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Abstract
Neural Machine Translation (NMT) has drawn much atten-
tion due to its promising translation performance in recent
years. However, the under-translation problem still remains a
big challenge. In this paper, we focus on the under-translation
problem and attempt to find out what kinds of source words
are more likely to be ignored. Through analysis, we observe
that a source word with a large translation entropy is more
inclined to be dropped. To address this problem, we pro-
pose a coarse-to-fine framework. In coarse-grained phase, we
introduce a simple strategy to reduce the entropy of high-
entropy words through constructing the pseudo target sen-
tences. In fine-grained phase, we propose three methods, in-
cluding pre-training method, multitask method and two-pass
method, to encourage the neural model to correctly trans-
late these high-entropy words. Experimental results on var-
ious translation tasks show that our method can significantly
improve the translation quality and substantially reduce the
under-translation cases of high-entropy words.

Introduction
Neural machine translation (NMT) based on the encoder-
decoder architecture becomes the new state-of-the-art
method due to distributed representation and end-to-end
learning (Kalchbrenner and Blunsom 2013; Cho et al. 2014;
Bahdanau, Cho, and Bengio 2015; Wu et al. 2016; Gehring
et al. 2017; Vaswani et al. 2017).

However, NMT still has a drawback that some source
words sometimes are mistakenly dropped by the neural
model, referring as under-translation problem (Tu et al.
2016; Mi et al. 2016). Fig. 1 shows an example that the
source sub-words in red “jia(false)@@” and “e(bad)@@”
are missed by the neural model. Actually, the statistics from
our analysis and previous studies (Zheng et al. 2018) both
show that the current neural models suffer heavily from
the under-translation problem even for the state-of-the-art
Transformer model (Vaswani et al. 2017).

Several studies focus on the under-translation problem
and tend to address this problem by i) improving the atten-
tion mechanism, e.g., the coverage model (Tu et al. 2016;
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Source (word):       最终 真善美  彻底 打败 了 假恶丑

Source (sub-word):最终 真@@ 善@@ 美 彻底 打败 了 假@@ 恶@@ 丑
Pinyi:  (sub-word):  zuizhong  zhen@@  shan@@ mei@@ chedi   dabai  le 

                                  jia@@ e@@ chou

Reference:                finally , the true , the good and the beautiful completely 

                                  defeated the false, the bad and the ugly

NMT:                       eventually , true , good , and beauty thoroughly defeated 

                                  the ugly

source (word):   最终  真善美  彻底  打败 了 假恶丑

source (sub-word):   最终   真@@  善@@  美   彻底 
    打败 了 假@@ 恶@@ 丑
pinyin: (sub-word): zuizhong zhen@@ shan@@ mei

    chedi dabai le jia@@ e@@ chou

reference: finally , the true , the good and the beautiful 

    completely defeated the false, the bad and the ugly

NMT: eventually , true , good , and beauty thoroughly 

   defeated the ugly

Figure 1: Example to show the under-translation in NMT.
The source sub-words (Sennrich, Haddow, and Birch 2016)
“jia@@” and “e@@” are missed by the NMT model.

Mi et al. 2016), or ii) optimizing the hidden states of the en-
coder and decoder, e.g., the reconstructing model (Tu et al.
2017) and the modeling past and future method (Zheng et al.
2018). The above methods study the problem in the model
level. Different from them, we dive into the word level, and
try to answer the following two questions:

1) Why are some source words missed while the others
are not? In the example of Fig. 1, we are curious about the
questions that why the sub-words “jia@@” and “e@@” are
dropped while the sub-word “chou” is not. Semantically,
these three sub-words are coordinate.

2) If we can know that some certain kinds of words are
more likely to be missed by the NMT model, how can we
reduce the risk of under-translations of these words?

To answer the first question, we analyze the NMT trans-
lation results by manual analysis and automatic analysis.
Through analysis, we reach the following observation: a
source word with a higher translation entropy (defined in
Section 3) has a larger probability to be dropped by NMT
model (both the analysis procedure and statistical results are
described in Section 3). We define the translation entropy to
measure the translation uncertainty of a source word. The
larger the translation entropy of a source word is, the higher
translation uncertainty this word is.

To address the under-translation problem of high-entropy
words, we propose in this paper a coarse-to-fine frame-
work. We first build pseudo target sentences (coarse-grained
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phase) to reduce the entropy of high-entropy words, then the
derived pseudo target sentences are utilized to improve the
neural model (fine-grained phase).

Specifically, in coarse-grained phase, we construct the
pseudo target sentences by replacing the candidate trans-
lations of each high-entropy word with its respective spe-
cial pseudo token. By doing so, the derived pseudo target
sentence can sharply reduce the entropy of these words.
In fine-grained phase, we propose three methods, includ-
ing pre-training method, multitask method, and two-pass
method, to augment the original model with the derived
pseudo target sentences. In the pre-training method, we uti-
lize the derived pseudo target sentences to provide a bet-
ter parameter initiation. In the multitask method, both the
original target sentences and the pseudo target sentences are
utilized to train the neural model. In the two-pass method,
we divide the translation process into two steps: 1) trans-
lation step: to guarantee high-entropy words could be cor-
rectly translated to the special pseudo token; 2) disam-
biguation step: to transform the special pseudo token to
the true target token. We test our methods on Chinese-to-
English, English-to-Japanese and English-to-German trans-
lation tasks. The experimental results demonstrate that the
translation performance can be significantly improved and
the under-translation cases of high-entropy words can be
sharply reduced.

The contributions are listed as follows:
1) We thoroughly analyze the under-translation phe-

nomenon and find that source words with larger translation
entropy are more likely to be dropped by the neural model.

2) We propose a coarse-to-fine framework to address the
under-translation problem of high-entropy words. In coarse-
grained phase, we construct the pseudo target sentences to
reduce the entropy of these high-entropy words. In fine-
grained phase, the derived pseudo target sentences are uti-
lized to boost the original NMT model.

Neural Machine Translation
NMT contains an encoder and a decoder. The encoder trans-
forms a source sentence X = {x1, x2, ..., xTx} into a set
of context vectors C = (hS

1 , h
S
2 , ..., h

S
Tx) by the LSTM

(Hochreiter and Schmidhuber 1997) layers (Bahdanau, Cho,
and Bengio 2015), convolutional networks (Gehring et al.
2017) or self attention mechanism (Vaswani et al. 2017).

The decoder generates one target word at a time by com-
puting pT (yi|y<i, ci) as follows:

pT (yi|y<i, ci) = softmax(Eyi h̃
T
i + bs) (1)

where Eyi
is the embedding of the target word yi, and h̃T

i

is the attention output: h̃T
i = tanh(Wa[h

T
i ; ci]), where ci is

the context embedding and can be calculated as follows:

ci =

Tx∑
j=1

aijh
S
j (2)

where ai,j is the attention weight.

ai,j =
hS
j h

T
i∑

j h
S
j h

T
i

(3)

where hT
i is the hidden state in decoder. More detailed intro-

duction can be found in (Luong, Pham, and Manning 2015)
and (Vaswani et al. 2017).

Notation In this paper, we denote the whole source vo-
cabulary by VS = {sm}|VS |

m=1 and target vocabulary by
VT = {tn}|VT |

n=1, where sm is the source word and tn is the
target word. We denote a source sentence by X and a tar-
get sentence by Y . Each source word in X is denoted by
xj . Each target word in Y is denoted by yi. Accordingly, a
target word can be denoted not only by tn, but also by yi.
This does not contradict. tn means this target word is the
nth word in vocabulary VT , and yi means this target word
is the ith word in sentence Y . Similarly, we denote a source
word by sm and xj .

Observation and Motivation
We are curious about the following question: what kinds of
source words are more likely to be ignored by the NMT
model? To answer this question, we train the following
three baseline NMT systems by using a Chinese-to-English
dataset which contains 2.1M sentence pairs:

1) RNMT(word): The baseline NMT system using two
LSTM layers as encoder and decoder.

2) RNMT(sub-word): Similar to RNMT(word), except
that we use the sub-word (Sennrich, Haddow, and Birch
2016) as the translation unit.

3) Transformer(sub-word): The state-of-the-art NMT
system with the self-attention mechanism (Vaswani et al.
2017).

Then we need to find out which source words are missed
by the neural model. Here, we conduct the manual analysis
and automatic analysis as follows:

1) Manual Analysis: We randomly select 800 sentences
produced by the NMT model and ask five annotators to label
the missed source content words.

2) Automatic Analysis: We automatically detect the
missed source content words by using the alignment tool.
Specifically, given N source sentences and their correspond-
ing translation results produced by the NMT model, we can
get the alignments by using the alignment tool. If a source
content word1 has no target word to be aligned to, we treat
this word being dropped by the neural model. we use 400K
sentences in automatic analysis.

We analyze the relationship between various factors of
source words and the under-translation ratio. Among them,
we observe that translation entropy heavily affects the
under-translation ratio. According to the manual analysis,
42.2% under-translation cases occur on the high-entropy
words, which take the largest proportion in all under-
translation cases.

The translation entropy can measure the translation uncer-
tainty of a word and its formal definition is as follows:

Definition (translation entropy): Assume a word s con-
tains K candidate translations, each of which has a probabil-
ity pk, the translation entropy for this word can be calculated

1Words consist of content words and function words. For sim-
plicity, we treat the most frequent 500 words as the function words.
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(a) manual analysis (b) automatic analysis 

(a) manual analysis (b) automatic analysis 
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Figure 2: The relationship between the ratio of under-
translation (%) (y axis) and translation entropy (x axis),
where (a) and (b) report the results of manual analysis and
automatic analysis, respectively.

1 1( | )p t s
2 1( | )p t s 3 1( | )p t s 4 1( | )p t s

1 2( | )p t s
2 2( | )p t s 3 2( | )p t s 4 2( | )p t s

(a) word 

2s

1 3( | )p t s
2 3( | )p t s

(b) word 

(c) word

0.25

1s

0.1

0.4

3s

0.5

1 4( | )p t s

(c) word
4s

1

1 1( | )p t s
2 1( | )p t s 3 1( | )p t s 4 1( | )p t s

(a) word 

1 2( | )p t s 2 2( | )p t s

(b) word

0.25

1s 2s

0.5

1 1( | )p t s 2 1( | )p t s
3 1( | )p t s 4 1( | )p t s

(a) word 

1 2( | )p t s 2 2( | )p t s

(b) word

0.25

1s 2s

0.5

1 3( | )p t s

(c) word 3s

1

Figure 3: A toy example to illustrate the observation. The
translation entropy are ranked by E(s1) > E(s2) > E(s3).

by

E(s) = −
K∑

k=1

pk ∗ log pk (4)

Fig. 2 reports the relationship between the ratio of under-
translation (y axis) and translation entropy (x axis), where
(a) and (b) show the results of manual analysis and auto-
matic analysis, respectively. As shown in the figure, both
manual analysis and automatic analysis show that in all
three NMT systems (RNMT(word), RNMT(sub-word) and
Transformer(sub-word)), the ratio of under-translation be-
comes larger with the translation entropy increases. There-
fore, we can empirically obtain the following observation:

Observation: For a source word s, the larger its transla-
tion entropy is, the more likely this word is to be ignored by
the neural model.

Example Fig. 3 shows a toy example to illustrate the ob-
servation. In the example there are three source words s1,
s2 and s3, whose translation probabilities are shown in the
figure. Specifically, word s1 has four candidate translations
t1, t2, t3 and t4, and the translation probabilities are all 0.25.
Word s2 can be translated into two candidate words t1 and
t2, and the probabilities are both 0.5. Word s3 can only be
translated to t1. According to Eq. (4), the translation entropy
can be ranked by E(s1) > E(s2) > E(s3). Therefore, s1 is
most likely to be missed by the NMT, s2 is the next, and s3
is the least. As shown in the figure, if a source word contains
more candidates with a uniform distribution, its translation
entropy is larger, consequently it is more likely to be ignored
by the neural model.

This observation can provide a possible explanation for
the phenomenon in Fig. 1. The entropy for “jia@@ (false)”,
“e@@ (bad)” are respectively 5.84 and 6.02, which are

much higher than the entropy of “chou (ugly)” (4.26).
That may lead to the phenomena that sub-words “jia@@
(false)”and “e@@ (bad)” are dropped and the “chou (ugly)”
is correctly translated.

High-entropy Words Given the training bilingual dataset
Dxy =

{
X(n), Y (n)

}N

n=1
, we can get a lexicon translation

table through statistical methods (Koehn et al. 2007) and
then calculate the translation entropy for each source word.
If the translation entropy of a source word s exceeds the pre-
defined threshold e0, i.e., E(s) > e0, we treat this word as
a high-entropy word. According to the observation, these
words have larger probabilities to be ignored than others.
Therefore, our goal in this paper is to reduce the under-
translation cases of these high-entropy words2.

Method Description
To address the under-translation problem of high-entropy
words, we propose a coarse-to-fine framework. In coarse-
grained phase, we construct the pseudo target sentences to
reduce the entropy. In fine-grained phase, the derived pseudo
sentences are utilized to improve the neural model.

Coarse-grained Phase
In coarse-grained phase, we construct the pseudo target sen-
tences to reduce the entropy of these high-entropy words.
Here, we utilize an example in Fig. 4 to introduce our con-
struction method. In the example, word s1 is a high-entropy
word, and contains four candidates t1, t2, t3 and t4 with a
uniform probability distribution. Assume the training bilin-
gual dataset Dxy contains the following three pairs: In mth

pair (Xm, Y m), s1 should to be translated into t1. In nth

pair (Xn, Y n), t2 is the correct translation for s1. In pth pair
(Xp, Y p), s1 needs to be translated into t3 and t4 simulta-
neously. Fig. 4(a) shows our construction method. In pseudo
target sentences, we replace these candidate words t1, t2, t3
and t4 by a special pseudo token stoken4s1 and keep the
other target words unchanged. By doing so, the probabil-
ity distribution will change as illustrated in Fig 4(b). Mean-
while, the entropy of s1 can be reduced sharply.

Assuming there are M high-entropy words3

{sm}Mm=1, we first generate M special pseudo tokens
{stoken4sm}Mm=1. Then we construct the pseudo tar-
get sentences by replacing all candidate translations of
sm with the corresponding special token stoken4sm.

2We think the reason why these high-entropy words are more
likely to be dropped may due to their high translation uncertainty.
On the one hand, as high-entropy words contain various candi-
date translations, it is more difficult for the neural model to learn
their alignments, which may lead to more under-translation cases
of these words. On the other hands, the task of the beam search
decoding is to find the full sentence translation with the highest
probability. Generally, the candidate translations of a high-entropy
word always have lower probabilities as shown in Fig. (3), mak-
ing these candidate translations more likely be dropped during the
beam search decoding.

3The number M is determined by the pre-defined entropy
threshold e0.
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Figure 4: Illustration of the construction method. (a) We
construct the pseudo target sentences by replacing t1, t2, t3
and t4 by stoken4s1. (b) shows the probability distribution
changing.

Note that the other target words remain unchanged. Af-
ter this step, compared to the original bilingual dataset
Dxy =

{
X(n), Y (n)

}N

n=1
, now we can get a tri-lingual

dataset Dxyz =
{
X(n), Y (n), Z(n)

}N

n=1
, where X and Y

are the original source and target sentences. Z is the derived
pseudo target sentence.

Fine-grained Phase
Compared to the original target sentence Y , the derived
pseudo target sentence Z is coarse-grained, which decreases
the entropy of high-entropy words and also reduces the
translation difficulty. Now our task is to improve the fine-
grained neural model with pseudo sentences Z. Here we
propose three methods as follows:

Pre-training Method Fig. 5(a) shows our first method, in
which we utilize the derived pseudo sentences to provide a
better parameter initiation. To achieve this, we first pre-train
the model θ by using the data set Dxz =

{
X(n), Z(n)

}N

n=1
,

then fine-tune it by the original data Dxy . Compared to the
original method which initializes θ randomly, we hope the
pre-trained model could provide the better initiation.

Multitask Method Fig. 5(b) illustrates the framework of
the multitask method, in which we simultaneously train the
neural model θ through two translation tasks: 1) the task
from X to Y , and 2) the task from X to Z. To achieve this,
the object function is redesigned by

L(θ,Dxyz) =

N∑
n=1

Ty∑
i

(log pT (y
(n)
i |X(n), θ)

+ λ ∗ log pT (z
(n)
i |X(n), θ))

(5)

NMT modelX Z

Pre-training

NMT modelX Y

Fine-tuning
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Figure 5: The proposed three methods in fine-grained phase:
(a) pre-training method, (b) multitask method and (c) two-
pass method.

where λ is pre-defined weight to balance the two tasks. As
shown in Eq. (5), we utilize the pseudo translation task as an
auxiliary task to encourage the neural model focus more on
the high-entropy words.

Two-pass Method In the two-pass method, we divide the
whole translation process into two steps: translation step
and disambiguation step as follows:

In translation step, we translate source sentence X to
pseudo target sentence Z through the standard NMT frame-
work. As the pseudo sentences could reduce the entropy of
these high-entropy words, in this step, we hope these words
could be translated to the special pseudo tokens.

After this step, we can get a predicted translation distri-
bution pT (zi|X), which can be calculated by the standard
NMT framework in Eq. (1). The parameters in this step are
denoted by θT .

In disambiguation step, we need to transform the special
token in Z to real target word in Y . To achieve this, two
cases must be considered:

Case when zi is a normal token. In this case, as zi is
a normal token and same as yi, thus pD(yi|X) is directly
same as pT (zi|X), i.e., pD(yi|X) = pT (zi|X), where pD(.)
denotes the disambiguation probability distribution.

Case when zi is a special token. In this case, we de-
sign a disambiguation network to transform pT (zi|X) into
pD(yi|X).

As shown in Fig 5(c), the core of the disambiguation net-
work is the disambiguation vector di, which can be calcu-
lated by

di = f(Ezi , ci, h
T
i )

= tanh(Wz ∗ Ezi +Wc ∗ ci +Wh ∗ hT
i + bd)

(6)

where Wz , Wc, Wh and bd are parameters, which are de-
noted by θD. From Eq. (6), the disambiguation vector di is
determined by three factors: 1) The embedding of special to-
ken Ezi . 2) The context vector ci in Eq. (2). It is obviously to
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consider the context information to decide the correct trans-
lation. 3) The hidden states of decoder hT

i .
The next task is to calculate the assignment score s(zi,yi).

Its function is transforming the translation probability of
special token pT (zi|X) into the disambiguation probability
of real gold word pD(yi|X). Here, s(zi,yi) can be calculated
by

s(zi,yi) = softmax(Eyi
∗ di) (7)

where Eyi is the embedding of gold target word yi. di is the
disambiguation vector in Eq. (6).

Finally, we can get the final disambiguation probability
distribution by

pD(yi|X) = pT (zi|X) ∗ s(zi,yi) (8)

The parameters in these two steps (θT and θD) can be
optimized through an end-to-end manner with the following
object function:

L(θD, θT , Dxyz) =

N∑
n=1

Ty∑
i

(log pD(y
(n)
i |X(n), θD)

+ λ ∗ log pT (z
(n)
i |X(n), θT ))

(9)

where λ is the pre-defined weight to balance the two steps.

Experimental Settings
We test the proposed methods on Chinese-to-English (CH-
EN), English-to-Japanese (EN-JA) and English-to-German
(EN-DE) translation. In CH-EN translation, we use LDC
corpus which includes 2.1M sentence pairs for training.
NIST 2003 dataset is used for validation. NIST04-06 and
08 datasets are used for testing. In EN-JA translation, we
use KFTT dataset4, which includes 0.44M sentence pairs for
training, 1166 sentence pairs for validation and 1160 sen-
tence pairs for testing. In EN-DE translation, we use WMT
2014 EN-DE dataset, which includes 4.5M sentence pairs
for training. 2012-2013 datasets are used for validation and
2014 dataset is used for testing. We test all methods based on
two granularities: words and sub-words. For word granular-
ity, we limit the vocabulary to 30K (CH-EN), 30K (EN-JA)
and 50K (EN-DE) for both the source and target languages.
For sub-word granularity, we use the BPE method (Sennrich,
Haddow, and Birch 2016) to merge 30K (CH-EN), 30K (EN-
JA) and 37K (EN-DE) steps. In CH-EN and EN-JA transla-
tion, we use case-insensitive 4-gram BLEU (Papineni et al.
2002) for translation quality evaluation. In EN-DE transla-
tion, we use case-sensitive 4-gram BLEU for evaluation.

We use the fast-align tool (Dyer, Chahuneau, and Smith
2013) with both source-to-target and target-to-source direc-
tions to extract the word alignments.

We compare our method with other relevant methods as
follows:

1) RNMT: The baseline NMT system using two LSTM
layers as encoder and decoder. The word embedding dimen-
sion and the size of hidden layers are both set to 1,000. The
minibatch size is set to 128 (Zoph and Knight 2016)5.

4http://www.phontron.com/kftt/.
5https://github.com/isi-nlp/Zoph RNN.

source (word):    最终  真善美  彻底   打败  了  假恶丑
source (sub-word):    最终    真@@   善@@   美    彻底 
    打败 了 假@@ 恶@@  丑
pinyin: (sub-word):  zuizhong  zhen@@  shan@@  mei

    chedi   dabai  le jia@@ e@@ chou

reference:  finally , the true ,  the good  and  the beautiful 

    completely defeated the false, the bad and the ugly

RNMT:   eventually , true , good , and beauty thoroughly 

   defeated the ugly

RNMT+two_pass: finally, true, good and beauty defeated 

   thoroughly the false, the evil and the ugly

Figure 6: The two sub-words “jia@@” and “e@@” are cor-
rectly translated by our method. While they are missed by
the NMT model.

2) RNMT+coverage: The coverage model proposed in
(Tu et al. 2016), we implement this model on the basis of
RNMT, in which we select linguistic coverage model to con-
struct the coverage vector.

3) Transformer: The state-of-the-art NMT system with
self-attention mechanism. The hyper-parameters are the
same as (Vaswani et al. 2017)6.

4) X+pre train, X+multitask, and X+two pass: These
are our proposed methods. In all methods, the entropy
threshold e0 = 4. In the pre-training method, we first pre-
train the model 10 epochs with the pseudo sentences. In the
multitask method, the balance weight λ in Eq. (5) is set to
0.35. In the two-pass method, the balance weight λ in Eq.
(9) is set to 0.3. All these hyper-parameters are fine-tuned
on the validation set.

Results on CH-EN Translation
Translation Quality Analysis
Results on RNMT Model Table 1 reports the main trans-
lation results of CH-EN translation. We first compare our
method with RNMT. As shown in row 1 and row 2-4 in Table
1, our methods can improve over RNMT on all test datasets,
where the RNMT+two pass achieves the best performance
and the improvement reaches to 1.21 BLEU (40.37 vs.
39.16) points.

We also test the proposed methods when the translation
unit is sub-word. The results are shown in row 5-8. As shown
in the table, the improvement of RNMT+two pass is also the
largest and the gains can reach to 0.95 BLEU points (42.29
vs. 41.34). RNMT+multitask is the second and can improve
the RNMT by 0.64 BLEU (41.98 vs. 41.34).

Fig. 6 shows the mentioned example, in which RNMT
missed two source sub-words “jia@@” and “e@@”. While
in the proposed two-pass method, these two sub-words can
be correctly translated.

Effect of the Hyper-parameters Generally, the two-pass
method achieves the best result. As we discussed before,
there are two hyper-parameters in our two-pass method, i.e.,
1) the entropy threshold e0 and 2) the balance weight λ in
Eq. (9). Table 2 reports the BLEU scores under different

6https://github.com/tensorflow/tensor2tensor.
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# Model Units 03 04 05 06 08 Avg.
1 RNMT word 41.01 42.94 40.31 40.57 30.96 39.16
2 RNMT+pre train word 41.53† 43.46∗ 40.41∗ 41.35† 31.17∗ 39.58
3 RNMT+multitask word 41.99† 43.95† 40.84† 41.57† 31.42∗ 39.95
4 RNMT+two pass word 42.37† 44.27† 41.58† 41.72† 31.91† 40.37
5 RNMT sub-word 43.96 44.74 42.46 43.01 32.53 41.34
6 RNMT+pre train sub-word 44.13 44.96∗ 42.61∗ 43.31∗ 32.77∗ 41.56
7 RNMT+multitask sub-word 44.53† 45.17∗ 43.39† 43.85† 32.97∗ 41.98
8 RNMT+two pass sub-word 44.86† 45.64† 43.36† 44.17† 33.44† 42.29
9 RNMT+coverage word 41.75 43.79 41.44 41.24 31.46 39.94

10 RNMT+coverage+multitask word 42.66† 44.54† 42.07† 41.77† 32.03† 40.61
11 RNMT+coverage+two pass word 42.94† 44.52† 42.53† 42.12† 32.23† 40.87
12 Transformer sub-word 45.80 47.77 46.90 46.90 34.61 44.40
13 Transformer+multitask sub-word 46.71† 48.13∗ 47.41† 47.44† 34.98∗ 44.93
14 Transformer+two pass sub-word 46.64† 48.29† 47.63† 47.51† 35.13† 45.04

Table 1: The main results of CH-EN translation. “*” indicates that the proposed system is statistically significant better (p <
0.05) than the baseline system and “†” indicates p < 0.01.

λ
e0 2 4 6 8

0.1 40.24 40.24 39.63 38.99
0.2 40.27 40.31 39.77 39.76
0.3 40.30 40.37 39.92 39.72
0.4 40.11 40.25 39.81 39.51

Table 2: The BLEU points of two-pass methods under dif-
ferent hyper-parameters, where λ is the balance weight and
e0 is the entropy threshold.

hyper-parameters. As shown in the table, when λ = 0.3 and
e0 = 4, our two-pass method achieves the best results. An
interesting thing should be noticed is that when e0 reduces
from 8 to 4, more words are replaced with the special tokens,
and the performance increases. While when e0 reduces to 2,
the performance no longer increases. We think the reason
is that the neural model can correctly translate these low-
entropy words.

Results on Coverage Model We also compare the pro-
posed method with the coverage model. The results are
shown in row 9-11. Compared to the coverage model, the
two-pass method can outperform the coverage model by
0.43 BLEU points (40.37 vs. 39.94). More importantly, on
the basis of the coverage model, our method can further im-
prove the model by 0.93 BLEU points (40.87 vs. 39.94), in-
dicating that coverage model still faces the under-translation
problem of high-entropy words, and our method alleviates
this problem.

Results on Self-attention Model We conduct experi-
ments to evaluate the performance of proposed method on
the basis of self-attention model (Transformer). As shown in
row 12-14 of Table 1, our method can also improve the trans-
lation quality on Transformer, where the two-pass method
can boost the Transformer by 0.64 BLEU points and the im-
provement for the multitask method is 0.53 BLEU points.

Model All High-Entropy Other
RNMT 5.02%(207) 8.05%(91) 3.88%(116)

+two pass 4.10%(169) 4.86%(55) 3.81%(114)
Coverage 4.32%(178) 7.07%(80) 3.28%(98)

+two pass 3.59%(148) 4.77%(54) 3.14%(94)
Transformer 4.63%(191) 7.60%(86) 3.51%(105)

+two pass 3.78%(156) 4.69%(53) 3.44%(103)

Table 3: The under-translation ratio (number) of different
methods. Column All, High-Entropy and Other list the to-
tal missed ratio (number) of all words, high-entropy words,
and the other words, respectively.

Under-translation Analysis
Statistics of Under-translation As our method tends to
reduce the under-translation cases of high-entropy words.
Therefore, we also conduct a manual analysis to figure out
how many dropped high-entropy words could be rectified by
our methods. We randomly select 200 testing sentences, and
count the following three numbers: 1) the ratio (number) of
all dropped words (All), 2) the ratio (number) of dropped
high-entropy words (High-Entropy), and 3) the ratio (num-
ber) of dropped other words (Other). The statistics are re-
ported in Table 3. From this table, we can reach the follow-
ing three conclusions:

1) On the basis of RNMT model, our method (+two pass)
can reduce the under-translation ratio (number) of high-
entropy words from 8.05% (91 times) to 4.86% (55 times).
As a comparison, our method has less effect on the under-
translation of other words (3.88% (116 times)) vs. 3.81%
(114 times)), showing that our method is the most effective
to reduce the under-translation cases of high-entropy words.

2) Coverage model can both reduce the under-translation
cases of high-entropy words (8.05% vs. 7.07%) and other
words (3.88% vs. 3.28%). On the basis of Coverage model,
our method could further reduce the under-translation ratio
of high-entropy words to 4.77%, which shows that our meth-
ods and coverage model are complementary.
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Model All High-Entropy
RNMT 45.54 51.34
RNMT+ multitask 43.39 47.18
RNMT+ two pass 42.21 46.37
Transformer 44.31 49.47
Transformer +multitask 41.41 45.11
Transformer +two pass 40.22 44.02

Table 4: The alignment error rate (AER) of different meth-
ods. The lower the score is, the better the alignment quality
is. Column All and High-Entropy list the AER of all words
and high-entropy words, respectively.

Model EN-JA EN-DE
RNMT 27.43 23.85
RNMT+multitask 28.21† 24.66†

RNMT+two pass 28.56† 24.89†

Transformer 29.50 27.20
Transformer+multitask 29.93∗ 27.59∗

Transformer+two pass 30.28† 27.73†

Table 5: The results on EN-JA and EN-DE translation. “*”
indicates that it is statistically significantly better (p < 0.05)
than baseline system and “†” indicates p < 0.01.

3) On Transformer model, we can get similar conclusions
that our method can sharply reduce the under-translation ra-
tio (times) of high-entropy words from 7.60% (86 times) to
4.69% (53 times).

Alignment Quality We also carry out another experi-
ment to analyze the alignment quality of the high-entropy
words. The evaluation dataset is from (Liu and Sun 2015),
which contains 900 manually aligned Chinese-English sen-
tence pairs. We utilize the alignment error rate (AER) (Och
and Ney 2003) to measure the performance. The lower the
score is, the better the alignment quality is. Table 4 lists the
alignment performance. As shown in this table, on both the
RNMT and Transformer models, our method could improve
the alignment quality, especially for the high-entropy words.

Results on EN-JA and EN-DE Translation
We also test our method on EN-JA translation and EN-DE
translation. The results are reported in Table 5, our method
improves the translation quality on both EN-JA and EN-
DE translation. Specifically, on EN-JA translation, the pro-
posed two-pass method outperforms the baseline model by
1.13 BLEU (RNMT) and 0.78 BLEU points (Transformer),
respectively. On EN-DE translation, the two-pass method
reaches 1.04 BLEU points (RNMT) and 0.53 BLEU points
improvement (Transformer).

Related Work
The related work can be divided into three categories and we
describe each of them as follows:

Addressing the Under-translation Several studies ad-
dress the under-translation problem from the model perspec-
tive. For example, Tu et al. (2016) and Mi et al. (2016) bor-
row the coverage mechanism to improve the attention mech-

anism. In their models, they maintain a coverage vector to
collect the attention record, then use this coverage vector to
adjust the attention in next time step. Some studies tend to
improve the hidden states of encoder and decoder, where Tu
et al. (2017) propose a reconstructor to ensure the informa-
tion in encoder can being adequately transformed to decoder.
Zheng et al. (2018) extend the NMT model to optimize the
hidden states of encoder and decoder by modeling past and
future vectors. Different from above methods, we tackle this
problem from the entropy perspective. We observe that a
source word with a larger translation entropy is more likely
to be ignored and propose a coarse-to-fine framework to ad-
dress this problem. More importantly, the experiments show
that our methods could further reduce the under-translation
cases on the basis of previous methods.

Addressing the Ambiguous Words As the high-entropy
words are always the ambiguous words. Our work is also
related to the studies dealing with the ambiguous words,
e.g., (Vickrey et al. 2005; Carpuat and Wu 2007; Rios, Mas-
carell, and Sennrich 2017; Sennrich 2017). The goal of these
methods is to improve the translation accuracy of ambiguous
words. In contrast, we try to address the under-translation
problem of these words.

Combining SMT and NMT Our method utilizes the lex-
icon translation table and is also related to the work which
utilizes lexicon and phrase translation table into NMT, e.g.,
(Arthur, Neubig, and Nakamura 2016; Tang et al. 2016;
Feng et al. 2017; Dahlmann et al. 2017; Wang et al. 2017a;
Zhang and Zong 2016; Zhou et al. 2017; Wang et al. 2017b;
Zhao et al. 2018a; Huang et al. 2018; Zhao et al. 2018b).
These methods tend to improve the translation quality for the
rare words, while our methods focus on the under-translation
problem of high-entropy words.

Conclusions

Through error analysis, we find that source words with larger
translation entropy are more likely to be dropped. To ad-
dress this problem, we propose a coarse-to-fine framework.
In coarse-grained phase, we construct the pseudo target sen-
tences to reduce the entropy of the high-entropy words. In
fine-grained phase, we propose three methods to reduce the
under-translation cases with derived pseudo sentences. The
extensive experiments demonstrate that our method signifi-
cantly outperforms the strong baseline models in translation
quality and sharply reduces the under-translation cases of
these high-entropy words.
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