually, manipulation of the poll can be hard to compute,
even for simple sparse graphs. However, simple heuristics,
based on the idea of announcing a “specter” candidate (that
is mostly disliked) as winner, are very efficient. The manip-
ulation is less beneficial in dense graphs where the knowl-
edge of the voters is close to be complete. These heuristics
are not too demanding regarding the network structure, but
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they need to know the preferences and thresholds. Neverthe-
less, this is not a strong assumption that the polling institute
knows the preferences of the voters since she collects them.
Moreover, we have conducted experiments (not presented
here) where the polling institute computes her strategy with
thresholds that do not correspond to the real ones, and the
results are similar to those presented in the article.

In addition to classical perspectives such as the study of
other voting rules, coalitional manipulation and more so-
phisticated heuristics, one could think about voters who are
not memory-less in the global dynamics or relaxing the as-
sumption of a poll on the entire electorate. The links with
opinion diffusion in networks could also be examined.
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