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Abstract

STV and ranked pairs (RP) are two well-studied voting rules
for group decision-making. They proceed in multiple rounds,
and are affected by how ties are broken in each round. How-
ever, the literature is surprisingly vague about how ties should
be broken. We propose the first algorithms for computing
the set of alternatives that are winners under some tiebreak-
ing mechanism under STV and RP, which is also known
as parallel-universes tiebreaking (PUT). Unfortunately, PUT-
winners are NP-complete to compute under STV and RP, and
standard search algorithms from Al do not apply. We propose
multiple DFS-based algorithms along with pruning strate-
gies, heuristics, sampling and machine learning to prioritize
search direction to significantly improve the performance. We
also propose novel ILP formulations for PUT-winners under
STV and RP, respectively. Experiments on synthetic and real-
world data show that our algorithms are overall faster than
ILP.

1 Introduction

The Single Transferable Vote (STV) rule! is among the most
popular voting rules used in real-world elections. According
to Wikipedia, STV is being used to elect senators in Aus-
tralia, city councils in San Francisco (CA, USA) and Cam-
bridge (MA, USA), and more (Wikipedia 2018). In each
round of STV, the lowest preferred alternative is eliminated,
in the end leaving only one alternative, the winner, remain-
ing.

This raises the question: when two or more alternatives
are tied for last place, how should we break ties to elim-
inate an alternative? The literature provides no clear an-
swer. For example, see (O’Neill 2011) for a list of different
STV tiebreaking variants. While the STV winner is unique
and easy to compute for a fixed tiebreaking mechanism, it
is NP-complete to compute all winners under all tiebreak-
ing mechanisms. This way of defining winners is called
parallel-universes tiebreaking (PUT) (Conitzer, Rognlie, and
Xia 2009), and we will therefore call them PUT-winners in
this paper.

Copyright © 2019, Association for the Advancement of Artificial
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STV is also known as instant runoff voting, alternative vote,
or ranked choice voting.
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Ties do actually occur in real-world votes under STV. On
Preflib (Mattei and Walsh 2013) data, 9.2% of profiles have
more than one PUT-winner under STV. There are two main
motivations for computing all PUT-winners. First, it is vital
in a democracy that the outcome not be decided by an arbi-
trary or random tiebreaking rule, which will violate the neu-
trality of the system (Brill and Fischer 2012). Second, even
for the case of a unique PUT-winner, it is important to prove
that the winner is unique despite ambiguity in tiebreaking.
In an election, we would prefer the results to be transparent
about who all the winners could have been.

A similar problem occurs in the Ranked Pairs (RP) rule,
which satisfies many desirable axiomatic properties in so-
cial choice (Schulze 2011). The RP procedure considers ev-
ery pair of alternatives and builds a ranking by selecting the
pairs with largest victory margins. This continues until ev-
ery pair is evaluated, the winner being the candidate which
is ranked above all others by this procedure (Tideman 1987).
Like in STV, ties can occur, and the order in which pairs are
evaluated can result in different winners. Unfortunately, like
STV, it is NP-complete to compute all PUT-winners under
RP (Brill and Fischer 2012).

More generally, the tiebreaking problem exists for a larger
class of voting rules called multi-stage voting rules. These
rules eliminate alternatives in multiple rounds, and the dif-
ference is in the elimination methods. For example, in each
round, Baldwin’s rule eliminates the alternative with the
smallest Borda score, and Coombs eliminates the alterna-
tive with highest veto score. Like STV and RP, comput-
ing all PUT winners is NP-complete for these multi-stage
rules (Mattei, Narodytska, and Walsh 2014).

To the best of our knowledge, no algorithm beyond brute-
force search is known for computing PUT-winners under
STV, RP, and other multi-stage voting rules. Given its im-
portance as discussed above, the question we address in this
paper is:

How can we design efficient, practical algorithms for
computing PUT-winners under multi-stage voting rules?

Our Contributions. Our main contributions are the first
practical algorithms to compute the PUT-winners for multi-
stage voting rules: a depth-first-search (DFS) framework and
integer linear programming (ILP) formulations.

In our DFS framework, the nodes in the search tree rep-



resent intermediate rounds in the multi-stage rule, each leaf
node is labeled with a single winner, and each root-to-leaf
path represents a way to break ties. The goal is to output the
union set of winners on the leaves. See Figure 1 and Figure 2
for examples. To improve the efficiency of the algorithms,
we propose the following techniques:

Pruning, which maintains a set of known winners during the
search procedure and can then prune a branch if expanding
a state can never lead to any new PUT-winner.

Machine-Learning-Based Prioritization, which aims at
building a large known winner set as soon as possible by
prioritizing nodes that minimize the number of steps to dis-
cover a new PUT-winner.

Sampling, which build a large set of known winners before
the search to make it easier to trigger the pruning conditions.

Our main conceptual contribution is a new measure called
early discovery, wherein we time how long it takes to com-
pute a given proportion of all PUT-winners on average. This
is particularly important for low stakes and anytime applica-
tions, where we want to discover as many PUT-winners as
possible at any point during execution.

We will use STV and RP in this paper as illustrations
for our framework. Experiments on synthetic and real-world
data show the efficiency and effectiveness of our algorithms
in solving the PUT problem for STV and RP, hereby de-
noted PUT-STV and PUT-RP respectively. The effects of
additional techniques compared to the standard DFS frame-
work are summarized in Table 1, where the symbol +-+ de-
notes very useful, + denotes mildly useful, and 0 denotes
not useful.

PUT-STV | PUT-RP
Pruning + ++
Machine Learning + +
Sampling 0 ++

Table 1: Summary of Technique Effectiveness.

It turns out that the standard DFS algorithm is already ef-
ficient for STV, while various new techniques significantly
improve running time and early discovery for RP.

In addition, we design an ILP for STV, and an ILP for
RP based on the characterization by Zavist and Tideman
(1989). For both PUT-STV and PUT-RP, in the large ma-
jority of cases our DFS-based algorithms are orders of mag-
nitude faster than solving the ILP formulations, but there are
a few cases where ILP for PUT-RP is significantly faster.
This means that both types of algorithm have value and may
work better for different datasets.

Related Work and Discussions. There is a large literature
on the computational complexity of winner determination
under commonly-studied voting rules. In particular, com-
puting winners of the Kemeny rule has attracted much at-
tention from researchers in Al and theory (Conitzer, Daven-
port, and Kalagnanam 2006; Kenyon-Mathieu and Schudy
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2007). However, STV and ranked pairs have both been over-
looked in the literature, despite their popularity. We are not
aware of previous work on practical algorithms for PUT-
STV or PUT-RP. A recent work on computing winners of
commonly-studied voting rules proved that computing STV
is P-complete, but only with a fixed-order tiebreaking mech-
anism (Csar et al. 2017). Our paper focuses on finding all
PUT-winners under all tiebreaking mechanisms. See (Free-
man, Brill, and Conitzer 2015) for more discussions on
tiebreaking mechanisms in social choice.

Standard procedures to Al search problems unfortunately
do not apply here. In a standard Al search problem, the
goal is to find a path from the root to the goal state in the
search space. However, for PUT problems, due to the un-
known number of PUT-winners, we do not have a clear pre-
determined goal state. Other voting rules, such as Coombs
and Baldwin, have similarly been found to be NP-complete
to compute PUT winners (Mattei, Narodytska, and Walsh
2014). The techniques we apply in this paper for STV and
RP can be extended to these other rules, with slight modifi-
cation based on details of the rules.

2 Preliminaries

Let A = {a1, - ,a,} denote a set of m alternatives and
let £(.A) denote the set of all possible linear orders over .A.
A profile of n voters is a collection P = (V;);<y, of votes
where for each ¢ < n, V; € L(A). A voting rule takes as
input a profile and outputs a non-empty set of winning alter-
natives.

Single Transferable Vote (STV) proceeds in m — 1 rounds
over alternatives A as follows. In each round, (1) an alterna-
tive with the lowest plurality score is eliminated, and (2) the
votes over the remaining alternatives are determined. The
last-remaining alternative is the winner.

4@A > B > C
20B > A>C
1@B > C > A
3@C >B > A

Profile

Figure 1: An example of the STV procedure.

Example 1. Figure 1 shows an example of how the STV
procedure can lead to different winners depending on the
tiebreaking rule. In round 1, alternatives B and C are tied
for last place. For any tiebreaking rule in which C is elim-
inated, this leads to B being the winner. Alternatively, if B
were to be eliminated, then A is the winner.

Ranked Pairs (RP). For a given profile P = (V);<,,, we
define the weighted majority graph (WMG) of P, denoted
by wmg(P), to be the weighted digraph (A, ') where the
nodes are the alternatives, and for every pair of alternatives
a,b € A, there is an edge (a,b) in E' with weight w, ;) =



HVi:a>v, b}| — {Vi : b =v, a}|. We define the nonnega-
tive WMG as wmg>o(P) = (A, {(a,b) € E : w3 > 0}).
We partition the edges of wmg>((P) into tiers 11, ..., Tk of
edges, each with distinct edge weight values, and indexed
according to decreasing value. Every edge in a tier 7} has
the same weight, and for any pair 7,57 < n, if ¢« < j, then
Ve, € T;,eq € Tj,wel > We,-

B and D canbe
winners depending
on tiebreaking order

B wins

Figure 2: An example of the RP procedure.

Ranked pairs proceeds in K rounds: Start with an empty
graph G whose vertices are \A. In each round ¢ < K, con-
sider adding edges e € T; to G one by one according to a
tiebreaking mechanism, as long as it does not introduce a
cycle. Finally, output the top-ranked alternative in G as the
winner.

Example 2. Figure 2 shows the ranked pairs procedure ap-
plied to the WMG resulting from a profile over m = 4 alter-
natives (a profile with such a WMG always exists) (McGar-
vey 1953). We focus on the addition of edges in tier 2, where
{(C,B),(B,D),(D,A)} are to be added. Note that D is
the winner if (C, B) is added first , while B is the winner if
(B, D) is added first.

3 General Framework

We provide a general framework using a depth first search
approach to solve multi-stage voting rules in Algorithm 1.
Our algorithms for solving PUT-STV and PUT-RP are ex-
amples of applying this common framework.

We evaluate our algorithms on two criteria:

(1) Total Running Time for completing the search.

Algorithm 1 General DFS-based framework.

1: Input: A profile P.
Output: All PUT-winners W.
Initialize a stack F' with the initial state; W = &.
Sample PUT-winners randomly.
while F' is not empty do
Pop a state .S from F' to explore.
if S has a single remaining alternative then
add it to .
if .S already visited or state can be pruned then
skip state.

Expand current state to generate children C, add C
to F'in order of priority.

_.
DY s WD

—_

—
[ %}

: return W.

(2) Early Discovery. For any PUT-winner algorithm and any
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number 0 < o < 1, the a-discovery value is the average
running time for the algorithm to compute « fraction of
PUT-winners.

The early discovery property is motivated by the need
for any-time algorithms which, if terminated at any time,
can output the known PUT-winners as an approximation to
all PUT-winners. Such time constraint is realistic in low-
stakes, everyday voting systems such as Pnyx (Brandt and
Geist 2015), and it is desirable that an algorithm outputs as
many PUT-winners as early as possible. This is why we fo-
cus on DFS-based algorithms, as opposed to, for example,
BES, since the former reaches leaf nodes faster. We note
that 100%-discovery value can be much smaller than the to-
tal running time of the algorithm, because the algorithm may
continue exploring remaining nodes after 100% discovery to
verify that no new PUT-winner exists.

We propose several techniques to improve the running
time and guide the search into promising branches contain-
ing more alternatives that could be PUT-winners.

Pruning. The main idea is straightforward: if all candidate
PUT-winners of the current state are already known to be
PUT-winners, then there is no need to continue exploring
this branch since no new PUT-winners can be found.
Heuristic Functions. To achieve early discovery through
Algorithm 1, we prioritize nodes whose state contains more
candidate PUT-winners that have not been discovered. As
a heuristic guided approach, we devise local priority func-
tions which take as input the set of candidate PUT-winners
(denoted by A) and the set of known PUT-winners (previ-
ously discovered by the search, denoted by W) and output
a priority order on the branches to explore in Line 11 of Al-
gorithm 1. It is called local (as opposed to global) priority
because overall the algorithm is still DES, and the local pri-
ority is used to decide which child of the current node will
be expanded first.

e LP = |A — W/|: Local priority; orders the exploration of
children by the value of |A — W], the number of potentially
unknown PUT-winners.

Machine Learning. We propose to use machine learning as
anovel heuristic to guide the search by estimating the proba-



bility of a branch to have new PUT-winners, and prioritizing
the exploration of branches with a higher estimated proba-
bility of having new PUT-winners.

e LPML = } _._y 7(a): Local priority with machine
learning model .

Here 7(a) is the machine learning model probability of a
to be a PUT-winner. The setup details can be found in Sec-
tion 5. It is important to note we do not use the machine
learning model to directly predict PUT-winners. Instead, we
use it to guide DFS search to discover a new PUT-winner as
soon as possible.

Sampling. Sampling in line 4 of Algorithm 1 can be seen as
a preprocessing step: before running the search, we repeat-
edly randomly sample a fixed tie-breaking order 7 and run
the voting procedure using 7. If we can add PUT-winners
earlier into the known winners set, the algorithm will earlier
reach the pruning conditions during the search, eliminating
branches.

PUT-STV as an Example. The framework in Algorithm 1
can be applied to PUT-STV with the following specifica-
tions. We set the initial state in F' to be the set of all alter-
natives 4. We modify Step 11 of Algorithm 1 as: for every
remaining lowest plurality score alternative ¢ € S, in order
of priority add (S'\ ¢) to F'. For pruning specific to PUT-STYV,
we can skip the state S whenever S C W. We implement the
heuristic functions LP and LPML to prioritize the order of
exploring children, where the set of candidate PUT-winners
A is simply the remaining candidates of state S. And we
finally add sampling to our algorithms. The results are in
Section 5.

4 Algorithms for PUT-RP

In this section we show how to adopt Algorithm 1 to com-
pute PUT-RP. In the search tree, each node has a state
(G, E), where E is the set of edges that have not been con-
sidered yet and G is a graph whose edges are pairs that have
been “locked in” by the RP procedure according to some
tiebreaking mechanism. The root node is (G = (A, &), Fy),
where E) is the set of edges in wmg>o(P).

At a high level, we have two ways to apply Algorithm 1.
The first one is called naive DFS because it is a straightfor-
ward application of Algorithm 1, generating children at state
(G, E) by adding each edge in the highest weight edge tier
of E to G that does not cause a cycle. We also include our
pruning conditions as detailed in this section.

The second method is, in short, a layered algorithm in
which we process edges tier by tier. It is described as the
PUT-RP() procedure in Algorithm 2. Exploring a node
(G, E) at depth t involves finding all maximal ways of
adding edges from 7} to G without causing a cycle, which
is done by the MaxChildren() procedure shown in Algo-
rithm 3. M axChildren() takes a graph G and a set of edges
T as input, and follows a DFS-like addition of edges one at a
time. Within the algorithm, each node (H, S) at depth d cor-
responds to the addition of d edges from 7" to H according
to some tiebreaking mechanism. S C T is the set of edges
not considered yet.

Definition 1. Given a directed acyclic graph G = (A, E),
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and a set of edges T, a graph C = (A, EUT") where T' C
T is a maximal child of (G, T) if and only if Ve € T\T’,
adding e to the edges of C' creates a cyclic graph.

Algorithm 2 PUT-RP(P)

1: Input: A profile P.
QOutput: All PUT-RP winners W.
Compute (A, Ey) = wmg~,(P)
Initialize a stack F' with ((A, &), Ey) for DFS; W = &.
while F' is not empty do
Pop a state (G, E) from F' to explore.
if F is empty or this state can be pruned then
Add all topologically top vertices of G to W and
skip state.

T < highest tier edges of E.
for C in MaxChildren(G,T) do
Add (C,E\T)to F.

return .

11:
12:

Algorithm 3 MaxChildren(G, T')
1: Input: A graph G = (A, E), and a set of edges T'.

2: Qutput: Set C of all maximal children of G, T

3: Initialize a stack I with (G,T') for DFS; C' = @.

4: while I is not empty do

5: Pop ((A, E'), S) from I.

6: if £’ already visited or state can be pruned then
7: skip state.

8: The successor states are Q. = (Ge, S \ €) for each

edge e in S, where graph G. = (A, E' + ¢).

9: Discard states where G. is cyclic.
10: if in all successor states G is cyclic then
11: We have found a max child; add (A, E’) to C.
12: else
13: Add states Q). to I in order of local priority.

14: return C.

Therefore, the second algorithm will be called maximal
children based (MC) algorithms. We have the following
techniques for PUT-RP.
Pruning. For a graph G and a tier of edges 7', we imple-
ment the following conditions to check if we can terminate
exploration of a branch of DFS early: (i) If every alterna-
tive that is not a known winner has one or more incoming
edges or (ii) If all but one vertices in G have indegree > 0,
the remaining alternative is a PUT-winner. For example, in
Figure 2, we can prune the right-most branch after having
explored the two branches to its left.
SCC Decomposition. We further improve Algorithm 3 by
computing strongly connected components (SCCs). For a di-
graph, an SCC is a maximal subgraph of the digraph where
for each ordered pair u, v of vertices, there is a path from
to v . Every edge in an SCC is part of some cycle. The edges
not in an SCC, therefore not part of any cycle, are called the
bridge edges (Kleinberg and Tardos 2005, p. 98-99).

Given a graph G and a set of edges 7', finding the maximal



1
i
‘ Cartesian Product

Figure 3: Example of SCC Decomposition.

children will be simpler if we can split it into multiple SCCs.
We find the maximal children of each SCC, then combine
them in the Cartesian product with the maximal children of
every other SCC. Finally, we add the bridge edges.

Figure 3 shows an example of SCC Decomposition in
which edges in G are solid and edges in 1" are dashed. Note
this is only an example, and does not show all maximal chil-
dren. In the unfortunate case when there is only one SCC we
cannot apply SCC decomposition. The proof of Theorem 1
is provided in Appendices.

Theorem 1. For any directed graph H, C' is a maximal child
of H? if and only if C contains exactly (i) all bridge edges
of H and (ii) the union of the maximal children of all SCCs
in H.

S Experiment Results
5.1 Datasets

We use both synthetic datasets and real-world preference
profiles from Preflib to test our algorithms’ performance.
The synthetic datasets were generated based on impartial
culture with n independent and identically distributed rank-
ings uniformly at random over m alternatives for each pro-
file. From the randomly generated profiles, we only test on
hard cases where the algorithm encounters a tie that cannot
be solved through simple pruning. All the following exper-
iments are completed on a PC with Intel i5-7400 CPU and
8GB of RAM running Python 3.5.

Synthetic Data. For PUT-STV, we generate 10,000
m n 30 synthetic hard profiles. For PUT-RP, we

’Here, we extend the definition of maximal child of directed
graph H = (A, E) as the maximal child of the tuple (G, E') where
G=(A02).
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generate 14,875 m = n = 10 synthetic hard profiles. We let
m = n in our synthetic data because these are the hardest
cases, which can be verified in Figure 4.

m=20

0.02

—.0.015

0.01

Running time (s

0.005

40 60 80 100
n

Figure 4: Running time of DFS for PUT-STV for different
number of voters n, for profiles with m = 20 candidates.

Preflib Data. We use all available datasets on Preflib suit-
able for our experiments on both rules. Specifically, we use
315 profiles from Strict Order-Complete Lists (SOC), and
275 profiles from Strict Order-Incomplete Lists (SOI). They
represent several real world settings including political elec-
tions, movies and sports competitions. For political elec-
tions, the number of candidates is often not more than 30.
For example, 76.1% of 136 SOI election profiles on Preflib
has no more than 10 candidates, and 98.5% have no more
than 30 candidates.

5.2 Results for PUT-STV

We test four variants of Algorithm 1 for PUT-STV: (i) DFS:
Algorithm 1 with pruning but without local priority ,
(i) LPML: Algorithm 1 with pruning and local priority
based on machine learning, (iii) LPML+20m samples: its
variants with 20m = 600 samples, and (iv) LPML+m sam-
ples: m = 30 samples. Results are summarized in Table 2
and Figure 5. The main conclusions are that DFS performs
the best in total running time, local priority based on ma-
chine learning (LPML) is useful for early discovery, and
sampling is not useful. This makes sense because expand-
ing nodes for STV is computationally easy, so the opera-
tional cost of computing and maintaining a priority queue
in LPML offsets the benefit of early discovery. All compar-
isons are statistically significant with p-value=0.02 or less
computed using one sided paired sample Student’s t-test.

Local Priority with Machine Learning Improves Early
Discovery. As shown in Figure 5, for m = n = 30, LPML
has 25.01% reduction in 50%-discovery compared to DFS.
Results are similar for other datasets with different m. The
early discovery figure is computed by averaging the time to
compute a given percentage p of PUT-winners. For example,
for a profile with 2 PUT-winners which are discovered at
time ¢; and to, we set the 10%-50% discovery time as t;
and the 60%-100%-discovery time as ta.



without sampling with sampling
DFS LPML | LPML+600 samples | LPML+30 samples
Avg. running time (s) | 0.4474 | 0.5017 0.6893 0.5252
Avg. 100%-discovery time (s) | 0.1820 | 0.1686 0.3563 0.1826

Table 2: Experiment results of different algorithms for PUT-STV.

The 7 function used in the local priority function was
trained by a neural network model using three hidden lay-
ers with size of 4096 x 1024 x 1024 neurons and logistic
function as activation, where the output has m components,
each of which indicates whether the corresponding alterna-
tive is a PUT-winner. The input features are the positional
matrix, WMG, and plurality, Borda, k-approval, Copeland
and maximin scores of the alternatives. We trained the mod-
els on 50,000 m = n = 30 hard profiles using tenfold cross
validation, with the objective of minimizing the L1-distance
between the prediction vector and the target true winner vec-
tor. Our mean squared error was 0.0833.

033 -#-DFS

—+[PML
0.3
-e-LPML+600 Samples

0.25 -0-LPML+30 Samples

0.2

time (s)

0.15

0.1

0.05

40% 50% 60% 70% 80% 90%  100%

% winners discovered

Figure 5: PUT-STV early discovery. m = 30.

Pruning Has Small Improvement. We see only a small
improvement in the running time when evaluating pruning:
on average, pruning brings only 0.33% reduction in running
time for m = n = 10 profiles, 2.26% for m = n = 20
profiles, and 4.51% for m = n = 30 profiles.

Sampling Does Not Help. We test different number of sam-
ples as shown in Figure 5 but none of them brings improve-
ment. This is because each sample is essentially just a run
of DFS up to leaf node, which is no different from our algo-
rithm. Moreover, pruning has only small improvement since
its condition is not often triggered, so knowing PUT-winners
actually does no good to both early discovery and running
time.

DFS Is Practical on Real-World Data. Our experimental
results on Preflib data show that on 315 complete-order real
world profiles, the maximum observed running time is only
0.06 seconds and the average is 0.335 ms.
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5.3 PUT-RP

We evaluate three algorithms together with their sampling
variants for RP: (i) nDFS(LP): naive DFS (Algorithm 1)
with pruning and local priority based on # of candidate
PUT-winners, (ii) MC(LP): maximal children based algo-
rithm with SCC decomposition (Algorithm 2) and the same
local priority as the previous one, and (iii) MC(LPML):
its variant with a different local priority based on machine
learning predictions. Experimental results are summarized
in Table 3 and Figure 6. In short, the conclusion is that
MC(LP) with sampling is the fastest algorithm for PUT-RP,
and both the sampling variants of nDFS(LP) and MC(LP)
perform well in early discovery. All comparisons are statis-
tically significant with p-value<0.01 unless otherwise men-
tioned.

Pruning Is Vital. Pruning plays a prominent part in the re-
duction of running time. Our contrasting experiment fur-
ther justifies this argument: DFS without any pruning can
only finish running on 531 profiles of our dataset before it
gets stuck, taking 125.31 seconds in both running time and
100%-discovery time on average, while DFS with pruning
takes only 2.23 seconds and 2.18 seconds respectively with
a surprising 50 times speedup.

Local Priority Improves Early Discovery. In order to eval-
uate its efficacy, we test the naive DFS without local pri-
ority, and the average time for 100%-discovery is 0.9976
seconds, which is about 3 times of that for nDFS(LP)’s
0.2778 seconds. Note that naive DFS without local prior-
ity is not shown in Figure 6. Local priority with machine
learning (LPML) does not help as much as LP. For LPML,
we learn a neural network model using tenfold cross vali-
dation on 10,000 hard profiles and test on 1,000 hard pro-
files. The input features are the positional matrix, in- and
out-degrees and plurality and Borda scores of all alternatives
in the WMG.

Sampling Is Efficient. We test different algorithms with
200 samples and observe a large reduction in running time.
The fastest combination is MC(LP) with sampling (in Ta-
ble 3) with only 2.87s in running time and 0.08s in 100%-
discovery time on average. Sampling has the least improve-
ment with p-value 0.02 when applied to nDFS.

Algorithms Perform Well on Real-World Data. Using
Preflib data, we find that MC(LP) performs better than naive
DFS without local priority. We compare the two algorithms
on 161 profiles with partial order. For MC(LP), the average
running time and 100%-discovery time are 1.33s and 1.26s,
which have 46.0% and 47.3% reduction respectively com-
pared to naive DFS. On 307 complete order profiles, the av-
erage running time and 100%-discovery time of MC(LP) are
both around 0.0179s with only a small reduction of 0.7%,
which is due to most profiles being easy cases without ties.



without sampling with sampling
nDFS(LP) | MC(LPML) | MC(LP) | nDFS(LP) | MC(LPML) | MC(LP)
Avg. running time (S) 7.6571 7.9858 7.7081 7.5291 3.0395 2.8692
Avg. 100%-discovery time (s) 0.2778 6.7876 6.4058 0.0531 0.2273 0.0823

Table 3: Experiment results for PUT-RP.

10 |
) //__./_.:':'
= 0.1
[}
£
=]
0.01 i
-e-nDFS
—o-nDFS+Sampling
0.001 S
—MC(LPML)
——MC(LP)+Sampling
0.0001 —e—MC(LPML)+Sampling

0% 10% 20% 30% 40% 50% 60%

% winners discovered

70% 80% 90% 100%

Figure 6: PUT-RP early discovery.

In both experiments, we omit profiles with thousands of al-
ternatives but very few votes which cause our machines to
run out of memory.

5.4 The Impact of the Size of Datasets on the
Algorithms

The sizes of m and n have different effects on searching
space. Our algorithms can deal with larger numbers of voters
(n) without any problem. In fact, increasing n reduces the
likelihood of ties, which makes the computation easier.

But for larger m, the issue of memory constraint which
comes from using cache to store visited states, becomes cru-
cial. Without using cache, DFS becomes orders of magni-
tude slower. Our algorithm for PUT-STV with m > 30 ter-
minates with memory errors due to the exponential growth
in state space, and our algorithm for PUT-RP is in a simi-
lar situation. Even with as few as m = 10 alternatives, the

search space grows large. There are 3(1;) possible states of
the graph. For m = 10, this is 2.95 x 10%! states. As such,
due to memory constraints, currently we are only able to run
our algorithms on profiles of size m = n = 10 for PUT-RP.

6 Integer Linear Programming

ILP for PUT-STV and Results. The solutions correspond
to the elimination of a single alternative in each of m — 1
rounds and we test whether a given alternative is the PUT-
winner by checking if there is a feasible solution when we
enforce the constraint that the given alternative is not elim-
inated in any of the rounds. We omit the details due to the
space constraint. Table 4 summarizes the experimental re-
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sults obtained using Gurobi’s ILP solver. Clearly, the ILP
solver takes far more time than even our most basic search
algorithms without improvements.

m 10 20 30
n 10 20 30
# Profiles 1000 2363 21
Avg. Runtime(s) | 1.14155 | 155.1874 | 12877.2792

Table 4: ILP results for PUT-STV.

ILP for PUT-RP. We develop a novel ILP based on the char-
acterization by Zavist and Tideman (Theorem 2). Let the in-
duced weight (IW) between two vertices a and b be the max-
imum path weight over all paths from « to b in the graph.
The path weight is defined as the minimum edge weight of a
given path. An edge (u, v) is consistent with a ranking R if
w is preferred to v by R. Gy is a graph whose vertices are .4
and whose edges are exactly every edge in wmg-,,(P) con-
sistent with a ranking R. Thus there is a topological ordering
of G g that is exactly R.

Example 3. In Figure 2, consider the induced weight from
D to A in the bottom left graph. There are three distinct
paths: P = {D — A}, P, ={D — C — A}, and P; =
{D — C — B — A}. The weight of P, or W(Py) = 1,
W(Pz) = 3 and W(Ps) = 1. Thus, IW(D,A) = 3, and
note that IW(D, A) > wa,py = —1.

Theorem 2. (Zavist and Tideman 1989) For any profile
P and for any strict ranking R, the ranking R is the out-
come of the ranked pairs procedure if and only if Gr sat-
isfies the following property for all candidates i,j € A:
Vi =g g, IW(i, ) = w(j,i)-

Based on Theorem 2, we provide a novel ILP formulation
of the PUT-RP problem. See Appendices A.2 for details.
Results. Out of 1000 hard profiles, the RP ILP ran faster
than DFS on 16 profiles. On these 16 profiles, the ILP took
only 41.097% of the time of the DFS to compute all PUT-
winners on average. However over all 1000 hard profiles,
DFS is much faster on average: 29.131 times faster. We pro-
pose that on profiles where DFS fails to compute all PUT-
winners, or for elections with a large number of candidates,
we can fall back on the ILP to solve PUT-RP.

7 Future Work

There are many other strategies we wish to explore. For
the heuristic function, there are more local priority func-
tions we could test based on exploiting specific structures
of the voting rules to encourage early discovery. Further ma-
chine learning techniques or potentially reinforcement learn-
ing could prove useful here. For PUT-RP, we want to specif-
ically test the performance of our SCC-based algorithm on



large profiles with many SCCs, since currently our dataset
contains a low proportion of multi-SCC profiles. Also, we
want to extend our search algorithm to multi-winner voting
rules like the Chamberlin—Courant rule, which is known to
be NP-hard to compute an optimal committee for general
preferences (Procaccia, Rosenschein, and Zohar 2007).
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A Appendices
A.1 Proof of Theorem 1

Suppose H (A, E) is composed of SCCs S; (i
1,---, k), and the set of bridge edges B. We need to prove

= (A, BU Ule C;) is a maximal child of H, where
C; is one of the maximal children of S;. Suppose for con-
tradiction that C' is not one maximal child of H. From
Lemma 1 we have that C'is acyclic. then it suffice that J e €

E\(BUUL, C:) = (BuUL 8\ (BUUL Gi) =
Ule Si\Ci,st.{efUBU Ule C; is still acyclic.
W.lo.g., let’s assume e € S1 \ C1. So {e} UCY is acyclic.

But this contradicts the fact that C'; is a maximal child of .S,
since by definition, ¥V ¢’ € Sy \ C1, C; U {e'}is cyclic. O
Lemma 1. For any directed graph H = (A, E), composed
of strongly connected components S; (i = 1,--- k), and
the set of bridge edges B, the directed graph G = (A, B U

Ule C;) is also acyclic, where C; is one of the maximal
children of S;.

A.2 ILP Formulation for PUT-RP

We can test whether a given alternative ¢* is a PUT-RP win-
ner if there is a solution subject to the constraint that there is
no path from any other alternative to ¢*. The variables are:
(1) A binary indicator variable X f j of whether there is an
i — j path using locked in edges from |JT;<,, for each
1,7 < m,t < K. (ii) A binary indicator variable Ytj i of
whether there is an ¢ — k path involving node j using locked
in edges from tiers | J T;<¢, foreach 4, j, k < m,t < K.

We can determine all PUT-winners by selectmg every al-
ternative ¢* < m, adding the constraint } ., g X i
0, and checking the feasibility with the constramts below
e To enforce Theorem 2, for every pair % j < m, such that
(4,4) € Ty, we add the constraint X} . > X
° In addition, we have constraints to ensure that (i) locked in
edges from | J, . ;- T induce a total order over A by enforc-

ing asymmetry and transitivity constraints on X’ K variables,

and (ii) enforcing that if X{ ; = 1, then Xt?t = 1
o Constraints ensuring Inaxunum weight paths are selected:

W$k<mt<K

szt]k—Xt +Xt

t
t it Xk
Yijk < 2f

1—j—=k
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Vi k <m,t <K, .
iMLMEE@ﬂXhEXﬁ:k%m
Vi <m,

&ka%w

Xik < Djem Vi

Xf,k <Y iem Vit x5

if (i, k) € Ty, ik

if (i,k) € Tiey,
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