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Abstract

The bribery problem in elections asks whether an external
agent can make some distinguished candidate win or prevent
her from winning, by bribing some of the voters. This prob-
lem was studied with respect to the weighted swap distance
between two votes by Elkind et al. (2009). We generalize this
definition by introducing a bound on the distance between the
original and the bribed votes. The distance measures we con-
sider include a restriction of the weighted swap distance and
variants of the footrule distance, which capture some real-
world models of influence an external agent may have on the
voters. We study constructive and destructive variants of dis-
tance bribery for scoring rules and obtain polynomial-time
algorithms as well as NP-hardness results. For the case of
element-weighted swap and element-weighted footrule dis-
tances, we give a complete dichotomy result for the class of
pure scoring rules.

1 Introduction
In an election in which voters influence the election’s re-
sult by casting their votes they might not be the only agents
interested in its outcome. A well known example of strate-
gic influence on elections is bribery, formally introduced
by Faliszewski et al. (2009) (see also the book chapter by
Faliszewski and Rothe (2016)). By paying voters with a re-
source, e. g. money, to change their vote, an external agent
tries to change the election outcome to her advantage. In the
constructive case the aim is to make a specific candidate
a winner of the election, while in the destructive case the
briber tries to prevent a candidate from winning. Originally
the number of voters that can be bribed is limited. However,
there is no limitation to the amount of change within a vote.
It is natural to assume that a voter’s cost for changing her
vote to a large extent is higher than the cost for making small
adjustments. This intuition is modeled in the microbribery
problem introduced by Faliszewski et al. (2009), and in the
swap-bribery problem introduced by Elkind et al. (2009). In
both models the briber has to pay certain prices for swaps
of adjacent candidates. In order to obtain a more realistic
model, we propose to imply a bound on the distance between
the truthful and the bribed votes.
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The idea of limiting the distance between originally cast
votes and their altered versions in strategic influences is not
restricted to bribery. Obraztsova and Elkind (2012) have in-
troduced distances to manipulation, where a voter changes
her vote in order to subjectively improve the election out-
come. They focus on the unweighted swap distance and
footrule distance, and the maximum displacement distance
between the truthful and the strategic vote in the constructive
case. We propose to extend the study of distances to both,
the constructive and destructive bribery problem and use un-
weighted and weighted variants of the swap and footrule dis-
tance. One motivation for introducing a bound on the over-
all distance of the bribed profile follows from the work by
Obraztsova and Elkind (2012) on optimal manipulation. The
distance between a truthful and a manipulative vote should
be bounded since otherwise a manipulation may be detected
more easily. In a more positive sense bribery can be seen
as a form of campaign management where an external actor
tries to make her desired candidate win by running specific
campaigns. While the swap distance counts the inversions
of pairs of candidates, it is a more realistic approach to as-
sign a weight to a specific swap, as, in a natural election,
voters are often very sure about the positioning of some can-
didates, while being less concerned with others. We show
that different assumptions on how to calculate the weights
have a crucial influence on the complexity. The restriction
of element-weighted distance functions (studied by Kumar
and Vassilvitskii (2010) for linear orders) assigns a weight
to every candidate. The weight of a swap is the product of
the corresponding candidate weights. This can be seen as an
indicator of how sure a voter is about the position of a candi-
date in the vote. The same weight functions can also be ap-
plied to the footrule distance. Instead of inversions, here the
positions a candidate is shifted by are counted. The idea is to
measure the cumulative change in the candidate’s standing
in the vote, based on its position. In the weighted version,
the influence of one candidate on the standing of another
can be set by the weight function. Hence, the footrule dis-
tance is more realistic in terms of robustness or comparison
of profiles.

We study the computational complexity of distance
bribery for pure scoring rules with swap and footrule dis-
tances in the unweighted, element-weighted, and weighted
case. This includes showing how to exploit the relation-

1764



ships between the distances in order to transfer complexity
results but also demonstrating the limits by giving exam-
ples for cases where the complexity differs. Weights only
apply to the distances, votes remain unweighted. In par-
ticular, for the considered voting systems the destructive
case is never harder than the constructive one. We present
polynomial-time algorithms obtained through dynamic pro-
gramming and NP-completeness results, solving a number
of open questions from the literature. A detailed overview of
our results is given in Section 2.2.

2 Preliminaries

An election is a pair (C, V ) with a set of candidates C and
a list of voters V = (v1, . . . , vn) (also called profile), where
a vote vi is associated with a preference order >vi over the
candidates. If the vote vi is clear from the context we omit
the index or simply write >i. The set of all linear orders
over the candidates in C will be denoted by L(C). The posi-
tion of candidate c in vote vi will be denoted by pos(vi, c),
and the candidate on position k in vote vi will be denoted
by cand(vi, k). For two lists A = (a1, . . . , an) and B =
(b1, . . . , bk) of votes let A ∪ B = (a1, . . . , an, b1, . . . , bk)
be the concatenation of both lists. A voting rule is a function
E that maps an election (C, V ) to an element of 2C . In this
paper tie-breaking is not an issue since we focus on the so-
called non-unique winner model, where a bribery action is
successful if the designated candidate is one of the winning
candidates in the constructive case and if she is none of the
winners in the destructive case. However, our results can be
adapted to the unique winner case by slight changes.

We will consider different voting rules, all belonging to
the class of scoring rules. Every scoring rule is charac-
terized by a scoring vector ~α = (α1, α2, . . . , αm) with
α1 ≥ α2 ≥ · · · ≥ αm and value αj ∈ N0, for 1 ≤ j ≤ m,
where m ≥ 2 is the number of candidates, and will be de-
noted by E~α. Every candidate gets αj points according to her
position j in each vote. The winners are the candidates with
the maximum number of points. By score(C,V )(c) we denote
the points that candidate c gets in the election (C, V ). We as-
sume that at least two different entries in the scoring vector
exist. A scoring rule for an arbitrary number of candidates is
defined as a series of scoring vectors for which we can deter-
mine the scoring vector form candidates in polynomial-time
depending on m. We will focus on so called pure scoring
rules as defined by Betzler and Dorn (2010). A pure scor-
ing rule is a scoring rule, for which the scoring vector for
m candidates can be obtained from inserting a legal entry in
the vector for m− 1 candidates. We call a pure scoring rule
polynomially bounded, if α1 is bounded by a polynomial de-
pending on m. This includes plurality, which gives only one
point for a first position and k-approval, where one point is
given to every candidate placed in the top k positions of a
vote. Accordingly this includes veto and k-veto, which give
one point to all candidates but the candidate(s) in the last/last
k positions who get zero points, and also Borda, character-
ized by the scoring vector (m − 1,m − 2, . . . , 1, 0) for an
m-candidate election.

2.1 Distances
Now we will introduce different distance measures. For-
mally, a distance measure d on a space A is a mapping
d : A × A → R that fulfills the following properties for all
a, b, c ∈ A: (i) d(a, b) ≥ 0 (non-negativity), (ii) d(a, b) =
0 if and only if a = b (identity of indiscernibles), (iii)
d(a, b) = d(b, a) (symmetry), and (iv) d(a, b) + d(b, c) ≥
d(a, c) (triangle inequality). We will focus on distances be-
tween votes. For a fixed set of candidates this is a distance
of the form d : L(C) × L(C) → R. As we will study the
complexity of problems involving such distances we actu-
ally consider a family of distances (dm)m>1 that contains
one distance function for each possible candidate set sizem.

The two basic distance measures we consider are the swap
distance and the footrule distance. For two votes v and v′
fromL(C) the swap distance swap(v, v′) counts the number
of inverted pairs and is formally defined as swap(v, v′) =
|{(x, y) ∈ C × C | x >v y and y >v′ x}|. Beside the
swap distance, we will also consider the footrule distance.
Instead of counting swaps, this distance counts the positions
that a candidate needs to be shifted by to obtain the target
order. The footrule distance fr(v, v′) is defined as fr(v, v′) =∑
y∈C |pos(v, y)− pos(v′, y)|.
In addition to the well-known unweighted versions of

these distance measures we also consider weighted forms.
The most general form of the swap distance is the weighted
swap distance which is also used for the swap bribery prob-
lem (see Elkind et al. (2009)). In order to define the weighted
distance we introduce the general notion of a weight func-
tion π : C × C → N0, that assigns a weight to each pair
of candidates. We will always assume that π(x, x) = 0 for
every x ∈ C and π(x, y) = π(y, x) for every x, y ∈ C. This
function is analogous to the price function in the context of
swap bribery.

Definition 1 (Weighted swap/footrule distance) Let π
be a weight function, the weighted swap distance be-
tween two votes v, v′ from L(C) is swapwπ (v, v

′) =∑
(x,y)∈C×C: x>vy and y>v′x

π(x, y), and the weighted
footrule distance between v and v′ is frwπ (v, v

′) =∑
y∈C

∣∣∣∣∣ ∑
x∈C: x>vy

π(x, y)−
∑

x∈C: x>v′y

π(x, y)

∣∣∣∣∣.
For matters of consistency we denote the unweighted dis-
tances by frπ and swapπ , where the weight function is
π(x, y) = 1 for all x, y ∈ C, x 6= y. The following example
illustrates how these distances are calculated.

Example 2 Consider the votes v : a > b > c > d > e and
v′ : a > d > c > b > e. The swap distance is swap(v, v′) =
|{(b, c), (b, d), (c, d)}| = 3. For a weight function π, the
weighted swap distance is the sum of the weights of these
pairs: swapwπ (v, v

′) = π(b, c) + π(b, d) + π(c, d). The un-
weighted footrule distance is fr(v, v′) = |2−4|+|4−2| = 4,
whereas the weighted footrule distance for a weight function
π is frwπ (v, v

′) = |−π(d, b)−π(c, b)|+ |π(b, c)−π(d, c)|+
|π(b, d) + π(c, d)|.

In addition to these general weighted distances we will
consider a special weighted variant that corresponds to the
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element-weighted distances described by Kumar and Vas-
silvitskii (2010). In the element-weighted swap/footrule dis-
tance (denoted by swapewπ and frewπ respectively), the func-
tion π is restricted to the form π(x, y) = ϕ(x) · ϕ(y) for
x¬y, where ϕ : C → N0 is a function that assigns a weight
to every candidate. While our distances are obviously heav-
ily inspired by the weighted distances proposed by Kumar
and Vassilvitskii (2010), they actually differ widely. Their
distances are invariant, i. e., they are not dependent on the
actual identity of each element but on the permutation be-
tween votes v and v′. Our distances are not invariant for a
good reason. They should depend on the identity of each
candidate and the measurable differences or similarities be-
tween them. If weights of 0 are not allowed for a pair of two
distinct candidates, the metric properties are still fulfilled for
our definition of the element-weighted swap distance since
it is a special case of the weighted swap distance, for which
it is not hard to show these properties. For the triangle in-
equality, note that for a swap to appear between two candi-
dates comparing a vote va to a vote vc this swap also has to
appear comparing va to a third vote vb or vb to vc. This argu-
ment can be modified to show that the weighted footrule dis-
tance fulfills the triangle inequality as well. Non-negativity,
identity of indiscernibles, and symmetry are obviously also
fulfilled by the weighted footrule distance.

Note that if weights of 0 are allowed for a pair of two
distinct candidates, all distance measures only fulfill the re-
quirements for a pseudometric, i. e., the identity of indis-
cernibles is replaced by the property d(a, a) = 0. For the
sake of readability we neglect identity of indiscernibles in
some of our proofs. However, these proofs can be easily
rewritten to fulfill this property.

Even though the swap and footrule distances focus on dif-
ferent aspects of the differences between two votes, it can be
shown that they are somehow related, and we will make use
of this in our proofs.
Lemma 3 For a set of candidates C, a weight function π
over C, and v, v′, v∗ ∈ L(C) the following statements hold:

swapπ(v, v
′) ≤ frπ(v, v

′) ≤ 2 · swapπ(v, v′); (1)

swapewπ (v, v′) ≤ frewπ (v, v′) ≤ 2 · swapewπ (v, v′); (2)

2 · π̂(v, v′) ≤ frwπ (v, v
′) ≤ 2 · swapwπ (v, v′) (3)

with π̂(v, v′) = max{π(x, y) | x >v y and y >v′ x}.
If v and v∗ are 3-inversion free1, it holds that

frwπ (v, v
∗) = 2 · swapwπ (v, v∗). (4)

The first part is the well-known Diaconis-Graham inequality
(see Diaconis and Graham (1977)). The remaining proofs
can be shown by slight adaptions.

2.2 Distance Bribery
Now we will define decision problems in order to study
their computational complexity. For details on computa-
tional complexity we refer to the textbooks by Papadim-
itriou (1994) and Arora and Barak (2009). The study of the

1There is a 3-inversion between v and v∗ if a >v b >v c and
c >v∗ b >v∗ a for some candidates a, b, and c.

computational complexity of such manipulative actions is
important, since in the context of voting in multi-agent sys-
tems it is crucial to know about the possibility of an external
intervention. Of course, a worst-case complexity analysis is
only the first step and should be followed by a more fine-
grained analysis and the design of approximation algorithms
and fast algorithms for the average case.

The original bribery problem asks if for a given election
a designated candidate can be turned into a winner of the
election by bribing a specific number of voters, whereas the
swap bribery problem (introduced by Elkind et al. (2009))
requires that the sum of the swaps’ weights may not ex-
ceed a budget. In the related shift bribery problem, also in-
troduced by Elkind et al. (2009), only swaps involving the
desired candidate are allowed. Note that there is a reduction
of shift bribery to the element-weighted variant of our prob-
lem. However, it does not transfer any results to the prob-
lems studied in this paper.

For a given distance function D and a voting rule E we
define a generalization of the swap bribery problem as fol-
lows:

(D, E)-DISTANCE BRIBERY

Given: An election E = (C, V ), with V =
(v1, . . . , vn), a weight function πi, 1 ≤ i ≤ n,
for every voter, a positive integer K, and a dis-
tinguished candidate p ∈ C.

Question: Is there a list of votes V ′ = (v′1, . . . , v
′
n) such

that
∑
i∈{1,...,n}Dπi(vi, v

′
i) ≤ K and p ∈

E(C, V ′)?

In the destructive variant (D, E)-DESTRUCTIVE DIS-
TANCE BRIBERY we have the same input, but we ask
whether there is an alternative profile V ′ = (v′1, . . . , v

′
n)

with
∑
i∈{1,...,n}Dπi

(vi, v
′
i) ≤ K and p 6∈ E(C, V ′).

Hence, we want to prevent p from being a winner of the
election.

One restriction is that the weight function is identical for
all voters. This follows the work on bribery where only a
certain number of votes can be changed arbitrarily (see Fal-
iszewski et al. (2009)). All our polynomial-time results obvi-
ously cover this restricted version, and we mention whether
our NP-hardness results also hold in this special case. The
most general problems are those for the weighted distances,
while unweighted distances lead to the most restricted prob-
lems. Hence, polynomial-time algorithms for swapwπ and
frwπ carry over to the corresponding problems for swapewπ
and frewπ , and both to the corresponding problems for swapπ
and frπ . At the same time, NP-hardness for the unweighted
distances (swapπ and frπ) implies NP-hardness for the
element-weighted distances (swapewπ and frewπ ) which in turn
imply NP-hardness for the weighted distances (swapwπ and
frwπ ). Obviously, all decision problems are contained in NP,
since the winners for all voting rules considered here can be
computed in polynomial time and as, given two votes, it is
possible to compute all introduced distances in polynomial
time.

Results for the constructive and destructive variants for
the different distances are summarized in Table 1. When-
ever results were previously known (or follow by the above
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described relations), the respective source is given. For all
other cases, the number of the corresponding theorem, for
which the proof is provided in this paper, is given in brack-
ets. The results show that the introduction of weighted dis-
tances may turn the problem NP-complete. We study the
scoring vector (2, 1, . . . , 1, 0), since this is a very simple
scoring vector with only 3 different values. Interestingly this
is an example for a scoring rule for which the result differs in
the constructive case for the weighted swap distance and the
weighted footrule distance. To the best of our knowledge,
such a difference was not known before for other problems.

Our results solve a number of open questions from the lit-
erature. Shiryaev et al. (2013) conjectured that swapwπ DE-
STRUCTIVE DISTANCE BRIBERY is hard for many scoring
rules, especially Borda and k-approval for any fixed k ≥
2. We confirmed this conjecture for Borda (Corollary 11)
but disproved it for k-approval (Corollary 6). Obraztsova
and Elkind (2012) posed the question whether the swap
bribery problem, where only one voter can be bribed, re-
mains tractable for scoring rules. We give a negative answer
in the case of Borda elections. In our NP-hardness proof
of (swapwπ ,Borda)-DESTRUCTIVE DISTANCE BRIBERY
(Theorem 10) there is only one voter that may be bribed.
Thereby, the proof also shows that the corresponding opti-
mal manipulation problem for weighted swap distances is
NP-complete. In addition, Obraztsova and Elkind (2012)
suggested to extend the study of optimal manipulation to
other distances. Since the optimal manipulation problem is
a special case of bribery where only one voter can be bribed,
all our P results carry over to the corresponding optimal ma-
nipulation problems. Furthermore, all our hardness results
for the destructive cases carry over, since in our reductions,
there is only one voter that may be bribed.

Related Work Distance bribery is a general framework
for many problems. Based on the distance used, and whether
we look at the destructive or constructive variant, we get
various possible motivations such as robustness (Shiryaev et
al. (2013)), the standing of a non-winning candidate (Brels-
ford et al. (2008)), optimal manipulation (Obraztsova and
Elkind (2012)), possible winner (Konczak and Lang (2005)),
coalitional manipulation (Conitzer and Sandholm (2002)),
tie-breaking, and so on.

The use of individual prices for the change of each vote
has been introduced by Faliszewski et al. (2009) for the
priced bribery problem. There is however one price fixed
irrespective of the change in the vote. Distance restrictions
on constructive and destructive bribery problems have also
been studied by Yang et al. (2016) for the swap distance and
the Hamming distance. The related bribery problems with
distance restrictions introduced by Yang et al. additionally
include an upper bound on the number of votes that can be
bribed. Obviously, our hardness results also hold in this case.
Since we follow the work on swap bribery we relate the up-
per bound of allowed bribery actions to the distance at hand.
Furthermore, we consider the distance bound to be part of
the input, whereas Yang et al. fix it in the problem name.
It is obvious that their distance restricted bribery problem

for an unlimited distance bound equals the ordinary bribery
problem, as well as ours does, if one uses the discrete dis-
tance. Another difference is that Yang et al. bound the dis-
tance for each bribed voter, while we have a global bound
on the distance, consistent with the swap bribery problem.
Elkind et al. (2009) showed that the swap bribery problem
is a generalization of the possible winner problem. In our
notation the swap bribery problem corresponds to the dis-
tance bribery problem with the swapwπ distance. However,
there is no direct reduction for problems with other distance
functions than the weighted swap distance. Even for the
element-weighted swap distance their reduction no longer
holds. On the one hand, our problem differs from the nonuni-
form bribery, which was introduced by Faliszewski (2008),
since they use utility-based voting, while our definition ap-
plies to profiles where votes are linear orders over the can-
didates. On the other hand, it should be mentioned that our
model can also be applied to various other preference rep-
resentations, as well as to the approval vectors used by Fal-
iszewski (2008), as long as meaningful distances can be de-
fined on that form of representation.

Another related problem is the margin of victory in
an election studied, e. g., by Magrino et al. (2011) and
Xia (2012), and the robustness of an election studied by
Shiryaev et al. (2013). They focus on the possibility to
change the election winner through some changes in the
votes. It is argued that the amount of change needed to ob-
tain a different outcome can be seen as a measure for the
robustness of a voting rule. Similar as for the optimal ma-
nipulation problem the motivation is again to detect fraud
in elections. The latter problem is equivalent to destructive
swap bribery, and the same arguments obviously apply to the
bribery problem. Hence, the distance measures used in this
paper also provide a way of measuring the robustness of a
voting rule.

3 Results
To construct relative scores in the reductions below, we use
the circular block votes defined by Betzler and Dorn (2010).
This allows us to generate a set of votes with arbitrary scores
that can be generated from the scoring vector, for an offset
β and a dummy candidate d, which gets less than β points.

Destructive Distance Bribery In this section we will con-
sistently denote the undesirable candidate as q and a possibly
more preferable candidate as p. Before stating our results,
we introduce a notion for the minimum necessary distance to
improve the designated candidate p compared to some other
candidate. For a given instance of (D, E)-DESTRUCTIVE
DISTANCE BRIBERY with election (C, V ), and p, q ∈ C, let
cost(C,V )(p, q, i, r) denote the minimum necessary distance
to improve the relative score of p compared to q in vote vi by
at least r, with 0 ≤ r ≤ α1−αm. We set cost(C,V )(p, q, i, r)
to∞ if the relative score cannot be improved by at least r.

Theorem 4 (D, E)-DESTRUCTIVE DISTANCE BRIBERY is
in P for each distance function D and each polynomially
bounded pure scoring rule E for which cost(C,V ) can be de-
termined efficiently.
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swapπ swapewπ swapwπ frπ frewπ frwπ

plurality/veto C PN PN PN P, (12) P, (12) P, (12)
D P♠ P♠ P♠ P, (6) P, (6) P, (7)

k-approval C PF NP-c., (16) NP-c.N P, (14) NP-c., (16) NP-c., (16)
D P♠ P, (6) P, (6) P, (6) P, (6) P, (7)

(2, 1, . . . , 1, 0)
C NP-c., (13) NP-c., (13) NP-c., (13) NP-c., (16) NP-c., (16)
D P♠ P, (6) P, (6) P, (6) P, (6) NP-c., (8)

Borda C NP-c., (15) NP-c., (15) NP-c.N NP-c., (15) NP-c., (15) NP-c., (15)
D P♠ NP-c., (11) P, (9) NP-c., (11)

Table 1: Overview of complexity results for the constructive and destructive DISTANCE BRIBERY problems for various dis-
tances, where “NP-c.” stands for NP-complete. Results that were previously known (or directly follow from them) are marked
by their corresponding source: N Elkind et al. (2009), F Dorn and Schlotter (2012), and ♠ Shiryaev et al. (2013). For all other
results the reference to the corresponding theorem is given in brackets. The NP-completeness of constructive distance bribery
for swapewπ , frewπ , swapwπ , and frwπ for k-approval holds for a fixed k ≥ 2.

Proof. We will use the following method for each candi-
date p ∈ C \ {q}, to compute an overall distance minimal
bribery making p better than q. To solve the decision prob-
lem, we then have to compare the minimum overall distance
of the destructive bribery with the distance limit K. Given
a set of candidates C with {p, q} ⊆ C and a list of votes
V = (v1, . . . , vn), such that score(C,V )(q) ≥ score(C,V )(p)
(otherwise q is not a winner). The weight function for
voter vi will be denoted by πi. Let δ = score(C,V )(q) −
score(C,V )(p) + 1 be the deficit between q and p.

The following formula is a straightforward generaliza-
tion of the formula presented by Kaczmarczyk and Fal-
iszewski (2016) for destructive shift bribery. By f(i, r) with
i ∈ {1, 2, . . . , n} we denote the minimum overall dis-
tance for reducing the deficit by at least r in the votes
v1, v2, . . . , vi. The value of f(0, ·) is only defined as an ini-
tial value for technical reasons. For f it holds that

f(0, 0) = 0, f(0, g) =∞ for g > 0, and

f(i, r) = min
r′≤r

[
f(i− 1, r − r′) + cost(C,V )(p, q, i, r

′)
]
.

Therefore, the minimum necessary overall distance to elim-
inate the deficit between p and q is given by f(n, δ) which
can be determined in polynomial-time if cost(C,V ) can be
determined efficiently. q

We apply this result and show that cost(C,V ) can be com-
puted in polynomial time for a large class of rules.

Theorem 5 Let E be a pure scoring rule with a lim-
ited number of different values, and additionally only one
value has an unlimited number of entries, then (D, E)-
DESTRUCTIVE DISTANCE BRIBERY is in P for D ∈
{swapπ, swapewπ , swapwπ , frπ, fr

ew
π }.

Proof (sketch). First note that the above restriction on the
pure scoring rule implies that it is polynomially bounded.
Hence, due to Theorem 4 we only show that cost(C,V ) can
be computed in polynomial time. This can indeed be done
for all listed distances by a brute force approach.

For swap distances, the idea is to calculate the minimum
necessary distance cost(C,V ) by looking at each possible dis-
tribution of candidates to the values.

The minimum distance is obtained by placing the candi-
dates of some value in their original order. Since there is only
one value with an unlimited number of entries, the number
of distributions is polynomially bounded by the number of
candidates. By placing the candidates assigned to a value in
the original order the minimum element-weighted footrule
distance is produced. Therefore, it suffices to show that ev-
ery corrective swap in the unweighted footrule distance re-
duces or maintains the distance. This can be shown via a
connection between the unweighted and element-weighted
distance. q

Corollary 6 For plurality, veto, k-approval, and
(2, 1, 1, . . . , 1, 0) elections (D, E)-DESTRUCTIVE
DISTANCE BRIBERY is in P for D ∈
{swapπ, swapewπ , swapwπ , frπ, fr

ew
π }.

This corollary follows directly from Theorem 5. The ap-
proach cannot be extended to the weighted footrule distance
since additional inversions can actually lower the distance.
Consider the votes v : q > a > b > p, v′ : p > a > b > q,
and v∗ : p > b > a > q and the weight function given
by π(a, b) = 4, π(a, p) = 1, π(a, q) = 4, π(b, p) = 4,
π(b, q) = 1, and π(p, q) = 1. We receive the following dis-
tances: frwπ (v, v

′) = 18 and frwπ (v, v
∗) = 14. Next, we show

that for k-approval elections it is indeed possible to extend
the approach to the weighted footrule distance. Note that for
k = 1 this proof covers plurality, and a very similar ap-
proach can be used to show polynomial-time solvability for
k-veto.

Theorem 7 (frwπ , k-approval)-DESTRUCTIVE DISTANCE
BRIBERY is in P.

Proof (sketch). Again, we will make use of Theorem 4.
To adapt the proof for k-approval, it suffices to show that
the vote in which the candidates assigned to 1 and 0 main-
tain their original order respectively inflicts the minimum
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weighted footrule distance. This holds, since one can show
that correcting the left- or rightmost inversion of two adja-
cency candidates always lowers or maintains the weighted
footrule distance. q

For (2, 1, . . . , 1, 0) elections it is indeed not possible to
extend the previous result.

Theorem 8 (frwπ , E(2,1,1,...,1,0))-DESTRUCTIVE DISTANCE
BRIBERY is NP-complete.

Proof. NP-hardness will be shown via a reduction from
the NP-complete problem SUBSET SUM (see Garey and
Johnson (1979)). A SUBSET SUM instance consists of a set
of integers A = {a1, a2, . . . , ah} and a positive integer T .
The question is whether there exists a subset A′ ⊆ A with∑
ai∈A′ ai = T . We construct an instance of the destruc-

tive bribery problem as follows. The set of candidates is
C = {p, q, s, u1, u2, . . . , uh}. The profile contains the vote
v1 : q > s > u1 > u2 > · · · > uh > p and a list of votes
Vd. The latter is constructed by using the circular block votes
with some ui as the dummy candidate to ensure the follow-
ing scores for some score offset β. The current winner of the
election should be q with β + 3 points, followed by p with
β points. Each other candidate should receive at most β − 4
points. The weight function π1 is as follows: π1(p, ui) = ai,
π1(p, s) = 0, π1(p, q) = 0, π1(q, ui) = 0, π1(q, s) = 2T ,
π1(s, ui) = 2ai, π1(ui, uj) = 0, for 1 ≤ i, j ≤ h. For every
other voter we set the weights for every swap to K + 1,
that means only v1 can be bribed. The distance limit is
K = 2 ·

∑
ai∈A ai + 2T . Since only v1 is bribable and only

p can beat q, the only way of defeating q is to move p to
the first and q to the last position in v1. The resulting vote
v′1 = p > s > u1 > u2 > · · · > uh > q inflicts the distance
frwπ1

(v1, v
′
1) = 2

∑
ai∈A ai + 4T . Due to the weight func-

tion, the only way of lowering the distance, is to swap uis
in front of s. Lowering the distance by 2T is possible if and
only if there exists a subset A′ ⊆ A, with

∑
ai∈A′ ai = T

such that swapping each ui, where ai ∈ A′, in front of s,
lowers the term of s by 2T . Note that the term of each ui is
not lowered by swapping with s. q

One can extend this proof to all pure scoring rules, which
have two distinct values separated by entries of at least one
other value, with the number of entries increasing at least
linearly with a polynomial number of candidates.

Next, we will consider the unweighted footrule distance.

Theorem 9 (frπ, E)-DESTRUCTIVE DISTANCE BRIBERY
is in P for all pure scoring rules.

Proof. The approach used by Shiryaev et al. (2013) for the
(swapπ, E)-DESTRUCTIVE DISTANCE BRIBERY regarding
scoring rules, can be easily generalized to apply to all dis-
tances which are polynomially bounded depending on the
number of candidates, for which one can efficiently deter-
mine the maximum deficit reduction in a vote for a given
bound on the distance. This is indeed possible for the un-
weighted footrule distance by testing every possible com-
bination of positions of p and q and placing the remaining
candidates according to their original order. q

We continue, by considering the destructive variant of
distance bribery for Borda elections. It is known that de-
structive shift bribery and destructive unweighted swap
bribery are in P for Borda (see, e. g., Kaczmarczyk and Fal-
iszewski (2016) and Shiryaev et al. (2013)). In contrast we
will show NP-completeness for DESTRUCTIVE DISTANCE
BRIBERY for a class of pure scoring rules, including Borda,
when using the weighted swap distance. We will call a pure
scoring rule E separable with polynomial effort, if there ex-
ists a polynomially bounded function f : N→ N, so that for
each integer r with m = f(r) and ~α as the scoring vector
form candidates the following holds: ∃k ∈ {1, . . . ,m−1} :
αk > αk+1 and r ≤ k ≤ (m− r). Intuitively this condition
means that the candidates may be divided into two “large
enough” groups that do not get the same number of points.
The integer r determines the minimal size of these groups.
Theorem 10 (D, E)-DESTRUCTIVE DISTANCE BRIBERY
is NP-complete for D ∈ {swapwπ , fr

w
π } for every pure scor-

ing rule E which is separable with polynomial effort, even if
the weight functions are identical for all voters.

The proof is a reduction from the NP-complete problem
BALANCED BICLIQUE. The above theorem includes scor-
ing rules like Borda, bm2 c-approval and many more rules.
Corollary 11 (D,Borda)-DESTRUCTIVE DISTANCE
BRIBERY is NP-complete for D ∈ {swapwπ , fr

w
π }, even if

the weight functions are identical for all voters.

Constructive Distance Bribery We now turn to the con-
structive case. For the sake of readability, candidate p will
always be the candidate who should be made a winner of
the election through the bribery action.
Theorem 12 For plurality and veto (D, E)-DISTANCE
BRIBERY is in P for D ∈ {frπ, fr

ew
π , frwπ }.

Proof. We show polynomial-time solvability for the
weighted variant, which directly implies the results for the
other two variants. Elkind et al. (2009) argue that for the
bribery problem with the weighted swap distance for plural-
ity and veto elections it suffices to calculate the minimum
distance for replacing the top or rearmost candidate with
another specific candidate and use this value as input for
the polynomial-time nonuniform-bribery algorithm by Fal-
iszewski (2008). Hence, it is sufficient to show that these
values can be computed in polynomial time for the weighted
footrule distance.

The more general proof of Theorem 7 implies that for
plurality the most efficient way of transferring the points
from candidate cand(vi, 1) to candidate cand(vi, j) with
2 ≤ j ≤ m is to shift cand(vi, j) to the top position while
moving each candidate in between one position downwards.
For veto the most efficient way of transferring one point
from cand(vi, j) with 1 ≤ j ≤ m − 1 to cand(vi,m) is
to shift cand(vi, j) downwards to position m while moving
each candidate in between one position upwards. q

Theorem 13 (D, E(2,1,1,...,1,0))-DISTANCE BRIBERY is
NP-complete for D ∈ {swapπ, swapewπ , swapwπ }, even if
the weight functions are identical for all voters.
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Proof. We show the result for the unweighted variant,
which directly implies the results for the other two variants.
NP-hardness will be shown via a reduction from the NP-
complete problem X3C (see Garey and Johnson (1979)). An
X3C instance consists of a set U = {u1, . . . , u3q} of items
and a family S = {S1, . . . , Sr} of 3-element subsets of U .
The question is, whether there is an exact cover of U , i. e., a
subset S′ ⊆ S such that

⋃
Si∈S′ Si = U . For the reduction,

the set of candidates is given by C = U ∪ {p} ∪ {si, ci, di |
1 ≤ i ≤ r} ∪ {x1, x2, . . . , x12r}. The number of candidates
is m = 3r+ 12r+ 3q + 1 and we assume q < r and r ≥ 5.
The list of votes is V = Vs ∪ Vd. Vs contains the following
three votes for each Si = {ui1 , ui2 , ui3}:

vi,1 :ui1 > X > · · · > D−r > si > p > dr;

vi,2 :ui2 > X > · · · > D−r > dr > ci > p > si;

vi,3 :ui3 > ci > X > · · · > D−r > p > dr.

Here X is a shorthand for the order x1 > · · · > x12r,
D−r for the order d1 > · · · > dr−1, and the ellipsis in
the votes contains all the candidates that are not specified
in the vote itself in arbitrary order. Here, β is the num-
ber of points, candidate p receives. The current winners of
the election should be each uj with β + 2q + 1 points,
followed by each xj , ci, and si with β + 2q points. Each
dj should receive at most β points. We can construct the
scores through the following votes in Vd, increasing the rel-
ative score of the selected candidate by 1 point compared
to each other candidate except dr with 2 points. For p we
use p > X > · · · > D−r > dr, for c ∈ {uj , ci, si} we
use c > X > · · · > D−r > p > dr, and for xj we
use xj > x1 > · · · > x12r > · · · > D−r > p > dr,
where x1 > · · · > x12r does not contain xj . The distance
limit is set to be K = q(2m − 1). Note that decreasing
the score of each xj by one point alone would increase the
overall distance by at least 12r · 3r > K for q < r. There-
fore, the briber has to increase the score of p by at least 2q
points. Since p is either already ranked at the top position or
on position m − 1, increasing the score of p by 2q makes
2q(m−2) additional swaps, and therefore an increase in the
overall distance by at least 2q(m − 2), necessary. Note that
as 2q(m− 2) < K < (2q+ 1)(m− 2), β + 2q is the maxi-
mum score that p can reach. Thus, the briber has to increase
the score of p by exactly 2q while lowering the score of each
uj by at least 1.

We will show that p can only be made the winner while
staying inside the distance limit if and only if there exists a
solution to the X3C instance with the corresponding votes
arranged such that

v′i,1 : p > ui1 > X > · · · > D−r > dr > si;

v′i,2 : p > ui2 > X > · · · > D−r > dr > si > ci;

v′i,3 : ci > ui3 > X > · · · > D−r > p > dr.

This increases the distance by 2m − 1. We will show that
swapping p forward to the first position in votes beside vi,1
and vi,2 makes it impossible to make p the winner while
staying inside the distance limit. Note that beside swapping
p upwards for an additional distance of 2q(m − 2) while

possibly already reducing the score of 2q items, there is a
leftover distance of 3q for reducing the score of the other uj
by 1 with the cheapest way of reducing the score of an uj
being 3.

Reducing the score of uj by 1 by swapping it away from
the last position without swapping it with p is not possible
since it increases the distance by at least 15 ≤ 3r (r ≥ 5)
(for reducing the score of the x again). Reducing the score
of uj (or any other relevant candidate) by swapping it down
past d1, . . . , dr is also not an option since it increases the
distance by at least 5 (r ≥ 5). In both cases we could not
reduce the score of all the at least (q − 1) leftover items.

We can use the same argumentation to show that swap-
ping down ui3 in vi,3 without swapping p forward to the
first position in vi,1 and vi,2 is not an option. In both cases
we have to swap si down in vi,1 to swap ci down in vi,2
to swap ui3 with ci. But doing so without swapping p for-
ward in one of the votes increases the distance by at least
4. Thereby we could not reduce the score of all the at least
(q − 1) leftover items. Therefore, the briber has to swap p
forward in exactly q pairs of vi,1 and vi,2 exactly as shown
above with swapping down ui3 in vi,3. Since it is necessary
to reduce the score of each uj by one, making p the winner
with respect to the distance limit is only possible if and only
if there exists a solution to the X3C instance. q

Theorem 14 (frπ, k-approval)-DISTANCE BRIBERY is in
P, even if k is part of the input.

Proof. This proof makes use of an algorithm proposed
by Dorn and Schlotter (2012, Theorem 1) to compute a
swapπ distance optimal bribery for k-approval. Let V ∗ =
(v∗1 , . . . , v

∗
n) be the swapπ distance optimal bribery com-

puted by the above mentioned algorithm. Since V ∗ is
swapπ distance optimal each vote v∗i fulfills the order
proposed in the proof of Theorem 5 with the candidates
on the top k and latter m − k positions in their orig-
inal order. Since each v∗i is 3-inversion free, it holds
due to Diaconis and Graham (1977) that frπ(vi, v

∗
i ) =

2 · swapπ(vi, v∗i ), which extends to the overall distance:∑n
i=1 frπ(vi, v

∗
i ) = 2 ·

∑n
i=1 swapπ(vi, v

∗
i ). Assume there

is a different frπ distance optimal bribery V ′ = (v′1, . . . , v
′
n)

with
∑n
i=1 frπ(vi, v

′
i) <

∑n
i=1 frπ(vi, v

∗
i ). Again, since V ′

is distance optimal, by the proof of Theorem 7 we know
that each v′i fulfills the 3-inversion free order proposed in the
proof, so

∑n
i=1 frπ(vi, v

′
i) = 2 ·

∑n
i=1 swapπ(vi, v

′
i) holds.

Substituting frπ with swapπ in the above inequality leads
to
∑n
i=1 swapπ(vi, v

′
i) <

∑n
i=1 swapπ(vi, v

∗
i ) which is a

contradiction to the swapπ distance optimality of V ∗. q

Theorem 15 (D,Borda)-DISTANCE BRIBERY is NP-
complete for D ∈ {swapπ, swapewπ , swapwπ , frπ, fr

ew
π , frwπ },

even if the weight functions are identical for all voters.

Theorem 16 (D, E)-DISTANCE BRIBERY is NP-complete
for D ∈ {swapewπ , frewπ } and for all pure scoring rules ex-
cept plurality and veto, and for swapewπ even if the weight
functions are identical for all voters.
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Since (D, E)-DISTANCE BRIBERY for D ∈
{swapewπ , frewπ } is solvable in polynomial-time for plu-
rality and veto this completes a dichotomy result for pure
scoring rules.

4 Conclusions
We introduced various forms of distances, namely weighted
and unweighted versions of the swap and footrule distance,
to the bribery problem in elections. We showed how the re-
lation between the distances may be used in the proofs, but
we also showed that there are limits. For (2, 1, . . . , 1, 0) we
have a P result for the weighted swap distance, but NP-
completeness for the weighted footrule distance in the de-
structive case. On the one hand, we have shown for pure
scoring rules that in the constructive case the complexities
of the element-weighted and weighted problems coincide.
On the other hand, for (2, 1, . . . , 1, 0) in the destructive case
they differ. Regarding the open cases from Table 1, we con-
jecture NP-completeness for all of them. For many voting
systems, which, like Borda, distinguish each position, the
problem is already hard in the destructive (as well as con-
structive) case, even if only one voter is suggestible. Thus,
the design of voting systems which are sensitive regarding
the position of the candidates, combined with certain politi-
cal integrity of the voters make the influence through bribery
hard from a complexity theoretic point of view. This ef-
fects today’s political agendas as distances can be consid-
ered in terms of campaigning and its limits. It is an inter-
esting task to explore exactly which distance properties and
which election properties are causing the jump from P to
NP-completeness. As a next step the parameterized com-
plexity of the presented problems and approximation algo-
rithms for the hard problems should be considered in detail.
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