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Abstract

Synthesizing 3D faces that give certain personality impres-
sions is commonly needed in computer games, animations,
and virtual world applications for producing realistic virtual
characters. In this paper, we propose a novel approach to syn-
thesize 3D faces based on personality impression for creat-
ing virtual characters. Our approach consists of two major
steps. In the first step, we train classifiers using deep convo-
lutional neural networks on a dataset of images with person-
ality impression annotations, which are capable of predicting
the personality impression of a face. In the second step, given
a 3D face and a desired personality impression type as user
inputs, our approach optimizes the facial details against the
trained classifiers, so as to synthesize a face which gives the
desired personality impression. We demonstrate our approach
for synthesizing 3D faces giving desired personality impres-
sions on a variety of 3D face models. Perceptual studies show
that the perceived personality impressions of the synthesized
faces agree with the target personality impressions specified
for synthesizing the faces.

Introduction
A face conveys a lot of information about a person. People
usually form an impression about another person in less than
a second, mainly by looking at another person’s face. Re-
searchers in psychology, cognitive science, and biometrics
conducted a lot of studies to explore how facial appearances
may influence personality impression (Willis and Todorov
2006; Hassin and Trope 2000). Some researchers investi-
gated the relationship between personality impressions and
specific facial features (Eisenthal, Dror, and Ruppin 2006).
There are also attempts in training machine learning models
for predicting personality impressions based on facial fea-
tures (Gray et al. 2010; Joo, Steen, and Zhu 2015).

To create realistic 3D faces for the computer games, dig-
ital entertainments, and virtual reality applications, some
works have been carried on generating realistic faces (Hu
et al. 2017), vivid animations (Sohre et al. 2018), natural ex-
pressions (Marsella et al. 2013), and so on. Yet, synthesizing
3D faces that give certain personality is not explored, which
is one of the most important considerations during the cre-
ative process. For example, the main characters in games and
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animations are usually designed to look confident and smart,
whereas the “bad guys” are usually designed to look hostile.
There are automatic tools for synthesizing human faces of
different ethnicities and genders, however, the problem of
synthesizing 3D faces with respect to personality impres-
sions is still unsolved. We propose a data-driven optimiza-
tion approach to solve this problem.

As the personality impression of a face depends a lot
on its subtle details, under the current practice, creating a
face to give a certain personality impression is usually done
through a “trial-and-error” approach: a designer creates sev-
eral faces; asks for people’s feedback on their impressions of
the faces; and then modifies the faces accordingly. This pro-
cess iterates until a satisfactory face is created. This design
process involves substantial tuning efforts by a designer and
is not scalable. Manual creation of faces could also be very
challenging if the objectives are abstract or sophisticated.
For example, while it could be relatively easy to create a
face to give an impression of being friendly, it could be hard
to create a face to give an impression of being friendly but
silly, which could be desirable for a certain virtual character.

We propose a novel approach to automate this face cre-
ation process. Our approach leverages Convolutional Neural
Networks (CNN) techniques to learn the non-trivial map-
ping between low-level subtle details of a face and high-level
personality impressions. The trained networks can then be
applied for synthesizing a 3D face to give a desired personal-
ity impression via an optimization process. We demonstrate
that our approach can automatically synthesize a variety of
3D faces to give different personality impressions, hence
overcoming the current scalability bottleneck. The synthe-
sized faces could find practical uses in virtual world appli-
cations (e.g. , synthesizing a gang of hostile-looking guys to
be used as enemies in a game).

The major contributions of our paper include:

• Introducing a novel problem of synthesizing 3D faces
based on personality impressions.

• Proposing a learning-based optimization approach and a
data-driven MCMC sampler for synthesizing faces with
desired personality impressions.

• Demonstrating the practical uses of our approach for dif-
ferent novel face editing, virtual reality applications and
digital entertainments.
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Related Work
Faces and personality impressions. Personality impression
is an active research topic in psychology and cognitive sci-
ence. Researchers are interested in studying how different
factors, e.g. , face, body, profile, motion, influence the for-
mation of personality impression on others (Naumann et al.
2009). Recent work (Over and Cook 2018) suggests that fa-
cial appearances play an important role in giving personality
impressions.

Some works focused on examining what facial features
influence personality impression. Vernon et al. (2014) mod-
eled the relationship between physical facial features ex-
tracted from images and impression of social traits. Zell et
al. (2015) studied the roles of face geometry and texture in
affecting the perception of computer-generated faces. Some
findings were adopted to predict human-related attributes
based on a face. Xu et al. (2015) proposed a cascaded fine-
tuning deep learning model to predict facial attractiveness.
Xie et al. (2015) proposed a benchmark dataset for analyz-
ing facial beauty impression. Joo et al. (2015) proposed an
approach to infer the personality of a person from his face.

Motivated by these findings, we use deep learning tech-
niques to learn the relationship between facial appear-
ances and personality impressions based on a collected face
dataset with personality impression annotations, which is
applied to guide the synthesis of 3D faces to give desired
personality impressions by an optimization.
Face Modeling and Exaggeration. Some commercial 3D
modeling software can be used by designers for creating 3D
virtual characters with rich facial details, such as Charac-
ter Generator, MakeHuman, Fuse, and so on. These tools
provide a variety of controls of a 3D face model, including
geometry and texture, e.g. , adjusting the shape of the nose,
changing skin color. However, to create or modify a face to
give a certain personality impression, a designer has to man-
ually tune many low-level facial features, which could be
very tedious and difficult.

Another line of works closely relevant to ours is face ex-
aggeration, which refers to generating a facial caricature
with exaggerated face features. Suwajanakorn et al. (2015)
proposed an approach for creating a controllable 3D face
model of a person from a large photo collection of that per-
son captured in different occasions. Le et al. (2011) per-
formed exaggeration differently by using primitive shapes
to locate the face components, followed by deforming these
shapes to generate an exaggerated face. They empirically
found that specific combinations of primitive shapes tend to
establish certain personality stereotypes. Recently, Tian and
Xiao (2016) proposed an approach for face exaggeration on
2D face images based on a number of shape and texture fea-
tures related to personality traits.

Compared to these works, our learning-based optimiza-
tion approach provides high-level controls for 3D face mod-
eling, by which designers can synthesize faces with respect
to specified personality impressions conveniently.
Data-Driven 3D Modeling.

Data-driven techniques have been successfully applied for
3D modeling (Kalogerakis et al. 2012; Talton et al. 2011).

Figure 1: Overview of our approach.

Huang et al. (2017) devised deeply-learned generative
models for 3D shape synthesis. Ritchie et al. (2015) used
Sequential Monte Carlo to guide the procedural generation
of 3D models in an efficient manner. Along the direction of
face modeling, Saito et al. (2017) used deep neural networks
trained with a high-resolution face database to automatically
infer a high-fidelity texture map of an input face image.

Modeling the relationships between low-level facial fea-
tures and high-level personality impressions is difficult. In
addition, directly searching in such a complex and high-
dimensional space is inefficient and unstable. In our work,
we apply data-driven techniques to model the relationship
between facial appearances and personality impressions.
Furthermore, we speed up face synthesis by formulating a
data-driven sampling approach to facilitate the optimization.

Overview
Figure 1 shows an overview of our approach. Given an in-
put 3D face, our approach optimizes the face geometry and
texture such that the optimized face gives the desired person-
ality impression specified by the user. To achieve this goal,
we present an automatic face synthesis framework driven by
personality impression, which consists of two stages: learn-
ing and optimization.

In the learning stage, we define 8 types of personality im-
pression. Then we learn a CNN personality impression clas-
sifier for each type. To train the CNN classifiers, we col-
lected 10, 000 images from CASIA WebFace database (Yi
et al. 2014) and annotated them with the corresponding per-
sonality impression. We also learn an end-to-end metric to
evaluate the similarity between the synthesized face and the
input one. The metric plays the role of constraining 3D face
deformation.

In the optimization stage, our approach modifies the face
geometry and texture iteratively. The resulting face is then
evaluated by the personality impression cost function (de-
fined by the learned personality impression classifiers), as
well as the similarity cost function (defined by the learned
similarity metric). To speed up the optimization, we devise a
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data-driven sampling approach based on the learned priors.
The optimization continues until a face giving the desired
personality impression is synthesized.

Problem Formulation
Personality Impression Types. In our experiments, we use
four pairs of personality impressions types: a) smart/silly;
b) friendly/hostile; c) humorous/boring; and d) confi-
dent/unconfident. These personality impression types are
commonly used in psychology (Mischel 2013; Asch 1946).
3D Face Representation. To model a 3D face, we use a
multi-linear PCA approach to represent the face geometry
and texture (Blanz and Vetter 1999), akin to the represen-
tation of (Hu et al. 2017). Our approach operates on a tex-
tured 3D face mesh model. We represent a face (V,T) by
its geometry V ∈ R3n, which is a vector containing the 3D
coordinates of the n = 6, 292 vertices of the face mesh, as
well as a vector T ∈ R3n containing the RGB values of the
n pixels of its texture image.

Each face is divided into 8 regions (eyes, jaw, nose, chin,
cheeks, mouth, eyebrows and face contour). For each face
region, we learn two Principal Component Analysis (PCA)
models for representing its geometry and texture in low-
dimensional spaces. The PCA models are learned using 3D
faces from Basel Face Model database (Paysan et al. 2009).

First, we manually segment each face into the eight re-
gions. Then, for each region, we perform a PCA on the ge-
ometry and a PCA on the texture to compute the averages
and the sets of eigenvectors. In our implementation, when
doing the PCAs for the r-th region, for all vertices in V
and all pixels in T that do not belong to the r-th region,
we just set their values to zero so that all regions have the
same dimensionality and can be linearly combined to form
the whole face (V,T):

V =

8∑
r=1

(V̄r + Λrvr), T =

8∑
r=1

(T̄r + Γrtr). (1)

Here r is the index of a face region; V̄r ∈ R3n and
T̄r ∈ R3n denote the average geometry and average texture
for the r-th face region; Λr ∈ R3n×m and Γr ∈ R3n×m are
matrices whose columns are respectively the eigenvectors of
the geometry and texture. We use m = 40 eigenvectors in
our experiments. vr ∈ Rm and tr ∈ Rm are vectors whose
entries are the coefficients corresponding respectively to the
eigenvectors of the geometry and texture. This representa-
tion allows our approach to manipulate an individual face
region by modifying its coefficients vr and tr. Based on the
PCA models of the 8 face regions, a 3D face (V,T) is pa-
rameterized as a tuple θ = (v1, v2, · · · , v8, t1, t2, · · · , t8)
containing the coefficients.
Facial Attributes. Although different faces can be synthe-
sized by changing the face coefficients vi and ti, in general
these coefficients do not correspond to geometry and texture
facial attributes that can be intuitively controlled by a human
modeler for changing a face’s outlook. It would be desirable
to devise a number of facial attributes in accordance with
human language (e.g. , “changing the mouth to be wider”),
to facilitate designers in interactively modifying a 3D face,

and to allow our optimizer to learn from and mimic human
artists on the tasks of modifying a face with respect to per-
sonality impression.

We describe how the effect of changing a facial attribute
a can be captured and subsequently applied for modifying a
face. For simplicity, we assume that each facial attribute is
defined only in one face region rather than across regions.
Based on a set of exemplar faces {(Vi,Ti)} from the Basel
Face Model database with assigned facial attribute a, we
compute the sums:

∆Va =
1

A

∑
i=1

µi(Vi − V̄), ∆Ta =
1

A

∑
i=1

µi(Ti − T̄), (2)

where V̄ and T̄ are the average geometry and aver-
age texture computed over the whole Basel Face Model
dataset. µi ∈ [0, 1] is the markedness of the attribute in
face (Vi,Ti), which is manually assigned. A =

∑
i=1 µi

is the normalization factor. Given a face (V,T), the re-
sult of changing facial attribute a on this face is given by
(V+ β∆Va,T+ β∆Ta), where β is a parameter for con-
trolling the extent of applying facial attribute a.

In total, we devise 160 facial attributes. Each attribute is
modeled by 5 example faces. We demonstrate the effect of
each attribute on an example face. It is worth noting that the
representation of a 3D face can be replaced by other 3D face
representations that provide controls of a face.
Optimization Objectives. We synthesize a 3D face to give
a desired personality impression by an optimization process,
which considers two factors: (1) Personality Impression:
how likely the synthesized face gives the desired personality
impression. (2) Similarity Metric: how similar the synthe-
sized face is with the input face.

Given an input 3D face and a desired personality impres-
sion type, our approach synthesizes a 3D face which gives
the desired personality impression by minimizing a total cost
function:

C(θ) = (1− λ)Cp(Iθ, P ) + λCs(Iθ, Ii), (3)

where θ = (v1, v2, · · · , v8, t1, t2, · · · , t8) contains the face
coefficients for synthesizing a 3D face. Cp(·) is the person-
ality impression cost term for evaluating image Iθ of the face
synthesized from θ with regard to the desired personality im-
pression type P . The face image is rendered using the frontal
view of the face. Lambertian surface reflectance is assumed
and the illumination is approximated by second-order spher-
ical harmonics (Ramamoorthi and Hanrahan 2001). Cs(·) is
the similarity cost term, which measures the similarity be-
tween the image Iθ of the synthesized face and the image Ii
of the input face, constraining the deformation of the input
face during the optimization. λ is a trade-off parameter to
balance the costs of personality impression and similarity.

Personlaity Impression Classification
To compute the personality impression cost Cp for a synthe-
sized face in each iteration of the optimization, we lever-
age modern deep CNN with high-end performances and
train a classifier for each personality impression type, which
provides a score for the synthesized face with regard to
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the personality impression type. To achieve this, we cre-
ate a face image dataset annotated with personality im-
pression labels based on CASIA WebFace database (Yi et
al. 2014), which consists of 10, 000 face images covering
both genders and different ethnicities. Then, we fine-tune
GoogLeNet (Szegedy et al. 2015) with a personality impres-
sion classification task on the dataset.

Learning. We construct our network based on the original
GoogLeNet with pre-trained parameters. The network is 22
layers deep with 5 average pooling layers. It has a fully con-
nected layer with 1, 024 units and rectified linear activation.
The images with the corresponding labels in the personal-
ity impression dataset are fed to the network and an average
classification loss is applied. Thus, the original GoogLeNet
model is fine-tuned to adapt to a personality impression clas-
sification task.

We use a GPU-based engine and implement asynchronous
stochastic gradient descent with 0.9 momentum in the fine-
tuning stage and a fixed learning rate schedule (with learning
rate decreased by 4% every 8 epochs). The mini-batch size
is 128.

After fine-tuning, each face image of our dataset is propa-
gated to the fine-tuned network, and a 1, 024-dimension fea-
ture vector g is extracted from the 22-nd layer. Based on
those feature vectors, our approach learns a linear SVM clas-
sifier for each personality impression type.

Face Similarity Metric
To constrain the synthesized face to look similar to the in-
put face, we evaluate the similarity between the image Iθ
of the synthesized face and image Ii of the original input
face in the optimization. To achieve this, we train a Siamese
network (Chopra, Hadsell, and LeCun 2005), an end-to-end
network, to evaluate whether a pair of face images corre-
spond to the same face. The network learns a feature ex-
tractor which takes face images and outputs feature vectors,
such that the feature vectors corresponding to images of the
same face are close to each other, while those corresponding
to images of different faces are far away from each other.

We train the Siamese network using the LFW
dataset (Huang et al. 2007). The training dataset is
constructed as {(Ia, Ib, l)}, where Ia and Ib are any two
images from the LFW dataset, and l is the label. If Ia and Ib
are from the same face, l = 1, otherwise l = 0.

The Siamese network consists of two identical Convolu-
tional Networks that share the same set of weights W . The
training process learns the weights W by minimizing a loss
function L = lL1 + (1 − l)L2, where L1 = ∥GW (Ia) −
GW (Ib)∥ and L2 = max(0, ρ − ∥GW (Ia) − GW (Ib)∥).
GW (I) is the mapped features of an input face image I ,
which are synthesized by the learned identical Convolutional
Network. By minimizing the loss function L, the distance
between the mapped features of Ia and Ib is driven by L1

to be small if Ia and Ib correspond to the same face, and is
driven by L2 to be large vice versa. The constant ρ is set as
2.0. The parameters are learned by standard cross entropy
loss and back-propagation of the error.

(a) Input (b) λ = 0 (c) λ = 0.5 (d) λ = 1

Figure 2: The influence of λ on the synthesized face when
optimizing an example face to give a hostile personality im-
pression.

Cost Functions
Given a textured 3D face model and a desired personality
impression type as the input, our approach employs a data-
driven MCMC sampler to update the face coefficients θ it-
eratively so as to modify the face. In each iteration, the syn-
thesized face represented by θ is evaluated by the total cost
C(·) = (1− λ)Cp(·) + λCs(·). The optimization continues
until a face giving the desired personality impression is syn-
thesized. We discuss the personality impression cost Cp and
the similarity cost Cs in the following.
Personality Impression Cost. The image Iθ of the face syn-
thesized by face coefficients θ is evaluated with respect to
the desired personality impression type P in the cost func-
tion Cp, defined based on the fine-tuned GoogLeNet:

Cp(Iθ, P ) = 1− exp(x1)

exp(x1) + exp(x2)
, (4)

where [x1, x2]
T = wT

Pg is the output of the full connected
layer of the fine-tuned network. x1 and x2 reflect the pos-
sibilities of the image Iθ belonging to the personality im-
pression type P or not, respectively. g ∈ R1,024 is the
face feature vector of Iθ on the 22-nd layer of the network;
wP ∈ R1,024×2 contains the parameters of the full con-
nected layer, which map the feature vector g to a 2D vector
(our fine-tuned network is a two-category classifier).

A low cost value means the synthesized face image gives
the desired type of personality impression, according to the
classifier trained by face images annotated with personality
impression labels.
Similarity Cost. We want to constrain the synthesized face
to look similar to the input face. To achieve this, we apply
the Siamese network trained for evaluating the similarity be-
tween a pair of face images to define a similarity cost as a
soft constraint of the optimization:

Cs(Iθ, Ii) =
1

G
∥GW (Iθ)−GW (Ii)∥, (5)

where GW (Iθ) and GW (Ii) are the feature vectors of the
image Iθ of the synthesized face and the image Ii of
the input face computed by the Siamese network. G =
max({∥GW (I)−GW (Ii)∥}) is a normalization factor com-
puted over all face images I from the LFW dataset. A low
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cost value means that the synthesized face image Iθ is simi-
lar to the input face image Ii.

To demonstrate how the similarity cost and personality
impression cost affect the face synthesis results during the
optimization, we do an ablation study of optimizing a face
model with the personality impression type of hostile in Fig-
ure 2. When the trade-off parameter λ is set as 0, the face is
optimized to become more hostile-looking yet it differs from
the input face significantly. When λ is set as 0.5, the face is
optimized to look somewhat hostile and it resembles the in-
put face closely. When λ is set as 1, the face resembles the
input one more closely, but it shows less hostile. We can find
from the results that a larger λ constrains the synthesized
face to resemble the input face more closely and show fewer
personality impression.In our experiments, we set λ = 0.5
by default.

Face Synthesis by Optimization
We use a Markov chain Monte Carlo (MCMC) sampler to
explore the space of face coefficients efficiently. As the top-
down nature of MCMC sampling makes it slow due to the
initial ”burn-in” period, we devise a data-driven MCMC
sampler for our problem. We propose two types of data-
driven Markov chain dynamics: Region-Move and Prior-
Move, corresponding to local refinement and global recon-
figuration of the face.
Region-Move. We want to learn from how human artists
modify faces to give a certain personality impression, so as
to enable our sampler to mimic such modification process
during an optimization. Considering that each face region’s
contribution to a specified personality impression is differ-
ent, we devise a Region-Move which modifies a face ac-
cording to “important” face regions likely to be associated
with the specified personality impression in training data.

Our training data is created based on 5 face models. We
recruited 10 artists who are familiar with face modeling
(with 5 to 10 years of experience in avatar design and 3D
modeling). Each artist was asked to modify each of the 5
face models to give the 8 personality impression types by
controlling the facial attributes. After the manual modifica-
tions, we project the original 5 face models and all the man-
ually modified face models into the PCA spaces, so that each
face can be represented by its face coefficients θ.

For each personality type, let ∆θ =
(∆v1, · · · ,∆v8,∆t1, · · · ,∆t8) contain the sums of
face coefficients differences for the 8 face regions.
∆vr =

∑
||vr − v′r|| is the sum of differences of the

geometry coefficients of the r-th face region, where vr and
v′r are the geometry coefficients of the original face model
and a face model modified by an artist respectively. The sum
of differences of the texture coefficients ∆tr is similarly
defined. Suppose the current face is (V,T) with face coef-
ficients θ. During sampling, a face region r is selected with
probability 0.5 ∆vr∑

∆vi + 0.5 ∆tr∑
∆ti . Then a facial attribute

a in face region r is randomly selected and modified so as
to create a new face (V + β∆Va,T + β∆Ta) with new
face coefficients θ′, where β ∼ U(−1.0, 1.0). The changes
∆Va and ∆Ta are learned in Section Facial Attribute for

each facial attribute a.
Essentially, a face region that is more commonly modified

by artists to achieve the target personality impression type is
modified by our sampler with a higher probability.
Prior-Move. We also leverage the personality impression
dataset to learn a prior distribution of the face coefficients θ
for each personality impression, so as to guide our sampler
to sample face coefficients near the prior face coefficients,
which likely induce a similar personality impression.

For each personality impression type P , we estimate a
prior distribution with the following steps:

(1) Select images in the personality impression dataset
which are annotated with the personality impression
type P ; and form a subset DP = {Id}.

(2) Reconstruct the corresponding 3D face model for each
image Id ∈ DP by the implementation of (Blanz and
Vetter 1999; Blanz and Vetter 2003). These 3D face
models are projected onto the PCA spaces and are rep-
resented using face coefficients. Thus, we form a face
coefficients set ΘP = {θd}.

(3) Fit a normal distribution for each of the geometry and
texture coefficients (vr and tr) of each face region r
based on ΘP .

Given the prior distribution, our sampler draws a value
from the normal distribution of each of the geometry and
texture coefficients, to generate new face coefficients θ′.
Optimization. We apply simulated annealing with a
Metropolis-Hastings state-searching step to search for face
coefficients θ that minimize the total cost function C. In each
iteration of the optimization, one type of moves is selected
and applied to propose new face coefficients θ′, which is
evaluated by the total cost function C. The Region-Move
and Prior-Move are selected with probabilities α and 1 − α
respectively. In our experiments, we set α = 0.8 by default.
The proposed face coefficients θ′ generated by the move are
accepted according to the Metropolis criterion:

Pr(θ′|θ) = min

{
1,

f(θ′)

f(θ)

}
, (6)

where f(θ) = exp−
1
tC(θ) is a Boltzmann-like objective

function and t is the temperature parameter of the anneal-
ing process. By default, we empirically set t to 1.0 and de-
crease it by 0.05 every 10 iterations until it reaches zero. We
terminate the optimization if the absolute change in the to-
tal cost value is less than 5% over the past 20 iterations. In
our experiments, a full optimization takes about 100 − 150
iterations (about 15 seconds) to finish.

Experiments
We conducted experiments on a Linux machine equipped
with an Intel i7-5930K CPU, 32GB of RAM and a Nvidia
GTX 1080 graphics card. The optimization and learning
components of our approach were implemented in C++.

Results and Discussion
We test our approach to synthesizing different faces to give
different personality impressions. Figure 3 shows the input
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Figure 3: Results of synthesizing faces with different personality impression types.

faces and the synthesized faces. The input faces consist of
an European male face, an African male face, and an Asian
female face. For each input face, a face is synthesized using
each of the 8 impression types.

We observe some interesting features that may result
in the corresponding personality impressions. For instance,
comparing the results of confident and unconfident faces, we
observe that the confident faces usually have a higher nose
bridge and bigger eyes. In addition, the eyebrows also look
sharp and slightly slanted, which make a person look like in
a state of concentration. The mouth corners lift slightly and
the mouths show a subtle smile. As for the unconfident faces,
the eyebrows are generally dropping or furrowed, showing a
subtle sign of nervousness. The eye corners are also drop-
ping, and the eyes look tired. The cheeks generally look
more bonier. The mouths are also drooping, which could be
perceived as signs of frustration.

We observe that usually a combination of facial features
accounts for the personality impression of a face. As there
are as many as 160 facial attributes, it is rather hard to man-
ually tune these attributes to model a face. The CNN clas-
sifiers effectively learn the relationships between facial fea-
tures and a personality impression type, such that they can
drive face synthesis by personality impression automatically.

Perceptual Studies
We conducted perceptual studies to evaluate the quality of
our results. The major goal is to verify if the perceived per-
sonality impressions of the synthesized faces match with the
personality impression types. We recruited 160 participants
from different countries via Amazon Turk. They are evenly
distributed by gender and are aged 18 to 50. Each partici-
pant was shown some synthesized faces and was asked about
the personality impression they perceived. Definitions of the
personality types from a dictionary were shown as reference.

Recognizing Face Personality Impression. In this study,
we want to verify if the personality impression types of the
synthesized faces agree with human impressions. We used
the faces from Figure 3. Each of these faces was synthesized
using a single personality impression type and was voted by
40 human participants. In voting for the personality impres-
sion type of a face, a participant needed to choose 1 out of
the 8 personality impression types used in our approach. In
total, we obtained 1, 600 votes for 40 faces.

Figure 4 shows the results as a confusion matrix. The av-
erage accuracy is about 38.0%, compared to the chance-level
accuracy of 12.5% (since we have 8 personality impression
types). For each personality impression type, the matching
type gets the highest number of votes as shown by diagonal.

“Friendly” and “hostile” receive a relatively high accu-
racy (about 45%−50%), probably because the facial features
leading to such personality impressions are more promi-
nent and easily recognizable. For example, participants usu-
ally perceive a face as hostile-looking when they see dense
moustache, slanted eyebrows and a drooping mouth. For
other personality impressions such as humorous and boring,
the accuracy is relatively lower (about 33%), probably be-
cause the facial features leading to such personality impres-
sions are less apparent, or because the participants do not
have a strong association between facial features and such
personality impressions. The facial features of some per-
sonalities are overlapped, which makes some people have
several different, but similar personalities. For instance, a
smart person may also look confident. Thus, participants
may choose a similar which reduces the total accuracy.

We also perform a t-tests on the results of perceptual
study. Our null hypothesis H0 was that participants can not
recognize the personality impression type of the synthesized
faces and the recognition rate is at chance level. All tests
have p-values less than 0.00001. Therefore, we reject the
null hypothesis H0 in this experiment, which concludes that
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Figure 4: Accuracy of determining a single personality im-
pression type of faces synthesized in the perceptual study.
Percentages of votes are shown.

Figure 5: Example faces with expressions used in the per-
ceptual study.

the participants can recognize the personality impression
types of the synthesized faces out of the eight used types.
Influence of Expression. Next we want to investigate
whether facial expression changes will affect the personal-
ity impression of the synthesized faces. For example, does a
face optimized to be hostile-looking still look hostile with a
happy smile? Such findings could bring interesting insights
for designing virtual character faces.

We conducted an empirical study to investigate the ef-
fects of expressions on the synthesized faces. In our study,
16 faces optimized with respect to each of the 8 personality
impression types were used. Each face was tuned to show
a facial expression chosen from happy, sad, angry, surprise,
disgust or fear with Maya. Figure 5 shows some of the ex-
amples. Each face was voted by 40 human participants about
its personality impression types out of the eight types used
in our approach. In total 640 votes were collected for the 16
faces used.

Figure 6 shows the accuracy of determining the person-
ality impression types on the synthesized faces with an ex-
pression. The average accuracy is about 33.4% (a drop from
38% on synthesized faces without any expression). Facial
expressions do have an impact on some personality impres-
sions. For example, with an angry expression, a face opti-
mized to be friendly-looking may appear hostile. The accu-
racy of the friendly (angry) face is 30.0%; compared to the
accuracy of 45.5% on the friendly face without any expres-
sion (Figure 4), the accuracy drops by 15.5%. However, the
personality impression on confident-looking faces seems to

Figure 6: Accuracy of determining the personality impres-
sion types of synthesized faces with expressions in the
perceptual study. Percentages of votes for the answers are
shown.

be relatively unaffected by facial expressions. For instance,
even with an angry expression, a face optimized to look con-
fident still has 32.5% votes for confident. This is probably
because people have strong associations between certain fa-
cial features and “confident”, and those facial features are
still apparent under facial expression changes.

Though this study is not comprehensive, it gives some
good insights about the effects of expressions on personality
impression. We believe that a more comprehensive percep-
tual study will be an interesting avenue for future research.

Summary
Limitations. To stay focused on face’s geometry and tex-
ture, we do not consider the influence of hair, accessories
or clothing on personality impression. Besides, speech and
facial movements, as well as head and body poses, can
also influence the impression of one’s personality, just as
experienced actors can change the personality impressions
they make by controlling speech, facial expression and body
movements. While we only focus on static facial features in
this work, we refer the reader to recent interesting efforts on
adding personality to human motion (Durupinar et al. 2017).
Future Work. Our face synthesis approach could be ex-
tended to consider more personality impression types and
other high-level perceptual factors. Synthesizing faces of
cartoon characters to give certain personality impressions is
also an interesting problem to explore, though this could be
more challenging due to the lack of abundant cartoon char-
acter faces training data and the fact that different cartoon
character faces may look drastically different. Our approach
follows the discriminative criteria to train the personality im-
pression classifier. For future work, it would be interesting
to investigate applying a deep generative network for syn-
thesizing 3D faces with personality impression, as the adver-
sarial training approach (GAN) (2014) has witnessed good
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successes in 2D image generation.
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