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Abstract

Liquid democracy is a proxy voting method where proxies are
delegable. We propose and study a game-theoretic model of
liquid democracy to address the following question: when is
it rational for a voter to delegate her vote? We study the exis-
tence of pure-strategy Nash equilibria in this model, and how
group accuracy is affected by them. We complement these
theoretical results by means of agent-based simulations to
study the effects of delegations on group’s accuracy on vari-
ously structured social networks.

Introduction
Liquid democracy (Blum and Zuber 2016) is an influen-
tial proposal in recent debates on democratic reforms in
both Europe and the US. Several grassroots campaigns, as
well as local parties, experimented with this novel type of
decision making procedure. Examples include the German
Piratenpartei1 and the EU Horizon 2020 project WeGov-
Now (Boella et al. 2018), which have incorporated the Liq-
uidFeedback2 platform in their decision making, as well
as grass-roots organizations such as the Democracy Earth
Foundation3. Liquid democracy is a form of proxy voting
(Miller 1969; Tullock 1992; Alger 2006; Green-Armytage
2015; Cohensius et al. 2017) where, in contrast to classical
proxy voting, proxies are delegable (or transitive, or trans-
ferable). Suppose we are voting on a binary issue, then each
voter can either cast her vote directly, or she can delegate her
vote to a proxy, who can again either vote directly or, in turn,
delegate to yet another proxy, and so forth. Ultimately, the
voters that decided not to delegate cast their ballots, which
now carry the weight given by the number of voters who
entrusted them as proxy, directly or indirectly.

Contribution The starting point of our analysis is an of-
ten cited feature of liquid democracy: transitive delegations
reduce the level of duplicated effort required by direct vot-
ing, by freeing voters from the need to invest effort in order
to vote accurately. The focus of the paper is the decision-
making problem that voters, who are interested in casting an

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1https://www.piratenpartei.de/
2https://liquidfeedback.org/
3https://www.democracy.earth/

accurate vote, face between voting directly, and thereby in-
curring a cost in terms of effort invested to learn about the
issue at hand, or delegating to another voter in their network,
thereby avoiding costs. We define a game-theoretic model,
called delegation game, to represent this type of interaction.
We establish pure strategy Nash equilibrium existence re-
sults for classes of delegation games, and study the quality
of equilibria in terms of the average accuracy they enable for
the population of voters, both analytically and through sim-
ulations. Proofs of the two main results (Theorems 1 and 2)
are presented in full, while we provide proofs of the simpler
secondary results only as supplementary material.4

By means of simulations we also study the effects of dif-
ferent network structures on delegation games in terms of:
performance against direct voting, average accuracy and the
probability of a correct majority vote, the number and qual-
ity of voters acting as ultimate proxies (so-called gurus) and,
finally, the presence of delegation cycles. To the best of our
knowledge, this is the first paper providing a comprehensive
study of liquid democracy from a game-theoretic angle.

Related Work Although the idea of delegable proxy was
already sketched by Dodgson (1884), only a few very re-
cent papers have studied aspects of liquid democracy in the
(computational) social choice theory (Brandt et al. 2016)
literature. Kling et al. (2015) provide an analysis of elec-
tion data from the main platform implementing a liquid
democracy voting system (Liquid Feedback) for the Ger-
man Piratenpartei. They focus on network theoretic prop-
erties emerging from the structure of delegations—with par-
ticular attention to the number of highly influential gurus
or ‘super-voters’. Inspired by their experimental analysis,
Gölz et al. (2018) propose and analyze a variant of the liquid
democracy scheme able to restrict reliance on super-voters.
Skowron et al. (2017) study an aspect of the Liquid Feed-
back platform concerning the order in which proposals are
ranked and by which they are brought to the attention of
the community. Boldi et al. (2011) investigate applications
of variants of the liquid democracy voting method (called
viscous democracy) to recommender systems. Brill (2018)
presents some research directions in the context of liquid
democracy. A general, more philosophical discussion of liq-
uid democracy is provided by Blum and Zuber (2016).

4https://arxiv.org/abs/1802.08020
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More directly related to our investigations is the work
by Christoff and Grossi (2017) and, especially, by Kahng,
Mackenzie, and Procaccia (2018). The first paper studies liq-
uid democracy as an aggregator—a function mapping pro-
files of binary opinions to a collective opinion—in the judg-
ment aggregation and binary voting tradition (Grossi and
Pigozzi 2014; Endriss 2016). The focus of that paper are the
unintended effects that transferable proxies may have due to
delegation cycles, and due to the failure of rationality con-
straints normally satisfied by direct voting.

The second paper addresses one of the most cited sell-
ing arguments for liquid democracy: delegable proxies guar-
antee that better informed agents can exercise more weight
on group decisions, thereby increasing their quality. Specif-
ically, Kahng, Mackenzie, and Procaccia (2018) study the
level of accuracy that can be guaranteed by liquid democ-
racy (based on vote delegation with weighted majority) vs.
direct voting by majority. Their key result consists in show-
ing that no ‘local’ procedure to select proxies can guarantee
that liquid democracy is, at the same time, never less accu-
rate (in large enough graphs) and sometimes strictly more
accurate than direct voting. In contrast to their work, we as-
sume that agents incur costs (effort) when voting directly,
and on that basis we develop a game-theoretic model. Also,
we assume agents aim at tracking their own type rather than
an external ground truth, although we do assume such a re-
striction in our simulations to better highlight how the two
models are related and to obtain insights applicable to both.

Preliminaries
Types, Individual Accuracy and Proximity
We are concerned with a finite set of agents (or voters, or
players) N = {1, . . . , n} having to decide whether x = 1 or
x = 0. For each agent one of these two outcomes is better,
but the agent is not necessarily aware which one. We refer
to this hidden optimal outcome as the type of agent i and
denote it by τi ∈ {0, 1}. Agents want to communicate their
type truthfully to the voting mechanism, but they know it
only imperfectly. This is captured by the accuracy qi of an
agent i: qi determines the likelihood that, if i votes directly,
she votes according to her type τi. We assume that an agent’s
accuracy is always≥ 0.5, i.e., at least as good as a coin toss.

We distinguish two settings depending on whether the
agents’ types are deterministic or probabilistic. A determin-
istic type profile T = 〈τ1, . . . , τn〉 simply collects each
agent’s type. In probabilistic type profiles types are indepen-
dent random variables drawn according to a distribution P.
Given a probabilistic type profile, the likelihood that any two
agents i, j ∈ N are of the same type is called the proximity
pi,j where pi,j = P(τ(i) = τ(j)) = P(τ(i) = 1) ·P(τ(j) =
1)+(1−P(τ(i) = 1))·(1−P(τ(j) = 1)). In the probabilistic
setting we assume agents know such value although, impor-
tantly, they do not know P. In a deterministic type profile,
we have pi,j = 1 if τi = τj and pi,j = 0 otherwise. Fol-
lowing standard equilibrium theory, our theoretical results
assume agents act as if they have access to the accuracy of
each agent. More realistically, in our simulations we assume
agents have access to such information only with respect to

neighbors on an underlying interaction structure.

Interaction Structure and Delegations
Agents are nodes in a network (directed graph) represented
by a relation R ⊆ N2. For i ∈ N the neighborhood of i in
〈N,R〉 is denoted R(i), i.e., the agents that are directly con-
nected to i. Agents have the choice of either voting them-
selves, thereby relying solely on their own accuracy, or del-
egating to an agent in their neighborhood. A delegation pro-
file is a vector d = 〈d1, . . . , dn〉 ∈ Nn. Given a delega-
tion profile d we denote by di the proxy selected by i in d.
Clearly a delegation profile can be viewed as a functional
graph on N or, equivalently, as a map in d : N → N
where d(i) = di. When the iterated application of d from
i reaches a fixed point we denote such fixed point as d∗i
and call it i’s guru (in d). In the following, we write N∗
to denote the set of voters whose delegation does not lay
on a path ending on a cycle, i.e., the set of voters i for
which d∗i exists. We write d′ = (d−i, j) as a short form
for d′ = 〈d1, . . . , di−1, j, di+1, . . . , dn〉.

As agents may only be able to observe and interact with
their direct network neighbors, structural properties of the
interaction network may play a role in the model dynamics.
In our simulations we will focus on undirected graphs (that
is,R will be assumed to be symmetric, as social ties are nor-
mally mutual) consisting of one single connected component
(that is, N2 is included in the reflexive transitive closure of
R). Under these assumptions, we consider four typical net-
work structures that are well represented in the literature on
social network analysis (cf. Jackson 2008): 1) the random
network, in which each pair of nodes has a given probability
of being connected (Erdös and Rényi 1959); 2) the regular
network, in which all nodes have the same degree; 3) the
small world network, which features a small average path
length and high clustering (Watts and Strogatz 1998); and 4)
the scale free network, which exhibits a power law degree
distribution (Barabási and Albert 1999).5

A Model of Rational Delegations
Individual Accuracy under Delegable Proxy
Each agent i has to choose between two options: either to
vote herself with accuracy qi or to delegate, thereby inher-
iting the accuracy of another voter (unless i is involved in
a delegation cycle). These choices are recorded in the dele-
gation profile d and can be used to compute the individual
accuracy for each agent i ∈ N∗ as follows:

q∗i (d) =

{
qd∗i · pi,d∗i + (1− qd∗i ) · (1− pi,d∗i ) if i ∈ N∗
0.5 if i /∈ N∗

(1)

In (1) i’s accuracy equals the likelihood that i’s guru has
the same type and votes accurately plus the likelihood that
i’s guru has the opposite type and fails to vote accurately.
Note that if i votes directly, i.e., di = i, then q∗i (d) = qi.

5Although random and regular graphs are not generally appli-
cable to real-world settings, they serve as a useful baseline to illus-
trate the effects of network structure on delegations.
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Observe that if i’s delegation leads to a cycle (i /∈ N∗), i’s
accuracy is set to 0.5. The rationale for this assumption is
the following. If an agent delegates into a cycle, even though
she knows her own accuracy and she actively engages with
the voting mechanism by expressing a delegation, she fails
to pass information about her type to the mechanism. No
information is therefore available to decide about her type.

It may be worth observing that, by (1), in a deterministic
type profile we have that pi,j ∈ {0, 1} and therefore i’s ac-
curacy reduces to: qd∗i if i ∈ N∗ and τ(i) = τ(d∗i ); 1−qd∗(i)
if i ∈ N∗ and τ(i) 6= τ(d∗i ); and 0.5 if i /∈ N∗.

Before introducing our game theoretic analysis, we make
the following observation. Agents have at their disposal an
intuitive strategy to improve their accuracy: simply delegate
to a more accurate neighbor. We say that a delegation profile
d is positive if for all j ∈ N either dj = j or q∗j (d) > qj .
Furthermore, we say that a delegation from i to a neighbor j
is locally positive if qj · pi,j + (1− qj) · (1− pi,j) > qi.

Proposition 1. Let d be a positive delegation profile. Fur-
ther, let s, t ∈ N , ds = s, and d′ = (d−s, t), i.e., agent s
votes directly in d and delegates to t in d′. If the delegation
from s to t is locally positive, then d′ is positive.

However, locally positive delegations do not necessarily
correspond to optimal delegations. This can be easily seen in
an example where agent i is not a neighbor of a very compe-
tent agent j, but would have to delegate via an intermediate
agent k (who delegates to j). If this intermediate agent k
has a lower accuracy than i, then the delegation from i to
k would not be locally positive, even though it is an opti-
mal choice. So utility-maximization may require informa-
tion which is inherently non-local (accuracy of ‘far’ agents).

Delegation Games
We assume that each agent i has to invest an effort ei to man-
ifest her accuracy qi. If she delegates, she does not have to
spend effort. Agents aim therefore at maximizing the trade-
off between the accuracy they can achieve (either by voting
directly or through proxy) and the effort they spend. Un-
der this assumption, the binary decision set-up with dele-
gable proxy we outlined above can be used to define a natu-
ral game—called delegation game—G = 〈N,P, R,Σi, ui〉,
with i ∈ N , where N is the set of agents, P is the (possibly
degenerate) distribution from which the types of the agents
in N are drawn, R the underlying network as defined above,
Σi ∈ N is the set of strategies of agent i (voting, or choosing
a specific proxy), and

ui(d) =

{
q∗i (d) if di 6= i

qi − ei if di = i
(2)

is agent i’s utility function. The utility i extracts from a dele-
gation profile equals the accuracy she inherits through proxy
or, if she votes, her accuracy minus the effort spent.6 In del-
egation games we assume that qi − ei ≥ 0.5 for all i ∈ N .
This is because if qi−ei < 0.5, then iwould prefer a random
effortless choice over taking a decision with effort.

6No utility is accrued for gaining voting power in our model.

vote delegate (to 1)
vote q1− e1, q2− e2 q1 − e1, q1

delegate (to 2) q2, q2 − e2 0.5, 0.5

Table 1: A two-player delegation game. The row player is
agent 1 and the column player is agent 2.

A few comments about the setup of (2) are in order. First
of all, as stated earlier, we assume agents to be truthful. They
do not aim at maximizing the chance their type wins the
vote, but rather to relay their type to the mechanism as accu-
rately as possible.7 Secondly, notice that the utility an agent
extracts from a delegation profile may equal the accuracy of
a random coin toss when the agent’s delegation ends up into
a delegation cycle (cf. (1)). If this happens the agent fails
to relay information about her type, even though she acted
in order to do so. This justifies the fact that 0.5 is also the
lowest payoff attainable in a delegation game.

The following classes of delegation games will be used
in the paper: games with deterministic profiles, i.e., where
P is degenerate and all players are assigned a crisp type
from {0, 1}; homogeneous games, where all players have
the same (deterministic) type;8 and effortless voting games,
where for each i ∈ N we have ei = 0.

As an example, a homogeneous game in matrix form is
given in Table 1, where N = {1, 2}, R = N2 and the distri-
bution yields the deterministic type profile T = 〈1, 1〉. Inter-
estingly, if we assume that qi−ei > 0.5 with i ∈ {1, 2}, and
that9 q−i > qi − ei (i.e., the opponent’s accuracy is higher
than the player’s individual accuracy minus her effort), then
the game shares the ordinal preference structure of the class
of anti-coordination games: players need to avoid coordina-
tion on the same strategy (one should vote and the other del-
egate), with two coordination outcomes (both players voting
or both delegating) of which the second (the delegation cy-
cle) is worst for both players. Notice that, were the underly-
ing network not complete (i.e., R ⊂ N2), the matrix would
be shrunk by removing the rows and columns corresponding
to the delegation options no longer available.

The introduction of effort has significant consequences on
the delegation behavior of voters, and we will study it in
depth in the coming sections. It is worth noting immediately
that the assumptions of Proposition 1 no longer apply, since
agents may prefer to make delegations that are not locally
positive due to the decreased utility of voting directly.

Existence of Equilibria in Delegation Games
In this section we study the existence of pure strategy Nash
Equilibria (NE) in two classes of delegation games. NE

7Notice however that our modeling of agents’ utility remains
applicable in this form even if agents are not truthful but the under-
lying voting rule makes truthfulness a dominant strategy—such as
majority in the binary voting setting used here.

8This is the type of interaction studied, albeit not game-
theoretically, by Kahng, Mackenzie, and Procaccia (2018) and nor-
mally assumed by jury theorems (Grofman, Owen, and Feld 1983).

9We use here the usual notation −i to denote i’s opponent.
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describe how ideally rational voters would resolve the ef-
fort/accuracy trade-off. Of course, such voters have common
knowledge of the delegation game structure—including,
therefore, common knowledge of the accuracies of ‘distant’
agents in the underlying network. Our simulations will later
lift some of such epistemic assumptions built into NE.

Deterministic Types In the following we provide a NE
existence result for games with deterministic type profiles.

Theorem 1. Delegation games with deterministic type pro-
files always have a (pure strategy) NE.

Proof. First of all, observe that since the profile is determin-
istic, for each pair of agents i and j, pi,j ∈ {0, 1}. The proof
is by construction. First, we partition the set of agentsN into
N1 = {i ∈ N | τ(i) = 1} and N0 = {i ∈ N | τ(i) = 0}.
We consider these two sets separately; without loss of gen-
erality let us consider N1. Further we consider the network
R1 = {(i, j) ∈ N1 ×N1 : (i, j) ∈ R}. Since (N1, R1) can
be seen as a directed graph, we can partition it into Strongly
Connected Components (SCCs). If we shrink each SCC into
a single vertex, we obtain the condensation of this graph;
note that such a graph is a directed acyclic graph (DAG).
We construct a delegation profile d by traversing this DAG
bottom up, i.e., starting with leaf SCCs.

Let S ⊆ N1 be a set of agents corresponding to a leaf SCC
in the condensation DAG. We choose an agent i in S that has
maximum qi − ei. Everyone in S (including i) delegates to
i. Now let S ⊆ N1 be a set of agents corresponding to an
inner node SCC in the condensation DAG and assume that
we have already defined the delegation for all SCCs that can
be reached from S. As before, we identify an agent i ∈ S
with maximum qi − ei. Further, let T ⊆ N1 \ S be the set
of all voters j that can be reached from S in (N1, R1), and
for which q∗j > qi− ei. We distinguish two cases. (i) If T 6=
∅, then we choose an agent k ∈ T with q∗k = maxj∈T q∗j
and all agents in S directly or indirectly delegate to k. (ii)
If T = ∅, all agents in S delegate to i. This concludes our
construction (as for N0 the analogous construction applies);
let d be the corresponding delegation profile.

It remains to verify that this is indeed a NE: Let i be some
agent in an SCC S, and, without loss of generality, let i ∈
N1. Observe that since we have a deterministic profile, if
agent i changes her delegation to j, then i’s utility changes
to q∗j (d) if i ∈ N1 and 1 − q∗j (d) if i ∈ N0. First, note
that for all agents k ∈ N , q∗k(d) ≥ qk − ek ≥ 0.5. Hence,
we can immediately exclude that for agent i delegating to an
agent in j ∈ N0 is (strictly) beneficial, as it would yield an
accuracy of at most 1 − q∗j ≤ 0.5. Towards a contradiction
assume there is a beneficial deviation to an agent j ∈ N1,
i.e., there is an agent j ∈ R(i)∩N1 with q∗j (d) > q∗i (d). Let
us now consider the three cases: (1) di = i, (2) d∗i ∈ S but
di 6= i, and (3) d∗i /∈ S. In case (1), everyone in S delegates
to i. Hence, if j ∈ S, a cycle would occur yielding a utility
of 0.5, which is not sufficient for a beneficial deviation. If
a delegation to j /∈ S is possible but was not chosen, then
by construction q∗j ≤ qi − ei and hence this deviation is
not beneficial. We conclude that in case (1) such an agent
j cannot exist. In case (2), everyone in S delegates to d∗i .

Hence, if j ∈ S, then d∗j = d∗i , a contradiction. If j /∈ S,
the same reasoning as before applies and hence also here we
obtain a contradiction. In case (3), by construction, d∗i /∈ S
had been chosen to maximise accuracy, hence j ∈ S. Since
for all k ∈ S, d∗k = d∗i , only a deviation to i itself can be
beneficial, i.e., j = i. However, since d∗i was chosen because
q∗d∗(i) > qi − ei, no beneficial deviation is possible.

It follows that also homogeneous games always have NE.

Effortless Voting Effortless voting (ei = 0 for all i ∈ N )
is applicable whenever effort is spent in advance of the de-
cision and further accuracy improvements are not possible.

Theorem 2. Delegation games with effortless voting always
have a (pure strategy) NE.

Proof. We prove this statement by showing that the follow-
ing procedure obtains a NE: We start with a strategy profile
in which all players vote directly, i.e., player i’s strategy is
i. Then, we iteratively allow players to choose their indi-
vidual best response strategy to the current strategy profile.
Players act sequentially in arbitrary order. If there are no
more players that can improve their utility by changing their
strategy, we have found a NE. We prove convergence of this
procedure by showing that a best response that increases the
player’s utility never decreases the utility of other players.

We proceed by induction. Assume that all previous best
responses have not reduced any players’ utility (IH). Assume
player i now chooses a best response that increases her util-
ity. Let d be the delegation profile; further, let d∗i = s. By
assumption, i’s utility started with qi − ei = qi and has not
decreased since, i.e., ui(d) ≥ qi. Since i’s best response
strictly increases i’s utility, it cannot be a delegation to her-
self. So let a delegation to j 6= i be i’s best response and
consider profile d′ = (d−i, j). Further, let d∗j = t, i.e., i
now delegates to j and by transitivity to t, i.e., d′∗i = d′∗j = t.
Let k be some player other than i. We define the delegation
path of k as the sequence (d(k),d(d(k)),d(d(d(k))), . . . ).
If k’s delegation path does not contain i, then k’s utility re-
mains unchanged, i.e., uk(d′) ≥ uk(d). If k’s delegation
path contains i, then k now delegates by transitivity to t, i.e.,
we have d∗k = s and d′∗k = t. By Equation (2), we have

uk(d) = qs · pk,s + (1− qs) · (1− pk,s) and (3)

uk(d′) = qt · pk,t + (1− qt) · (1− pk,t). (4)

We have to show that k’s utility does not decrease, i.e.,
uk(d′) ≥ uk(d), under the assumption that i chooses a best
response, i.e., ui(d′) > ui(d), with:

ui(d) = qs · pi,s + (1− qs) · (1− pi,s) and (5)

ui(d
′) = qt · pi,t + (1− qt) · (1− pi,t). (6)

In the following we will often use the fact that, for a, b ∈
[0, 1], if ab+ (1−a)(1− b) ≥ 0.5, then either a, b ∈ [0, 0.5]
or a, b ∈ [0.5, 1]. By IH, since accuracies are always at least
0.5, it holds that ui(d) ≥ qi ≥ 0.5 and by Equation (5) we
have qs ·pi,s+(1−qs)·(1−pi,s) ≥ 0.5 and hence pi,s ≥ 0.5.
Analogously, Equation (3) implies that pk,s ≥ 0.5.
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Furthermore, we use the fact that

pk,i = pk,sps,i + (1− pk,s)(1− ps,i)
+ (−2(2xk − 1) · (2xi − 1) · (xs − 1)xs)

(7)

where xj = P(τ(j) = 1) for j ∈ {k, i, s}. Observe that,
by the definition of utility in (2), the assumptions made on d
and d′, and the fact that for a, b ∈ [0, 1], if ab+ (1− a)(1−
b) ≥ 0.5, then either a, b ∈ [0, 0.5] or a, b ∈ [0.5, 1]. So
we have that either xj ≥ 0.5 for j ∈ {k, i, s}, or xj ≤ 0.5
for j ∈ {k, i, s}. We work on the first case. The other case
is symmetric. Let also γk,s,i = −2(2xk − 1) · (2xi − 1) ·
(xs − 1)xs. From the above it follows that 0.5 ≥ γk,i,s ≥
0. Furthermore, given that pi,s = ps,i ≥ 0.5, we can also
conclude that pk,i ≥ 0.5. Now by substituting

pk,s = pk,ipi,s + (1− pk,i)(1− pi,s)
+ (−2(2xk − 1) · (2xs − 1) · (xi − 1)xi︸ ︷︷ ︸

γk,i,s

)

in Equation (3), we obtain

uk(d) = (2pk,i − 1)(

ui(d)︷ ︸︸ ︷
2qspi,s − qs − pi,s + 1)

+ 1− pk,i + γk,i,s(2qs − 1).

(8)

Similarly, using the appropriate instantiation of (7) for xj
with j ∈ {k, i, t}, by substituting pk,i · pi,t + (1− pk,i)(1−
pi,t) + γk,i,t for pk,t in Equation (4) we obtain

uk(d′) = (2pk,i − 1) · (
ui(d

′)︷ ︸︸ ︷
2qtpi,t − qt − pi,t + 1)

+ 1− pk,i + γk,i,t(2qt − 1).

(9)

Now observe that, since pk,i ≥ 0.5 we have that (2pk,i −
1) ≥ 0. It remains to compare γk,i,s(2qs − 1) with
γk,i,t(2qt − 1), showing the latter is greater than the former.
Observe that both expressions have a positive sign. We use
the fact that ab+(1−a)(1−b) < cd+(1−c)(1−d) implies
cd > ab under the assumption that a, b, c, d ∈ [0.5, 1]. On
the basis of this, and given that ui(d′) > ui(d), we obtain
that qs · pi,s < qt · pi,t and therefore that qs · xs < qt · xt,
from which we can conclude that

(

γk,i,s︷ ︸︸ ︷
−2(2xk − 1) · (2xs − 1) · (xi − 1)xi) · (2qs − 1)

< (−2(2xk − 1) · (2xt − 1) · (xi − 1)xi︸ ︷︷ ︸
γk,i,t

) · (2qt − 1).

It follows that the assumption ui(d
′) > ui(d) (player i

chose a best response that increased her utility) together with
Equations (8) and (9) implies that uk(d′) > uk(d) (and a
fortiori that uk(d′) ≥ uk(d)). We have therefore shown that
if some player chooses a best response, the utility of other
players does not decrease. This completes the proof.

Discussion The existence of NE in general delegation
games remains an interesting open problem. It should be
noted that the proof strategies of both Theorems 1 and 2 do
not work in the general case. Without a clear dichotomy of

type it is not possible to assign delegations for all agents in
an SCC (as we do in the proof of Theorem 1). And the key
property upon which the proof of Theorem 2 hinges (that
a best response of an agent does not decrease the utility of
other agents) fails in the general case due to the presence
of non-zero effort. Finally, it should also be observed that
Theorem 2 (as well as Proposition 1) essentially depend on
the assumption that types are independent random variables.
If this is not the case (e.g., because voters’ preferences are
correlated), delegation chains can become undesirable.

Example 1. Consider the following example with agents
1, 2 and 3. The probability distribution P is defined as
P(τ(1) = 1 ∧ τ(2) = 1 ∧ τ(3) = 0) = 0.45, P(τ(1) =
0 ∧ τ(2) = 1 ∧ τ(3) = 1) = 0.45, and P(τ(1) =
1 ∧ τ(2) = 1 ∧ τ(3) = 1) = 0.1. Consequently, p1,2 =
0.55, p2,3 = 0.55, and p1,3 = 0.1. Let us assume that
the agents’ accuracies are q1 = 0.5001, q2 = 0.51, and
q3 = 0.61. A delegation from agent 1 to 2 is locally pos-
itive as q2 · p1,2 + (1 − q2) · (1 − p1,2) = 0.501 > q1.
Furthermore, a delegation from 2 to 3 is locally positive
as q3 · p2,3 + (1 − q3) · (1 − p2,3) = 0.511 > q2. How-
ever, the resulting delegation from 1 to 3 is not positive since
q3 · p1,3 + (1− q3) · (1− p1,3) = 0.412.

Quality of Equilibria in Delegation Games
In delegation games players are motivated to maximize
the tradeoff between the accuracy they acquire and the ef-
fort they spend for it. A natural measure for the quality
of a delegation profile is, therefore, how accurate or in-
formed a random voter becomes as a result of the dele-
gations in the profile, that is, the average accuracy (i.e.,
q̄∗(d) = 1

n

∑
i∈N q

∗
i (d)) players enjoy in that profile. One

can also consider the utilitarian social welfare SW(d) =∑
i∈N ui(d) of a delegation profile d. This relates to av-

erage accuracy as follows: q̄∗(d) =
SW(d)+

∑
i|d(i)=i ei

n .
It can immediately be noticed that equilibria do not nec-

essarily maximize average accuracy. On the contrary, in the
following example NE yields an average accuracy of close to
0.5, whereas an average accuracy of almost 1 is achievable.

Example 2. Consider an n-player delegation game where
all players have the same type and (i, j) ∈ R for all j and
all i > 1, i.e., player 1 is a sink in R and cannot delegate
to anyone, but all others can delegate to everyone. Further,
we have e1 = 0 and ei = 0.5 − ε for i ≥ 2. The respective
accuracies are q1 = 0.5+2ε and qi = 1. If player i ≥ 2 does
not delegate, her utility is 0.5 + ε. Hence, it is always more
desirable to delegate to player 1 (which yields a utility of
0.5+2ε for i). Consider now the profiles in which all players
delegate to player 1 (either directly or transitively). Player 1
can only vote directly (with utility 0.5+2ε). All such profiles
are NE with average accuracy 0.5 + 2ε. If, however, some
player j ≥ 2 chose to vote herself, all players (except 1)
would delegate to j thereby obtaining an average accuracy
of 1− 0.5−2ε

n , which converges to 1 for n → ∞. This is not
a NE, as j could increase her utility by delegating to 1.

The findings of the example can be made more explicit by
considering a variant of the price of anarchy for delegation
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games, based on the above notion of average accuracy. That
is, for a given delegation gameG, the price of anarchy (PoA)
of G is given by PoA(G) = maxd∈Nn q̄∗(d)

mind∈NE(G) q̄∗(d) , where NE(G)

denotes the set of pure-strategy NE of G.
Fact 1. PoA is bounded below by 1 and above by 2.

An informative performance metrics for liquid democracy
is the difference between the group accuracy after delega-
tions versus the group accuracy achieved by direct voting.
This measure, called gain, was introduced and studied by
Kahng, Mackenzie, and Procaccia (2018). Here we adapt it
to our setting as follows: G(G) =

(
mind∈NE(G) q̄

∗(d)
)
− q̄

where q̄ = q̄∗(〈1, . . . , n〉). That is, the gain in the delegation
game G is the average accuracy of the worst NE minus the
average accuracy of the profile in which no voter delegates.
It turns out that the full performance range is possible:
Fact 2. G is bounded below by −0.5 and above by 0.5.

The above bounds for PoA and gain provide only a very
partial picture of the performance of liquid democracy when
modeled as a delegation game. The next section provides a
more fine-grained perspective on the effects of delegations.

Simulations
We simulate the delegation game described above in a vari-
ety of settings. We restrict ourselves to homogeneous games.
This allows us to relate our results to those of Kahng,
Mackenzie, and Procaccia (2018). Our experiments serve to
both verify and extend the theoretical results of the previous
section. In particular we simulate the best response dynam-
ics employed in the proof of Theorem 2 and show that these
dynamics converge even in the setting with effort, which
we could not establish analytically. In addition, we inves-
tigate the dynamics of a one-shot game scenario, in which
all agents need to select their proxy simultaneously at once.

Setup We generate graphs of size N = 250 of each of the
four topologies random, regular, small world, and scale free,
for different average degrees, while ensuring that the graph
is connected. Agents’ accuracy and effort are initialized ran-
domly with qi ∈ [0.5, 1] and qi − ei ≥ 0.5. We average
results over 2500 simulations for each setting (25 randomly
generated graphs× 100 initializations). Agents correctly ob-
serve their own accuracy and effort, and the accuracy of their
neighbors. The game is homogeneous, so proximities are 1.

Each agent i selects from her neighborhood R(i) (which
includes i herself) the agent j that maximizes her expected
utility following Equation 2. We compare two scenarios. The
iterated best response scenario follows the procedure of the
proof of Theorem 2, in which agents sequentially update
their proxy to best-respond to the current profile d using
knowledge of their neighbors’ accuracy q∗i (d). In the one-
shot game scenario all agents choose their proxy only once,
do so simultaneously, and based only on their neighbors’ ac-
curacy. The latter setup captures more closely the epistemic
limitations that agents face in liquid democracy.

Iterated Best Response Dynamics
These experiments complement our existence theorems.
They offer insights into the effects of delegations on average

Degree 4 8 12 16 20 24
BR updates 298.1 261.7 254.2 251.6 250.6 250.0
(effortless) (18.2) (11.1) (6.9) (4.5) (3.3) (2.6)
Full passes 3.6 3.0 2.9 2.8 2.7 2.5
(effortless) (0.5) (0.1) (0.2) (0.4) (0.5) (0.5)
BR updates 294.7 259.4 252.9 250.9 250.2 249.9
(with effort) (18.4) (10.6) (6.6) (4.8) (4.9) (4.3)
Full passes 3.6 3.0 2.8 2.6 2.4 2.4
(with effort) (0.5) (0.3) (0.6) (0.8) (0.9) (1.0)

Table 2: Total number of best response updates by individ-
ual agents and corresponding full passes over the network
required for convergence. Reported are the mean (std.dev.)
over all network types. Note: not all agents update their dele-
gation at each full pass, but any single update requires an ad-
ditional pass to check whether the best response still holds.

Degree 4 8 12 16 20 24
maxj qj 0.8908 0.8908 0.8904 0.8909 0.8904 0.8910
q̄∗(d) 0.8906 0.8903 0.8897 0.8899 0.8890 0.8893

Table 3: Comparing the maximum accuracy across all agents
and the mean accuracy under delegation d for different net-
work degrees, averaged across network types. The differ-
ences are statistically significant (paired t-test, p = 0.05).

voter’s accuracy in equilibrium, and on the effects of differ-
ent network structures on how such equilibria are achieved.

We initialize qi ∼ N (0.75, 0.05) and first investigate the
case in which ei = 0 for all i (effortless voting). Across all
combinations of network types and average degrees ranging
from 4 to 24, we find that the best response dynamics con-
verges, as predicted by Theorem 2, and does so optimally
with d∗i = arg maxj qj for all i. We observe minimal dif-
ferences between network types, but see a clear inverse re-
lation between average degree and the number of iterations
required to converge (Table 2, top). Intuitively, more densely
connected networks facilitate agents in identifying their op-
timal proxies.

We accumulate results across all network types and com-
pare the effortless setting to the case in which effort is taken
into account. When we include effort ei ∼ N (0.025, 0.01),
we still observe convergence in all cases and, interestingly,
the number of iterations required does not change signifi-
cantly (Table 2, bottom). Although the process no longer re-
sults in an optimal equilibrium, each case still yields a sin-
gle guru j with qj ≈ maxk qk (less than 1% error) for all
k ∈ N . In this scenario, the inclusion of effort means that
a best response update of agent i no longer guarantees non-
decreasing accuracy and utility for all other agents, which
was a key property in the proof of Theorem 2. This effect
becomes stronger as the average network degree increases,
and as a result higher degree networks allow a greater dis-
crepancy between the maximal average accuracy achievable
and the average accuracy obtained at stabilization (Table 3).

In lower degree graphs (e.g. degree 4) we further observe
differences in convergence speed between the four differ-
ent network types which coincide with differences between
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the average path lengths in those graphs: a shorter average
distance between nodes yields a lower number of best re-
sponse updates. This is intuitive, as larger distances between
nodes mean longer delegation chains, but we have not yet
conducted statistical tests to verify this hypothesis.

One-Shot Delegation Games
Here we study one-shot interactions in a delegation game:
all agents select their proxy (possibly themselves) simulta-
neously among their neighbors; no further response is pos-
sible. This contrasts the previous scenario in which agents
could iteratively improve their choice based on the choices
of others. While Kahng, Mackenzie, and Procaccia (2018)
study a probabilistic model, we instead assume that agents
deterministically select as proxy the agent j ∈ R(i) that
maximizes their utility, as above. We compare q̄ and q̄∗ (the
average network accuracy without and with delegation, re-
spectively), as well as the probability of a correct majority
vote under both direct democracy PD and liquid democracy
PL where gurus carry as weight the number of agents for
whom they act as proxy. The difference PL − PD is again
similar to the notion of gain (Kahng, Mackenzie, and Pro-
caccia 2018). In line with Condorcet’s jury theorem (see
for instance Grofman, Owen, and Feld 1983) PD → 1 as
N →∞, and indeed for N = 250 we obtain PD ≈ 1.

First we again look at the effortless setting. Figure 1 (top)
shows both metrics for the four different network types and
for different average degrees. We observe that while q̄∗(d)
increases as the network degree increases (and in fact is al-
ways higher than q̄ without delegation), the probability of
a correct majority outcome, PL, simultaneously decreases.
This confirms the analysis of Kahng, Mackenzie, and Pro-
caccia (2018). We also observe that the number of gurus
decreases exponentially as the degree increases (Figure 2,
left). Simply put, giving all voting weight to a small group
of gurus increases the chance of an incorrect majority vote,
assuming that gurus have a less than perfect accuracy.

When we include effort (Figure 1, bottom), thereby mov-
ing away from the model of Kahng, Mackenzie, and Pro-
caccia (2018), we observe a drastic decrease in average net-
work accuracy combined with a lower probability of a cor-
rect majority outcome under liquid democracy, with both de-
creasing as network degree increases. The main reason is
the existence of delegation cycles in this case. This con-
trasts the best response setting above where agents could
iteratively reconsider their choice of proxy and thus avoid
cycles. Now, even with relatively low effort (mean 0.025),
up to half of all agents are stuck in a cycle (and thereby
fail to pass information about their type) when the degree
increases. This confirms results on the probability of delega-
tion cycles from Christoff and Grossi (2017) and stresses the
importance of cycle resolution in concrete implementations
of liquid democracy.

Figure 1 further highlights differences between the four
network types. Scale free networks yield a lower probability
of a correct majority outcome across all degrees, as well as
a larger number of gurus with a lower average accuracy and
longer delegation chains (Figure 2, right). Intuitively, this
indicates that one-shot interactions in scale free networks are

tance between nodes yields a lower number of best response
updates.9 This is intuitive, as larger distances between nodes
mean longer delegation chains, but we have not yet con-
ducted statistical tests to verify this hypothesis.

One-Shot Delegation Games
Here we study one-shot interaction in a delegation game:
all agents select their proxy (possibly themselves) simulta-
neously among their neighbors; no further response is pos-
sible. This contrasts the previous scenario in which agents
could iteratively improve their choice based on the choices
of others. While Kahng, Mackenzie, and Procaccia (2018)
study a probabilistic model, we instead assume that agents
deterministically select as proxy the agent j 2 R(i) that
maximizes their utility, as above. We compare q̄ and q̄⇤ (the
average network accuracy without and with delegation, re-
spectively), as well as the probability of a correct majority
vote under both direct democracy PD and liquid democracy
PL where gurus carry as weight the number of agents for
whom they act as proxy. The difference PL � PD is the no-
tion of gain (Kahng, Mackenzie, and Procaccia 2018). In
line with Condorcet’s jury theorem (see for instance Grof-
man, Owen, and Feld 1983) PD ! 1 as N ! 1, and in-
deed for N = 250 we obtain PD ⇡ 1.

First we again look at the effortless setting. Figure 1 (top)
shows both metrics for the four different network types and
for different average degrees. We observe that while q̄⇤(d)
increases as the network degree increases (and in fact is al-
ways higher than q̄ without delegation), the probability of
a correct majority outcome, PL, simultaneously decreases.
This confirms the analysis of Kahng, Mackenzie, and Pro-
caccia (2018). We also observe that the number of gurus
decreases exponentially as the degree increases (Figure 2,
left). Simply put, giving all voting weight to a small group
of gurus increases the chance of an incorrect majority vote,
assuming that gurus have a less than perfect accuracy.

When we include effort (Figure 1, bottom), thereby mov-
ing away from the model of Kahng, Mackenzie, and Procac-
cia (2018), we observe a drastic decrease in average network
accuracy combined with a lower probability of a correct ma-
jority outcome under liquid democracy, with both decreas-
ing as network degree increases. The main reason is the ex-
istence of delegation cycles in this case. This contrasts the
best response setting above where agents could iteratively
reconsider their choice of proxy and thus avoid cycles. Now,
even with relatively low effort (mean 0.025), up to half of all
agents are stuck in a cycle (and thereby fail to pass informa-
tion about their type) when degree increases. This confirms
results on the probability of delegation cycles from Christoff
and Grossi (2017) and stresses the importance of cycle reso-
lution in concrete implementations of liquid democracy such
as Liquid Feedback.

Finally, Figure 1 highlights differences between the four
network types. Scale free networks yield a lower probability
of a correct majority outcome across all degrees, as well as
a larger number of gurus with a lower average accuracy and

9More detailed results supporting this finding are presented in
the supplementary material, Appendix B.
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Figure 1: Top: Without effort. Bottom: With effort ei ⇠
N (0.025, 0.01). Left: average network accuracy under liq-
uid democracy. The solid (dashed) line shows the mean (std.
dev.) of q; the dotted line shows maxi qi. Right: probability
of a correct majority vote under liquid democracy.
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Figure 2: Percentage of guru nodes under d (left) and mean
distance between (non-guru) nodes and their gurus (right).

longer delegation chains (Figure 2, right). Intuitively, this
indicates that one-shot interaction in scale free networks is
more likely to end up in a local optimum. In contrast, small
world networks have short average distances and thus agents
are more likely to be close to their optimal guru.

Conclusions and Future Work
The paper introduced delegation games as a first game-
theoretic model of liquid democracy. Both our theoretical
and experimental results showed that voting effort is a key
ingredient for understanding how delegations form and what
their effects are. Our empirical findings provided further in-
sights into the influence of interaction networks on the qual-
ity of collective decisions in liquid democracy.

The paper opens up several directions of research. A gen-
eral NE existence theorem is the main open question. The
framework can then be generalized along natural lines, e.g.:

Figure 1: Top: Without effort. Bottom: With effort ei ∼
N (0.025, 0.01). Left: mean accuracy under liquid democ-
racy, q̄∗(d). The solid (dashed) line shows the mean (std.
dev.) of the initial accuracy q; the dotted line shows maxi qi.
Right: probability of a correct majority vote under d.
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Figure 2: Percentage of guru nodes under d (left) and mean
distance between (non-guru) nodes and their gurus (right).

more likely to end up in a local optimum. In contrast, small
world networks have short average distances and thus agents
are more likely to be close to their optimal guru. Finally, our
experiments highlight a key feature of liquid democracy: the
trade-off between a reduction in (total) effort against a loss
in average voting accuracy.

Conclusions and Future Work
The paper introduced delegation games as a first game-
theoretic model of liquid democracy. Both our theoretical
and experimental results showed that voting effort is a key
ingredient for understanding how delegations form and what
their effects are. Our empirical findings provided further in-
sights into the influence of interaction networks on the qual-
ity of collective decisions in liquid democracy.

The paper opens up several directions of research. A gen-
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eral NE existence theorem is the main open question. Our
model can then be generalized in many directions, e.g.: by
making agents’ utility dependent on voting outcomes; by
dropping the independence assumption on agents’ types; or
by assuming the voting mechanism has better than 0.5 accu-
racy in identifying the types of agents involved in cycles.
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