
The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

Algorithms for Average Regret Minimization

Sabine Storandt,1 Stefan Funke2

1University of Konstanz, Germany, 2University of Stuttgart, Germany
sabine.storandt@uni-konstanz.de, funke@fmi.uni-stuttgart.de

Abstract

In this paper, we study a problem from the realm of multi-
criteria decision making in which the goal is to select from a
given set S of d-dimensional objects a minimum sized subset
S′ with bounded regret. Thereby, regret measures the unhap-
piness of users which would like to select their favorite ob-
ject from set S but now can only select their favorite object
from the subset S′. Previous work focused on bounding the
maximum regret which is determined by the most unhappy
user. We propose to consider the average regret instead which
is determined by the sum of (un)happiness of all possible
users. We show that this regret measure comes with desir-
able properties as supermodularity which allows to construct
approximation algorithms. Furthermore, we introduce the re-
gret minimizing permutation problem and discuss extensions
of our algorithms to the recently proposed k-regret measure.
Our theoretical results are accompanied with experiments on
a variety of inputs with d up to 7.

Introduction
There are numerous (web) services in which it is impossible
to present all available options to the user at once; for ex-
ample, the list of matching pages in a web search, or the list
of products of a certain type in an online warehouse. Hence
there needs to be a preselection of a concise subset of the op-
tions to be shown to the user first (e.g., on page 1). A typical
approach to make this selection is to rank all options using
a multivariate function (e.g., for products weighting price,
quality, date of appearance, and sales volume) and then pre-
senting the top q options according to this function to the
user. The hope is that the function captures the preference
of a typical user or the majority of users. But in case user
preferences are diverse, considering only a single function
might be insufficient. As a remedy, an alternative selection
approach based on regret takes the preferences of all (pos-
sible) users into account. The regret induced by a user pref-
erence expressed as a multivariate function f (to be maxi-
mized) with respect to the full set of options S and a subset
S′ thereof is

1− maxs∈S′ f(s)

maxs∈S f(s)
.

Copyright c⃝ 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

So in case the best option in S according to the user pref-
erence is also contained in S′ the regret is 0. In general, the
regret value can assume any value in [0, 1].

In previous work, the goal usually was to identify a con-
cise subset S′ of S which exhibits a small maximum regret,
that is, a subset that makes the unhappiest user sufficiently
happy. In this paper, we propose the usage of the average re-
gret as a viable alternative. We focus on the scenario where
user preference functions are (all possible) convex linear
combinations of up to d criteria, and provide novel theoret-
ical and practical results for computing subsets with small
average regret in this setting.

Related Work
The notion of maximum regret as a measure for subset qual-
ity was introduced in (Nanongkai et al. 2010) in the context
of databases. The idea was generalized to the k–maximum
regret measure in (Chester et al. 2014), which does not mea-
sure the quality of a subset in relation to the users’ top-1
choice in the whole set S but to the top-k choice.

It was proven in (Chester et al. 2014) that the problem of
computing a subset of given size that minimizes the maxi-
mum regret is NP-hard for sufficiently large d. For d = 2,
an exact algorithm based on dynamic programming was pro-
posed in (Chester et al. 2014). For larger d, a simple greedy
algorithm was discussed in (Nanongkai et al. 2010) and
a randomized greedy linear programming algorithm for k-
regret in (Chester et al. 2014). Note that both of these greedy
algorithms do not come with an approximation guarantee.
Known algorithms with an approximation guarantee are ei-
ther based on the notion of coresets (Agarwal et al. 2017;
Cao et al. 2017; Kumar and Sintos 2018) or by reformulating
the problem as a set cover or hitting set problem (Agarwal
et al. 2017; Asudeh et al. 2017; Kumar and Sintos 2018).
In (Soma and Yoshida 2017), the relation between regret
minimization and multi-objective submodular function max-
imization was investigated and two algorithms with provable
guarantees were proposed.

Although the findings above are all concerned with maxi-
mum regret, we are not the first to consider a measure re-
lated to average regret. In the 2-page paper by (Zeighami
and Wong 2016), it was suggested to minimize the average
regret ratio, that is, the expected maximum regret ratio of a
user. Their model is based on the explicit availability of a

1600

finite set of possible user utility functions and a probability
distribution over these functions. In contrast, we allow an
infinite set of utility functions, namely all convex combina-
tions of d criteria.

Contribution
We motivate and formally define average regret as a measure
for the quality of a subset of d-dimensional objects.

We show that the average regret function is supermodular
while the maximum regret function is not. Based on super-
modularity, we are able to design a greedy algorithm that
computes a subset S′ of given size that comes with a qual-
ity guarantee. And in case we consider the average happi-
ness of users, which is defined as 1 minus the average re-
gret, we have a submodular function for which we can get a
constant-factor approximation algorithm. We show that this
even applies in case we consider the more complicated k-
regret measure. As a crucial ingredient for the super- and
submodular greedy algorithm, we show that the computa-
tion of the average k-regret is possible in time polynomial in
|S| and k for fixed dimension d.

In addition, we introduce the average regret minimizing
permutation problem, in which the goal is to sort the objects
in S such that for every prefix s1, . . . , si the regret is as small
as possible. This allows to smoothly decide for a prefix set S′

with a desired trade-off between size and quality. Moreover,
that decision can even be made for each user individually,
which allows for more dynamic and customizable services.

Besides theoretical results, we also discuss efficient
heuristics for practical use and show their applicability with
suitable experiments on a variety of benchmark instances.

Preliminaries
We now provide formal definitions for the average regret
measure and the respective optimization problems that will
be studied in the paper.

Basic Setting and Properties
We are given a finite set of d-dimensional objects or points
S ⊂ Rd

+ which have non-negative entries in each dimen-
sion. Throughout the paper, we assume the user utility func-
tions to be convex linear functions, that is, for some point
s ∈ S and some preference α ∈ Rd

+ with
∑d

i=1 αi = 1, we
have f(s, α) = αT s. This is a standard model for user util-
ity functions also used, e.g., in (Soma and Yoshida 2017).
Provided with the whole set S, a user chooses the point
in S which maximizes his utility function, hence it yields
f(S, α) = maxs∈S f(s, α) = maxs∈S αT s. As we as-
sume to not know which users will use a service priori, we
always consider all possible preferences, that is, all possi-
ble α. In a geometric interpretation, the α values form a
d-dimensional simplex. However note that due to the con-
straint

∑d
i=1 αi = 1 the value αd is uniquely defined after

fixing α1, . . . , αd−1. Hence all d-dimensional preferences
are sufficiently described by using a (d − 1)-dimensional
simplex to which we will refer to as Ω. We will use this ob-
servation later to design efficient algorithms.

0 1α1

SSD RAM

L1

L2

L3

Figure 1: Example for d = 2: Set S consists of three
laptops {L1, L2, L3} with different amounts of SSD mem-
ory and RAM (1TB/8GB), (512GB/24GB), (128GB/32GB).
The bottom segment in the illustration is the 1-dimensional
simplex containing all possible values for α1 (and implicitly
also α2 = 1 − α1). The happiness volume induced by S is
the area marked green and blue. For the subset S′ = {L3}
the happiness volume is the blue area. The ratio of those two
is 0.566, leading to an average regret of 1− 0.566 = 0.434.

We are now ready to formally define the average regret
for a subset S′ of S. Intuitively, we first compute the sum
over all possible utility functions f(S′, α) which results in a
’happiness volume’ induced by subset S′. Then we compute
the ’happiness volume’ of the whole set S and divide the for-
mer by the latter to get an average happiness or a ’happiness
ratio’ in [0, 1] which is then subtracted from 1.
Definition 1 (Average Regret) Given a set S and a subset
S′ thereof, the average regret of S′ with respect to S is de-
fined as ravg(S′, S) = 1−

∫
Ω
f(S′, α)dα/

∫
Ω
f(S, α)dα.

The concept of average regret is illustrated in Figure 1.
So why should one use ravg instead of the commonly

applied maximum regret measure rmax(S
′, S) = 1 −

minα{f(S′, α)/f(S, α)}?
Assuming the best achievable maximum regret for a sub-

set of given size is M , the regret of all other users is com-
pletely irrelevant when using the maximum regret measure
as long as it is below M . So while there could be sets where
the regret for most users is indeed 0, algorithms that mini-
mize the maximum regret would not prefer such a solution
over one where the regret is exactly M for all users. The av-
erage regret on the other hand would clearly favour a subset
in which the regret is small for many users.

In addition, the average regret can be used to lower bound
the maximum regret as shown in the following lemma.
Lemma 2 ravg(S

′, S) ≤ rmax(S
′, S).

Proof. Let B be the maximum regret subtracted from 1,
B = 1 − rmax(S

′, S) = minα{f(S′, α)/f(S, α)}. Then
we know that for all α it yields f(S′, α)/f(S, α) ≥ B and
hence f(S′, α) ≥ B · f(S, α). If we plug this into our for-
mula for the average regret subtracted from 1 we get∫

Ω
f(S′, α)dα∫

Ω
f(S, α)dα

≥ B

∫
Ω
f(S, α)dα∫

Ω
f(S, α)dα

= B

and hence ravg(S
′, S) ≤ 1−B = rmax(S

′, S).

1601

Optimization Problems
Based on our notion of average regret, we study two related
optimization problems in this paper. The first one is the clas-
sical problem of computing a subset of fixed size that mini-
mizes the regret:
Definition 3 (Regret Minimization Problem) Given a set
S, find a subset S′ with |S′| = q such that

ravg(S
′, S) ≤ ravg(S

′′, S) ∀S′′ ⊂ S, |S′′| = q,

that is, a subset S′ with minimum average regret.
So if on page 1 of a product website there is space for q = 10
objects, a solution to the regret minimization problem con-
stitutes a reasonable selection.

However, not in every scenario q can easily be determined
a priori. For example, a certain website might be viewed
on different devices with different screen sizes. On a smart
phone, the number of objects that can be viewed at once
might be smaller than the number of objects on a tablet, de-
manding different values of q. Moreover, if the user does not
like any of the objects shown on page 1, the question is with
which objects to proceed on page 2 and so on. This leads to
an extended problem formulation:
Definition 4 (Regret Minimizing Permutation Problem)
Given a set S of size n, sort the elements in S such that∑n

i=1 ravg(Si, S) is minimized where Si refers to the first i
elements in the sorted list.
We will show that both optimization problems can be tackled
with similar techniques.

Modularity and Approximation
In this section, we will exploit the fact that the average regret
function ravg(S

′, S) exhibits certain characteristics which
allow to design efficient approximation algorithms. More
precisely, we will investigate monotonicity, submodularity
and supermodularity.

Minimizing Regret and Maximizing Happiness
Remember that the average regret function is defined as
ravg(S

′, S) = 1−
∫
Ω
f(S′, α)dα/

∫
Ω
f(S, α)dα. From now

on we call the subtrahend the average happiness function
havg(S

′, S) = 1 − ravg(S
′, S). Obviously, a subset S′ that

minimizes the average regret automatically maximizes the
average happiness. However, that unfortunately doesn’t im-
ply that a good approximation algorithm for one of those
functions automatically also constitutes a good approxima-
tion algorithm for the other function, as discussed below.

Submodularity of Average Happiness
For a monotone and submodular set function to be maxi-
mized subject to a cardinality constraint on the subset, there
exists a simple greedy algorithm that admits a 1−1/e approx-
imation guarantee (Fisher, Nemhauser, and Wolsey 1978).
So if we can prove that the average happiness function is
both, monotone and submodular, we can identify in poly-
nomial time a subset S′ of given size q which exhibits an
average happiness which is at least 1− 1/e times the average
happiness of the optimal q-sized subset.

Definition 5 (monotone) A set function f : 2S → R is
monotone if A ⊂ B ⊂ S implies f(A) ≤ f(B).
Lemma 6 havg(S

′, S) is monotone.

Proof. havg(S
′, S) =

∫
Ω
f(S′, α)dα/

∫
Ω
f(S, α)dα. The

denominator is fixed for a given set S. Let S′′ ⊃ S′ be a
superset of S′. As f(S′, α) = maxs∈S′ αT s it clearly yields
f(S′, α) ≤ f(S′′, α) as the additional points in S′′ \ S′ can
only increase the function value.
Intuitively, a set function is submodular if the gain of adding
an element to a set A is always at least as large as the gain
of adding the same element to a superset of A.
Definition 7 (submodular) A set function f : 2S → R is
submodular if ∀A ⊂ B ⊂ S and s ∈ S \ B we have
f(B + s)− f(B) ≤ f(A+ s)− f(A).
Lemma 8 havg(S

′, S) is submodular.

Proof. We prove that for each α we have
f(A + s, α) − f(A,α) ≥ f(B + s, α) − f(B,α) for
all A ⊂ B using a case distinction. In the first case, s does
not uniquely determine the function value for B + s. Then
we have f(B + s, α) = f(B,α) and hence the right side
of the submodular inequality becomes 0, making it always
true. In the second case, s uniquely determines the function
value for B + s but not for A + s. This is impossible as
then we would have f(A + s, α) < f(B + s, α) = αT s
while αT s would also be a valid function value for A+ s. In
the third case, s uniquely determines the function value for
B+ s and A+ s. Then we have f(A+ s, α) = f(B+ s, α)
which allows to rearrange the submodular inequality to
−f(A,α) ≥ −f(B,α) ⇔ f(A,α) ≤ f(B,α) which is
true as f is monotone.

According to those two lemmas, we can use the greedy
framework described in (Fisher, Nemhauser, and Wolsey
1978) to find a subset with a constant factor guarantee on the
average happiness. The greedy algorithm starts with S′ = ∅
and proceeds by iteratively adding the element to S′ which
increases the function value the most. After q rounds, the
desired subset is found.
Corollary 9 The greedy algorithm computes a fixed size
subset of S which exhibits at least (1 − 1/e) of the average
happiness of the optimal such subset.
But how does this approximation guarantee for average hap-
piness translate to the average regret function?
Theorem 10 A 1−1/e approximation algorithm for optimal
average happiness h provides a 1 + h

e(1−h) approximation
for the optimal average regret.

Proof. Let the average regret be denoted by r = 1 − h, we
want to upper bound the ratio 1−p·h

1−h for p = 1 − 1/e to get
the approximation guarantee for r while having an approxi-
mation guarantee of p for h. We get:

1− p · h
1− h

= 1 +
h(1− p)

1− h
= 1 +

h · 1/e
1− h

So while we have a constant-factor approximation guarantee
for h, the approximation quality for r also depends on h.

1602

Corollary 11 For h ≤ 1/2, the approximation guarantee for
the average regret is bounded by 1 + 1/e.

According to the corollary, for h small enough, we get a suf-
ficiently strong approximation guarantee for r. But with the
average happiness converging to 1 the approximation factor
for r becomes arbitrarily large.

Supermodularity of Average Regret
A function f is supermodular if and only if −f is submodu-
lar. Equivalently, the following definition applies.

Definition 12 (supermodular) A set function f : 2S → R
is supermodular if ∀A ⊂ B ⊂ S and s ∈ S \ B we have
f(B + s)− f(B) ≥ f(A+ s)− f(A).

Lemma 13 ravg(S
′, S) is supermodular.

Proof. We have shown in Lemma 8 that havg is submodular.
Therefore, −havg is supermodular. Adding any constant
term does not invalidate the supermodularity. In conclusion,
1− havg = ravg is supermodular.

To demonstrate that this characteristic crucially depends
on our regret definition, we now provide a counter-example
for supermodularity of the maximum regret rmax by demon-
strating that 1− rmax is not always submodular.

Example 14 We consider the function

g(S, S) = 1− rmax(S
′, S) = min

α
{f(S′, α)/f(S, α)}.

To disprove submodularity, we have to find sets A and B
with A ⊂ B, such that adding an element s ∈ S \
B to B increases the function value more than it does
for A. We use the following example for d = 2: S =
{(6, 1), (2, 2), (1, 6)}, B = {(6, 1), (2, 2)}, A = {(2, 2)}
and s = (1, 6). This leads to g(B) = 1/3 (for α = (0, 1)),
g(A) = 1/3 (for α = (1, 0) and α = (0, 1)) and g(B+s) =
g(S) = 1 (B + s now equals S), g(A + s) = 1/3 (for
α = (0, 1)). Hence we get g(B + s) − g(B) = 2/3 ≥
g(A+ s)− g(A) = 0 which contradicts submodularity.

So for 1 − rmax we can not easily design a constant factor
approximation greedy algorithm as we did for the average
happiness function. And we can also not apply existing re-
sults for supermodular functions (Zeighami and Wong 2016)
to rmax while we can indeed use them for ravg . In particular,
we get the following guarantee when using a reverse greedy
algorithm, which starts with S′ = S and then in each of
n − q many rounds deletes the element whose removal in-
creases the average regret the least:

Lemma 15 The reverse greedy algorithm provides an ap-
proximation guarantee of (et − 1)/t for the average regret
minimization problem where t = x/(1−x) with x being the
steepness of ravg(S′, S) .

Here steepness refers to the maximum possible decrease of
ravg(S

′, S) when removing an element from S′. The de-
crease is most profound when the element is the only ele-
ment in S′. Hence we get x = maxs∈S

∫
Ω
f({s}, α)dα.

Regret Minimizing Permutations
One drawback of using the regret minimization problem for
subset selection is that the solution is only valid for the par-
ticular choice of q (the subset size). In contrast, the classical
ranking method (using only a single mutivariate function)
produces a total order of the elements. Hence once the or-
der is obtained, a solution for any q is available by simply
outputting the top-q elements in that order.

We now aim for the same level of flexibility when using
the regret measure. For that purpose, we want to solve the
average regret minimizing permutation problem. Here, the
goal is to compute an ordering of the elements in S, such
that the average regret is as small as possible for every prefix
Si. More precisely, we want to minimize the accumulated
average regret over all Si for i = 1, . . . , n = |S|. We refer
to the individual regrets as ri and to the accumulated regret
as R =

∑n
i=1 ri with R ∈ [0, n]. Obviously, it always holds

rn = 0 as Sn = S, and ri ≥ ri+1 for all i = 1, . . . , n − 1
due to monotonicity. Similarly, we define hi = 1 − ri as
the average happiness of set Si, and H =

∑n
i=1 hi as the

accumulated happiness with hn = 1 and hi+1 ≥ hi for
all i = 1, . . . , n − 1. Maximizing the accumulated average
happiness yields a solution that minimizes the accumulated
average regret and vice versa.

We observe that applying the same greedy algorithm we
used for the regret minimization problem, also yields prov-
ably good solutions for the permutation problem:
Theorem 16 The greedy algorithm yields a 1− 1/e approx-
imation guarantee for the accumulated average happiness.

Proof. We set q = n and use the order in which the greedy
algorithm selects the elements as the desired permutation of
S. Now we know that for any fixed q, the elements selected
so far exhibit an average happiness hq of at least (1− 1/e)h∗

q
where h∗

q is the optimal average happiness achievable for
a subset of size q, see Corollary 9. Hence we can lower
bound H as follows: H =

∑n
i=1 hi ≥

∑n
i=1(1 − 1/e)h∗

q =

(1 − 1/e)
∑n

i=1 h
∗
q = (1 − 1/e)H∗ where H∗ is the optimal

accumulated average happiness.
In the same way, the approximation guarantee for the aver-
age regret when using the reverse greedy algorithm (Lemma
15) transfers to the accumulated average regret R.

Average Regret Computation
Although we have proven in the last section that the greedy
algorithm is a useful tool for average happiness and average
regret computation, there is still one crucial ingredient miss-
ing to make the algorithm work: We need to be able to deter-
mine the next-best element efficiently, that is, the element in
S whose addition to S′ increases the average happiness the
most in the standard greedy algorithm, or the element in S′

whose removal increases the average regret the least in the
reverse greedy algorithm. This demands suitable algorithms
to compute

∫
Ω
f(S′, α)dα. We will now show that for fixed

dimension d, this is always possible in polynomial time.

Computing the Happiness Volume
In the following we explain how to compute the happiness
volume in polynomial time, both theoretically as well as in

1603

U

Figure 2: Volume computation for d = 2. We are interested
in the green area defined by the upper envelope of the green
lines. Via dualization we determine the vertices of the upper
envelope (red boxes). We then compute the volume in two
steps: We first determine the the volume of the convex hull
of the yellow and gray (shadow) vertices, and then subtract
from it the volume of the convex hull of the red and gray
vertices (gray area) to finally obtain the green area.

practice. To compute the happiness volume for a set S ⊂ Rd
+

of points, |S| = n, we first construct respective hyperplanes
H in the space R+ × Ω. More precisely, for each point p =
(p1, p2, . . . , pd) ∈ S, we create the hyperplane

hp : y = (p1 − pd)x1 + · · ·+ (pd−1 − pd)xd−1 + pd.

Additionally, for some very large value M auxiliary hyper-
planes y = Mxi,∀i = 1, . . . (d− 1) and

y =

(
d−1∑
i=1

Mxi

)
−M

are created, which essentially restrict our focus of interest to
the positive orthant with

∑d−1
i=1 xi ≤ 1. We are interested

in the volume between the hyperplane y = 0 and the upper
envelope of the hyperplanes.

Since implementations of direct upper envelope construc-
tions in dimensions higher than 3 are quite rare, we make
use of a well-known duality between the upper envelope
of an arrangement of hyperplanes and the upper convex
hull of respective dual points1. We dualize each hyper-
plane h : y = α1x1 + α2x2 + . . . αd−1xd−1 + αd to a
point D(h) := (α1, α2, . . . , αd−1,−αd) ∈ Rd. There is a
one-to-one correspondance between the upper envelope of
H and the boundary of the upper convex hull of its dual
point set D(H) = {D(h) : h ∈ H}. So we compute
the convex hull of D(H), which can be done in expected
O(n log n + n⌊(d)/2⌋), e.g., via (Clarkson and Shor 1989).
Then every (d − 1)-dimensional facet of the upper con-
vex hull of D(H) corresponds to a vertex of the upper en-
velope (there are at most O(n⌊d/2⌋) of them according to
the upper bound theorem (McMullen 1970)). Then for each
constructed vertex (α1, α2, . . . , αd−1, y) of the upper en-
velope, we construct its ’shadow’ vertex with coordinates
(α1, α2, . . . , αd−1, U) for some large but fixed U . The re-
sulting vertex set of size O(n⌊d/2⌋) is in convex position,
computing a decomposition of its convex hull into simplices

1The d transformation does not work for vertical planes, hence
the formulation of the auxiliary hyperplanes via some large M .

can be done in O(nd2/4). By summing up the volumes of the
simplices we compute the volume ’above’ the upper enve-
lope. By subtracting it from the volume between the shadow
vertices and their counterpart in the hyperplane y = 0 we
obtain the volume below the upper envelope. See Figure 2
for an illustration.

The total running time is O(nd2/4). In practice, we expect
the complexities of the occurring convex hulls to be consid-
erably smaller than in the worst-case, though.

Sampling-based Heuristic
Nevertheless, for higher dimensions or very large point sets
the running times for computing the exact volume as above
become prohibitive. In that case, a sampling-based approach
can be employed which essentially discretizes the param-
eter space Ω. So for a given ϵ > 0, we consider the set
of points P := (k1ϵ, k2ϵ, . . . , kdϵ) : ki ∈ N,

∑
ki = 1/ϵ.

Clearly, |P| = O(ϵ−(d−1)). To approximate the volume be-
low the upper envelope, we simply multiply for each α ∈ P
the volume of a (d − 1)-dimensional cube of side length ϵ
with maxs∈S αT s. The running time for such an approxi-
mate volume approximation is then O(nϵ−(d−1)). Clearly,
the smaller ϵ, the better the approximation.

Extension to k-Regret
The k-regret measure was introduced in (Chester et al.
2014). The idea is to not measure the quality of a subset
S′ for a given preference α with respect to the best element
in S but to the kth best element in there. In case the func-
tion value for S′ exceeds the one for S under this measure
(which is impossible for k = 1 but could happen for k ≥ 2),
it is capped at the value for S. Then again, the k-regret value
can only assume values within [0, 1].

We now discuss how average k-regret works in distinc-
tion to the maximum k-regret measure discussed in (Chester
et al. 2014). Again, we need the reference happiness volume
for S and then the happiness volume for S′ to measure the
quality of S′. For k = 1, the computations of those two were
independent. But for k ≥ 2, we have to take care of capping
the volume of S′ appropriately in case the happiness of a
user is larger than the happiness induced by the kth best el-
ement from S. We now refer to the happiness volume of the
kth best elements in S as Vk and to the standard happiness
volume of S′ as V ′. Then the average k-regret is defined as

r(k)avg = 1− (V ′ ∩ Vk)/Vk.

Figure 3 illustrates Vk and V ′∩Vk for an example instance.

Exact Volume Computation Even in case of the general-
ization to k-regret, the respective volume computation can
actually be done in polynomial time: As in the k = 1 case,
we first derive the set H of hyperplanes, but then compute
the full arrangements of hyperplanes, which can be done in
time O(nd). We then traverse the arrangement, marking all
cells below the k−level and below the hyperplanes in S′.
This can be done in time linear in the complexity of the ar-
rangement, hence O(nd). The volume of each of the marked
cells (which are convex and of polynomial size) is then de-
termined again via a decomposition into simplices whose

1604

Figure 3: k-regret for d = 2. The left image shows the kth

best element in each direction among a set of 5 elements
and the induced happiness volume for k = 1 (green), k = 2
(red), k = 3 (blue), k = 4 (purple) and k = 5 (black). The
right image illustrates the hapiness volume (orange area) for
a subset S′ consisting of the two orange lines for k = 2. The
area can never include points above the red line.

volumes are easily computed. Clearly, the overall running
time is again polynomial, yet we do not consider this ap-
proach useful in practice.

Heuristic The above described sampling heuristic trans-
lates also to the general k-regret case by multiplying the vol-
ume of the (d− 1)-dimensional ϵ-cube with the kth highest
function value in S, and the best function value in the set S′

(possibly capped at the kth highest function value in S).

Experiments
We implemented the proposed algorithms for average re-
gret in C++, using CGAL 4.11 for computing convex hulls
and Eigen 3.3.4 for determining volumes. Experiments were
conducted on an AMD Ryzen 2400G with 3.6GHz and
64GB RAM. For benchmarking, we use a variety of differ-
ent inputs with the following characteristics:

RC Random points in the unit hypercube (synthetic). We
generated up to n = 106 points for d from 3 to 6.

ElNino Oceanographic data (real-world). It has n =
178080 points for d = 5 (zonal and meridional wind
speed, water and surface temperature, relative humidity).

AirData Flight statistics (real-world). It has n = 458311
points with d = 7 (distance, air-time, arr-dely, dep-delay,
taxi-out, taxi-in, actual-elapsed-time).

Weather Mean temperatures for every January and July
(d = 2) for n = 566262 locations around the world.

The real-world data sets were all used before in related pub-
lications, e.g., (Soma and Yoshida 2017; Kumar and Sintos
2018). All data sets were normalized to only have values in
the interval [1, 100] by first subtracting the minimum value
in each dimension from the other values in that dimension,
and subsequent scaling of the values in each dimension.

Greedy Algorithm: Exact vs Heuristic Selection
We first evaluate the standard greedy algorithm (always
adding the next-best element) which has a constant-factor
approximation guarantee for the average happiness. We re-
port running times and regret values for the exact variant as

exact heuristic
d n q ravg time (s) ravg time(s)
3 106 2 0.0014 1462 0.0014 0.54

16 2.2 ·10−6 1690 0.0006 0.54
3 105 2 0.0019 144 0.0019 0.06

16 5.5 ·10−6 168 0.0017 0.06
4 105 2 0.0052 603 0.0052 0.20

16 2.6 ·10−5 1204 0.0007 0.20
4 104 2 0.0060 61 0.0060 0.02

16 0.0002 182 0.0059 0.02
5 104 2 0.0158 274 0.0158 0.05

16 0.0005 3452 0.0116 0.05
5 103 2 0.0101 31 0.0101 0.01

16 0.0002 525 0.0088 0.01
6 103 2 0.0104 113 0.0164 0.01

16 0.0006 15925 0.0141 0.00
6 102 2 0.0504 21 0.0504 0.00

16 0.0008 4190 0.0299 0.00

Table 1: Results for RC with varying values of n, d and q:
exact greedy, and heuristic greedy with ϵ = 0.1.

exact heuristic
q ravg time (s) ravg time(s)
1 0.016 63 0.016 0.04
2 0.005 133 0.005 0.08
4 0.001 145 0.001 0.09
8 0.000 175 0.001 0.09

16 0.000 196 0.001 0.10

Table 2: Results for the Weather benchmark (d = 2): exact
greedy, and heuristic greedy with ϵ = 0.1.

well as for the heuristic version, where we estimate the vol-
ume of S′ + s for all s ∈ S \ S′ in each round based on
sampling. To judge the quality of the heuristic greedy truth-
fully, we compute the exact happiness volume induced by
the final subset S′.

Synthetic Data For the RC benchmark, the results are
summarized in Table 1. For small q, the average regret values
for the exact and heuristic version are the same in almost all
settings. For q = 16, we see that the exact algorithm clearly
outperforms the heuristic variant in terms of regret, but at
the same time the running times are significantly higher.

Real-world Data For the real-world data sets, the greedy
results are collected in Table 2 (Weather), Figure 4 (ElNino)
and Table 3 (AirData).

For the Weather benchmark, we observe that the heuris-
tic version results in very similar regret values as the exact
algorithm, while being faster by up to three orders of mag-
nitude. For ϵ ≤ 0.02 we even get the very same results from
the heuristic and the exact version for all tested values of q.
So in conclusion, the heuristic approach works even better
on this real-world data than on our synthetic data.

For the ElNino benchmark, we performed a sensitivity
analysis for the heuristic greedy algorithm with respect to

1605

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0 10 20 30 40 50 60 70

eps=1/80
eps=1/40
eps=1/10

exact

Figure 4: Average regret in dependency of q for the ElNino
data set using heuristic greedy with different choices of ϵ.

heuristic (ϵ1) heuristic (ϵ2)
q ravg time (s) ravg time(s)
1 0.2936 361 0.2936 15027
2 0.1920 361 0.1919 17018
4 0.1043 361 0.1020 18000
8 0.1043 361 0.0716 18062

16 0.1043 361 0.0715 18065

Table 3: Results for the AirData benchmark (d = 7): heuris-
tic greedy with ϵ1 = 1/20 (left) and ϵ2 = 1/40 (right).

the choice of ϵ, see Figure 4. Interestingly, the first elements
chosen are always the same regardless of the ϵ value. But
from some value of q onwards the regret does not decrease
anymore. This is due to the sampling based approximate
volume computation is not precise enough to reliably de-
tect volume increase by different elements anymore. Only a
high sampling resolution of ϵ = 1/80 leads to regret values
close to 0. But of course, there is a price to pay: While the
algorithm only takes about 2 seconds for ϵ = 1/10, it takes
almost 3000 seconds for ϵ = 1/80.

For the AirData benchmark the exact greedy algorithm
was too slow to produce solutions, as the exact volume com-
putation becomes expensive with growing dimension d. But
the heuristic version was still applicable. In Table 3, the re-
sults for two different choices of ϵ can be found. We observe
a similar trade-off between quality and running time as for
the ElNino data. The time to select the next point decreases
rapidly in both cases.

Standard vs Reverse Greedy
In our theoretical analysis, we exploited two different greedy
algorithms: The standard one (always add the next-best el-
ement) and the reverse greedy (always remove the element
which contributes the least). Both are able to solve the aver-
age regret minimization problem for given q as well as the
average regret minimizing permutation problem.

In Figure 5, we compare the two algorithms on an RC
benchmark with d = 4 and n = 1000. Evidently, the for-
ward greedy algorithm outperforms the reverse greedy al-
gorithm in all aspects; not only is the accumulated regret R
smaller but also for individual choices of q up to 30, the rq
value is always better. For larger choices of q the average re-

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 2 4 8 16 32 64

reverse
forward

Figure 5: Average regret in dependency of the subset size q
for the standard (forward) greedy algorithm as well as for the
reverse greedy algorithm (x-axis in logscale). For the sake of
visualization, the plot only starts at q = 2. For q = 1, the av-
erage regret is 0.0107 for the standard greedy and 0.2456 for
the reverse greedy algorithm. The accumulated regret over
all q is R = 0.0342 and R = 0.2790, respectively.

k=1 k=3 k=5 k=7 k=9
q ravg ravg ravg ravg ravg
1 0.3280 0.3161 0.3121 0.3095 0.3016
2 0.2028 0.1949 0.1907 0.1880 0.1790
4 0.0943 0.0901 0.0880 0.0864 0.0772
8 0.0064 0.0018 0.0012 0.0002 0.0001

16 0.0004 0.0002 0.0000 0.0000 0.000

Table 4: Results for the AirData benchmark (d = 7): heuris-
tic greedy with ϵ = 0.1 for different choices of k, average
regret values are based on the approximated volumes.

gret is almost zero for both algorithms. Concerning the run-
ning time, the reverse greedy algorithm is slightly slower
than the forward algorithm when computing the whole per-
mutation (10.7 minutes versus 13.5 minutes). For (small)
choices of q, however, the standard greedy algorithm is way
faster as it only requires q rounds while the reverse greedy
algorithm requires n− q rounds.

Heuristic Computation of Average k-Regret
Finally, we investigate what happens if we use average k-
regret as a quality measure.

Table 4 shows our results on the AirData benchmark for
k = 1, 3, 5, 7, 9. For q = 16 running times were between 2
and 3 minutes for all settings. We observe that the average
regret decreases with growing k as to be expected. But note
that the regret values here are only estimations based on the
approximated volume (computed by sampling), as the ex-
act volume computation was too expensive even a posteri-
ori. Nevertheless it appears that increasing k has the desired
effect on this real-world data set.

Conclusions and Future Work
We motivated the average regret (or the average happiness
volume) as an alternative measure for subset quality and
showed that a standard greedy algorithm achieves good re-
sults in theory (based on submodularity) and practice. At

1606

the heart of our implementation lies the computation of the
multi-dimensional happiness volume. For larger d, this is at
the moment only possible in a heuristic fashion. In future
work, tools from computational geometry should be applied
to make the exact greedy algorithm scalable.

References
Agarwal, P. K.; Kumar, N.; Sintos, S.; and Suri, S. 2017.
Efficient algorithms for k-regret minimizing sets. arXiv
preprint arXiv:1702.01446.
Asudeh, A.; Nazi, A.; Zhang, N.; and Das, G. 2017. Effi-
cient computation of regret-ratio minimizing set: A compact
maxima representative. In Proceedings of the 2017 ACM In-
ternational Conference on Management of Data, 821–834.
ACM.
Cao, W.; Li, J.; Wang, H.; Wang, K.; Wang, R.; Chi-
Wing Wong, R.; and Zhan, W. 2017. k-regret minimizing
set: Efficient algorithms and hardness. In LIPIcs-Leibniz In-
ternational Proceedings in Informatics, volume 68. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik.
Chester, S.; Thomo, A.; Venkatesh, S.; and Whitesides, S.
2014. Computing k-regret minimizing sets. Proceedings of
the VLDB Endowment 7(5):389–400.
Clarkson, K. L., and Shor, P. W. 1989. Application of ran-
dom sampling in computational geometry, II. Discrete &
Computational Geometry 4:387–421.
Fisher, M. L.; Nemhauser, G. L.; and Wolsey, L. A. 1978. An
analysis of approximations for maximizing submodular set
functions—ii. In Polyhedral combinatorics. Springer. 73–
87.
Kumar, N., and Sintos, S. 2018. Faster approximation al-
gorithm for the k-regret minimizing set and related prob-
lems. In 2018 Proceedings of the Twentieth Workshop on
Algorithm Engineering and Experiments (ALENEX), 62–74.
SIAM.
McMullen, P. 1970. The maximum numbers of faces of a
convex polytope. Mathematika 17(2):179–184.
Nanongkai, D.; Sarma, A. D.; Lall, A.; Lipton, R. J.; and
Xu, J. 2010. Regret-minimizing representative databases.
Proceedings of the VLDB Endowment 3(1-2):1114–1124.
Soma, T., and Yoshida, Y. 2017. Regret ratio minimiza-
tion in multi-objective submodular function maximization.
In Proceedings of the Thirty-First AAAI Conference on Arti-
ficial Intelligence, February 4-9, 2017, San Francisco, Cali-
fornia, USA., 905–911.
Zeighami, S., and Wong, R. C.-W. 2016. Minimizing aver-
age regret ratio in database. In Proceedings of the 2016 In-
ternational Conference on Management of Data, SIGMOD
’16, 2265–2266. New York, NY, USA: ACM.

1607

