The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

Meimei: An Efficient Probabilistic Approach for Semantically Annotating Tables

Kunihiro Takeoka
NEC Corporation
k-takeoka@az.jp.nec.com

NEC Corporation

Abstract

Given a large amount of table data, how can we find the ta-
bles that contain the contents we want? A naive search fails
when the column names are ambiguous, such as if columns
containing stock price information are named “Close” in one
table and named “P” in another table.

One way of dealing with this problem that has been gaining
attention is the semantic annotation of table data columns by
using canonical knowledge. While previous studies success-
fully dealt with this problem for specific types of table data
such as web tables, it still remains for various other types of
table data: (1) most approaches do not handle table data with
numerical values, and (2) their predictive performance is not
satisfactory.

This paper presents a novel approach for table data annota-
tion that combines a latent probabilistic model with multi-
label classifiers. It features three advantages over previous
approaches due to using highly predictive multi-label classi-
fiers in the probabilistic computation of semantic annotation.
(1) It is more versatile due to using multi-label classifiers in
the probabilistic model, which enables various types of data
such as numerical values to be supported. (2) It is more accu-
rate due to the multi-label classifiers and probabilistic model
working together to improve predictive performance. (3) It is
more efficient due to potential functions based on multi-label
classifiers reducing the computational cost for annotation.
Extensive experiments demonstrated the superiority of the
proposed approach over state-of-the-art approaches for se-
mantic annotation of real data (183 human-annotated tables
obtained from the UCI Machine Learning Repository).

1 Introduction

Given a large number of web tables, how can we find ta-
bles that contain stock price information? Conventional in-
formation retrieval techniques such as column-name based
search sometimes fail to find relevant tables because the col-
umn/table names are ambiguous. For instance, stock price
information may be stored with various column names,
sometimes as “P” (for “price”) or “Close” (for “closing
price”) as shown in Figure 1. This issue led to increased
attention being paid by academia and industry to seman-
tic annotation of table data, i.e., the unification of table se-

Copyright (© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Masafumi Oyamada

m-oyamada@cq.jp.nec.com

281

Takeshi Okadome

Kwansei Gakuin University
tokadome @acm.org

Shinji Nakadai
NEC Corporation
s-nakadai @az.jp.nec.com

Inc. P
NEC 30
Google 600
......... H
"M Company Close
A 50
Knowledge base

Figure 1: Illustration of semantic table annotation. Am-
biguous column names (e.g., columns containing a concept
“<Stock price>" are named either “P” or “Close”) are dis-
ambiguated by linking to corresponding canonical concepts
in a knowledge graph.

mantics by annotating table cells and columns with canon-
ical knowledge (Venetis et al. 2011; Deng et al. 2013;
Mulwad, Finin, and Joshi 2013; Neumaier et al. 2016;
Pham et al. 2016; Zhang 2017).

Most conventional semantic table annotation methods
simply link column cells containing textual information
to knowledge graph concepts (entities) (Venetis et al.
2011; Deng et al. 2013; Mulwad, Finin, and Joshi 2013;
Zhang 2017). The columns containing these cells are called
“named-entity columns” (NE-columns). The columns con-
taining numerical values are not linked to knowledge, which
are called “literal-columns.” While several methods for
annotating literal-columns have been reported, their pre-
dictive performance is not satisfactory (Pham et al. 2016;
Neumaier et al. 2016).

We have developed a novel approach for annotating var-
ious types of table data in which probabilistic-model-based
annotation is integrated with highly predictive multi-label
classifiers (Tsoumakas and Katakis 2007). Our approach ex-
tends a state-of-the-art semantic annotation method based
on a Markov random field model (Limaye, Sarawagi, and
Chakrabarti 2010) with multi-label classifiers to enable it to
support various types of columns including ones containing
numerical data and to improve its predictive performance.

‘We summarize our contributions:

1. We annotate more versatile columns semantically by
modeling a table with Markov random field and its po-
tential functions based on multi-label classifiers.

2. The predictive performance of our approach is better than
those of conventional methods due to highly predictive
multi-label classifiers as potential functions.

3. Our approach to semantic table annotation is faster than
conventional methods due to modeling tables and approx-
imation techniques for prediction.

2 Related Work
2.1 Named-Entity-Column Annotation

Most studies for semantic table annotation have focused on
named-entity-columns (NE-columns).

(Venetis et al. 2011) proposed using a probabilistic model
and isA database constructed from the Web to semantically
annotate NE-columns. The annotation of columns by the
method has ambiguity because the isA database is not a
canonical knowledge.

(Limaye, Sarawagi, and Chakrabarti 2010) proposed an-
notating columns with concepts by using a Markov random
field model to model the semantic structure of a table. The
cells, columns, and binary relationships between columns
are modeled as corresponding latent variables that repre-
sent concepts or relations in a knowledge graph. Potential
functions over latent variables, such as column-column and
column-content relationships, are used to connect those ta-
ble components. This model formalizes the semantic table
annotation task as the potential maximization. Their method
thus captures the interdependencies between table compo-
nents such as columns and cells. The original potential max-
imization algorithm (Limaye, Sarawagi, and Chakrabarti
2010) is computationally expensive, so (Mulwad, Finin, and
Joshi 2013) proposed an alternative light-weight message-
passing algorithm.

While these methods can infer the concepts related to NE-
columns, they ignore the existence of literal-columns. Our
approach tackles the issue and leverages literal-columns to
further improve the accuracy of semantic annotation of NE-
columns because literal-columns sometimes have important
information for annotating other columns.

2.2 Literal-Column Annotation

While mainstream of semantic annotation focuses on NE-
columns, several studies tried semantic annotation for
literal-columns recently.

(Pham et al. 2016) proposed annotating literal-columns by
classifying columns. Given a non-annotated column, a clas-
sifier computes the distances between the column and the al-
ready annotated columns, which work as training data. For
the distance between columns, their method aggregates sev-
eral similarity measure scores such as the Jaccard index of
trigrams and the statistics of the Kolmogorov-Smirnov test,
in which the importance of each similarity is trained before-
hand in a supervised manner. Since their approach is based
on the classifier, which has to store all the annotated columns
as training data, computational and space complexities could
be high.

282

(Neumaier et al. 2016) proposed leveraging the hier-
archical structure of numerical concepts (e.g., height —
height of sportsperson — height of football player) extracted
from knowledge graphs to annotate literal-columns. Literal-
columns annotated with the same concept are assumed to
have the same unit of measure (meter, inch, etc.). This means
that performance may be poor if columns with the same con-
cept have different units of measure in real data.

(Riimmele, Tyshetskiy, and Collins 2018) proposed us-
ing a multi-class classifier for semantic annotation whose
textual/numerical features are similar to ours. Compared to
their model, our model has several differences. Firstly, we
extended the classification model into multi-label classifiers
that assigns several concepts to a column because it is nat-
ural for a column to have several corresponding concepts
(e.g., for a column named “Inc.”, concepts “<Company>"
and “<Organization>" should correspond). Secondly, we
consider the column-interdependencies, such as “<Age>"-
column and “<Height>"-column often co-occur in a table,
in the form of a Markov random field model to improve the
predictive performance.

2.3 Applications

Several applications use semantic table annotation such
as InfoGather+ (Zhang and Chakrabarti 2013) and
KATARA (Chu et al. 2015). InfoGather+ fills in missing
values in a table by semantic table annotation. KATARA is
aimed at data cleansing and enriching the knowledge graph
by annotating tables semantically. Semantically annotated
tables can be useful for several operations such as searching
and joining tables (Venetis et al. 2011). It is difficult to do
such operations effectively without semantic annotation for
tables because columns have ambiguous values. Our method
also helps these operations as preliminary.

3 Proposed Method

We model a table as a probabilistic model using a Markov
random field with parametric potential functions. To ob-
tain optimal parameters of the potential functions, we use
a multi-label classification model. Note that we show the list
of main symbols in Table 1.

3.1 Problem Definition

We formalize semantic annotation for table X as the follow-
ing problem.

Let knowledge graph G be a graph G = (V, E), where V
corresponds a set of “‘concepts” that represent concepts such
as “<stock price>" and “<company>,” and E denotes the
“is-a” relations between two concepts.

Problem 1 (Semantic annotation for table data). Given a
knowledge graph G and a table X with R rows and C
columns whose c-th column is x. and (r,c)-th cell is x,.,
find the concept y. € V for each column c that best cap-
tures' ¢’s content x..

'Tn previous work (Limaye, Sarawagi, and Chakrabarti 2010),
they assumed that a column has the ground-truth concepts and
the column’s contents are instantiated from these concepts. Since

Table 1: List of main symbols.

notations descriptions
[T] # of tables in the training dataset
V| # of concepts in the knowledge graph
[V # of concepts in the training dataset
C average # of columns in the training dataset

R average # of rows in the training dataset

Cy # of columns in a target table
R, # of rows in a target table
X table contents

y column concepts C V/
t title concept € V
potential function in our model
f multi-label classifier for column-content potential
g multi-label classifier for column-column potential
0 parameters of a potential function
e concept candidate € V'
a vector representation
d # of dimensions in the embedding space
1 # of iterations in Gibbs sampling

3.2 Formulation with Markov Random Field

To solve the Problem 1, we reformulate the problem by
defining a Markov random field over the input table data and
assigned concepts.

Let c be a column identifier, y. € V be a latent variable
corresponding to c-th column contents x,. that represents the
concept of c-th column, ¢ € V be a latent variable that rep-
resents the concept of the table title, and x. = {z, .}, be
column ¢’s content. Note thaty _. = y \ y.. We define the
joint distribution of the random variables in our model as

1
p(X, Y, t) = E H ()byx (ym Xc)¢yy(yca Y—c)¢ty (t, Z/c)7
) (1)

where ¢ is a column index, Z is a partition function, and
¢(+) is a potential function. There are three potential func-
tions in our model: (1) column-content potential ¢, (2)
column-column potential ¢,,, and (3) title-column poten-
tial ¢y,. The potential functions have parameters trained by
a training dataset. Figure 2 shows an example of our model
for a table that has two rows and three columns.

With this modeling, Problem 1 can be reformulated as
maximization of the joint probability shown in Equation 1,
given table contents X. Before we introduce the preliminary
for semantic table annotation (Section 4) and the maximiza-
tion of joint probability (Section 5), we introduce the details
of our model in the remainder of this section.

3.3 Potential Functions

We define three potential functions for our Markov random
field model, each of which models correlation between two
random variables. We take a supervised approach to deter-
mining the parameters of the potential functions.

ground-truth concepts cannot be obtained for actual data, they pre-
pared human-annotated tables and evaluated the accuracy. In this
paper, we followed this procedure.

283

N Y
) x [x
t\,/ 11 \77/) 13
p D (Y
‘\Jv X321 O x22 %23

Figure 2: The graphical model of proposed model on a table
with two rows and three columns.

We propose an extensible and accurate approach for se-
mantic table annotation based on Markov random field
with potential functions based on multi-label classi-
fiers (Tsoumakas and Katakis 2007). Our approach anno-
tates columns accurately compared to conventional methods
thanks to potential functions based on multi-label classifiers,
which are used to deal with ambiguous column names. For
instance, the “Inc.” column annotated with “<Company>"
in Figure 1 is sometimes annotated with “<Organization>.”
Multi-label classifiers work better than multi-class classi-
fiers because they express ambiguity with multiple outputs.

Column-Content Potential The column-content potential
qbyz(yc, X.) measures the similarity between observed cells
X, and candidate column concept y.. We define the potential
function as

¢yw (yca Xc) = ug‘cfel (XC)7

where fy, : x — [0,1]!V] is defined by a multi-label clas-
sifier fp, with the trained parameters ¢;, and u,,_ is a one-
hot vector of column concept y. with |V'| dimension, which
is the number of concepts in the knowledge graph. fy, has
two steps: feature extraction and multi-label classification.
We take different approaches to feature extraction for NE-
and literal-columns because the characteristics of NE- and
literal-columns are different. We explain the details of the
feature extraction in Section 3.5. After the feature extraction,
we input the extracted features to the multi-label classifiers
(one for NE-columns and one for literal-columns) whose pa-
rameters are trained using a training dataset (the details are
covered in Section 4 and Section 5).

We use a “binary relevance” approach for the multi-
label classifiers (Tsoumakas and Katakis 2007). Each binary
classifier corresponding to a concept determines whether a
column-content relevant to or irrelevant to the concept. This
binary relevance approach is the simplest approach to multi-
label classification.

Column-Column Potential As shown in Figure 3, con-
cepts of numerical values are sometimes hard to determine
since numerical statistics can be similar among different
concepts (e.g., age and temperature). To deal with this prob-
lem, we prepare the column-column potential @y (Ye, ¥ —c)
measures similarity between candidate concept of a column
(yc), and the currently assigned concepts of other columns

Height (inferred)
ﬁ Age

?? 2 apT

.. &(“Height”,“Age”) = 0.9
170 25 [T, (“Heig 9<")
e S

G(“Height”,“Temp.”) = 0.01
Figure 3: Semantic annotation with column-

interdependency consideration improves
ambiguous literal-columns.

accuracy for

(y—c). Note that y_. = y — y.. We define the potential
function as

Qbyy (yC7 Y—C) = ugcgez (y—C)a

where gg, : y_. — [0, 1]V is also defined by a multi-label
classifier g, with trained parameters 65, and u,, is a one-
hot vector corresponding to .. The multi-label classifier gy,
predicts the probabilities of all concepts when given other
columns’ concept assignments y_.. We give the multi-label
classifier gy, the vector representation of currently assigned
concepts of other columns y . as Vy_, = &7 > oze V.-
The multi-label classifier captures column-interdependency,
co-occurrence of column-concepts. We also take binary rel-
evance approach for multi-label classification. Though each
classifier is trained separately, column interdependencies are
captured because input variable consists of several columns.

Title-Column Potential The title-column potential
¢ty (t,y.) measures the similarity between a title concept ¢
and a column concept y.. We define the potential function

as

¢ty(t7 yc) = exp{_d(t>yc)}7)
where d denotes the distance between embedded vectors
corresponding to title concept ¢ and column concept . such
as ||v¢ — vy, ||. We expect the potential makes regularization
of column concepts because the potential takes a low value
when column concepts are not close.

3.4 Knowledge Graph Embedding

In computing the values of potential functions, previous se-
mantic table annotation methods conduct a graph traversal
on knowledge graphs, which is inefficient. To reduce the
computational cost of potential functions, we use knowledge
graph embedding methods (Bordes et al. 2013; Trouillon et
al. 2016; Nickel and Kiela 2017). Our model enjoys two
positive effects from using knowledge graph embedding in
computing potentials: (1) it is not necessary to search on the
knowledge graph because the information in the knowledge
graph can be translated into vector representations, and (2)
missing link between concepts in the knowledge graph can
be found by using knowledge graph embedding.

In general, there are several methods for knowledge graph
embedding such as TransE (Bordes et al. 2013) and Com-
plEx (Trouillon et al. 2016). While they can be useful, we
employ Poincar¢ embedding (Nickel and Kiela 2017) be-
cause it maintains the semantic hierarchy of the knowledge

284

2. Obtain vector representations:

graph by embedding in a small hyperbolic space B¢ (B¢ =
{v € R? ||v|| < 1}). This enables the hierarchy to be cap-
tured with small dimensions and facilitates computation of
the potentials on the basis of the embedding vectors v.

3.5 Feature Extraction

In our model, the parameters of potential functions are
trained in a supervised manner where inputs are column cells
and outputs are the corresponding concepts of the column.
Our model extracts features from column cells, trains multi-
label classifiers to obtain potential function parameters, and
uses them in the potential maximization for prediction. We
design two types of feature extractions for NE- and literal-
columns. The features designed for NE-columns differ from
those designed for literal-columns because the characteris-
tics of NE- and literal-columns are naturally different. We
introduce two feature extraction approaches.

Features for Named-Entity-Columns For NE-columns,
the features are designed on the basis of entity-linking and
knowledge graph embedding (Section 3.4). In Limaye’s
method, each cell corresponds to a concept. We assume each
cell is related to one or more concepts.

1. Link cells to concept candidates: find concept candidates

{e,.c}E , C V corresponding to cell values {, .} F ;.

transform candidates
{erc} | into embedded vectors with knowledge graph
embedding {v, .}, (v, . € BY).

3. Calculate statistics: calculate the mean and standard devi-

ation of the set of embedded vectors {v,. .} 2 ;.

We first calculate the textual similarities between the con-
cept lemmas and cell values to find concept candidates
{e;.} | 2. Lemmas are generally defined as representa-
tions of concepts in the knowledge graph. For instance, the
concept “<United Kingdom>"" has lemmas such as “UK”
and “Great Britain.” We obtain vectors corresponding to the
concept candidates by using knowledge graph embedding.
Then we compute the mean and standard deviation of the
set of embedded vectors. Finally, we concatenate the mean
and the standard deviation vector and use it as the feature
vector for the column.

It is natural that we use the mean (and standard devia-
tion) of embedding vectors as the feature vector of a col-
umn given the analogy that the mean of word embedding
vectors is often used as the feature vector of a sentence or
documents (Arora, Liang, and Ma 2017). The mean of word
embedding vectors is often used as the feature vector of a
sentence even if embedding approaches based on long short-
term memory appeared. Since the characteristics of columns
are similar to those of bag-of-words, we use the mean of em-
bedding vectors as a feature vector.

2While arbitrary textual similarity can be used to compute can-
didates’ similarity, we found that edit-distance works well. The
threshold of determining the concept candidates is computed as
amax(len(lemma),len(cellvalue)). The value of « is deter-
mined by cross-validation, and it is 0.5 in our experiments.

Features for Literal-Columns For literal-columns, we
compute several numerical statistics of the column cells.
Since literal-columns may also have textual information
such as measurement units (e.g., “20 s”), we also use sev-
eral textual features such as the frequency of each letter and
the length of each string. Our feature extraction for literal-
columns comprises three steps:

1. Calculate numerical statistics: we extract numerical val-
ues from cells x. and calculate several statistics Vyum
from the values.

2. Calculate textual features: we calculate several textural
features viy¢ such as the frequency of each letter.

3. Concatenate features: we concatenate numerical statistics
Voum With textual features viy.

4 Training
4.1 Training for Knowledge Graph Embedding

As mentioned in Section 3.4, we use Poincaré embed-
ding (Nickel and Kiela 2017) as knowledge graph embed-
ding. We train network parameters in Poincar¢ embedding
to obtain vector representations of concepts. We initialize
each vector corresponding to the concept and minimize the
loss function with maintaining the hierarchical relationship
to obtain the vector representations of concepts.

4.2 Training Parameters of the Potential
Functions

Since multi-label classifiers fs, and gg, which are used in
potential functions, are parametrized by the parameters 64
and 05, we first train these parameter values using the anno-
tated tables by

i SN e, fo, (x0) + lo(Ye: 80, (Y-c)), (3)
TeT c

where T = {T1,T5,...T,} are the annotated tables used
for optimizing the parameters, and /; and [5 are the loss
functions corresponding to multi-label classifiers fy, and
gp, . Since there are no interactions between the parameters,
we optimize the parameters separately as ordinary multi-
label classification problems.

5 Prediction

As mentioned in the Problem 1, semantic table annotation
problem can be reformulated as the potential maximization
of our model:

H;?%XH¢yr(yC7Xc)¢yy(ycaY—c)¢ty(ta yc)- 4)

Given table contents as the observed variables X, we maxi-
mize the potential to obtain optimal column concepts y. To
this end, we consider two approaches: naive approach and
approximation approach.

285

5.1 Naive Approach

A naive approach to maximizing the potential calculates the
potentials for all combinations of latent variable candidates.
Since the number of candidate sets grows exponentially with
respect to the number of columns, taking this naive approach
in the real world is unrealistic.

5.2 Approximation Approach

Since the naive approach is intractable, we propose an ap-
proximate approach for the potential maximization. First,
we apply the Gibbs sampling technique to obtain optimal
parameter distributions in a realistic time. Second, to further
reduce the computational time of the Gibbs sampling, we
propose a heuristics that reduces the number of latent vari-
able candidates.

Gibbs Sampling The joint posterior distribution of the la-
tent variables of our model is given by

p(y7 t‘X) X H ¢yas (yca Xc)¢yy (ya yfc)(bty(tv yc)'

Instead of directly sample from the joint posterior, which is
intractable, we use the approximated sampling algorithms
such as Markov Chain Monte Carlo (MCMC) method. The
MCMC method samples each latent variable from its con-
ditional posterior distribution with the remaining variables
fixed to their current values and approximates the posterior
distribution from the sampled latent variables. Namely, the
MCMC method samples a column concept . from its con-
ditional posterior distribution p(y.|X,y—.,t) and the title
concept ¢ from p(t|X,y.), vice versa.

The complete procedure for the Gibbs sampling by the
MCMC method is shown in the Algorithm 1.

Algorithm 1 Approximate prediction with Gibbs sampling

Input: Table X, trained parameters 6,
number of iterations [
Output: approximate distributions of each column concept

Y. and table concept ¢
Initialize each column concept y£°)
a title concept t(9) ~ p(t|y(©)
for iteration 7 = 1,2,...,I do
yt” ~ (X i
ys” ~ p(ya X,y s,

~ p(Ye|x.) and

NSRRI)
i—1 i—

e DD 0)
v ~ plyolX " vs",

0~ p(tly™)
end for

yg)_lv t(i_l)) 0)

Pruning Latent Variable Candidates Even under the
MCMC technique, sampling a latent variable value from its
conditional posterior is computationally heavy because the
number of candidate values for each latent variable corre-
sponds to the number of concepts in the knowledge graph
and is enormous (=~ 17M in YAGOv3). Therefore, we limit
the candidate concepts for each latent variable into those

who appeared in the training datasets reducing the time for
whole Gibbs sampling process.

6 Computational Complexity

Table 2 summarizes the computational complexities of
the training and prediction phase in our proposed method
and other popular approaches (Limaye’s method (Limaye,
Sarawagi, and Chakrabarti 2010) and Pham’s method (Pham
et al. 2016)). Our method has smaller complexities in both
the training phase and the prediction phase compared to
other methods. In the table, |V| is the number of concepts
in the knowledge graph, |V | is the number of concepts ap-
peared in the training data, | 7| is the number of tables in the
training dataset, C' and R are the mean numbers of columns
and rows in a table of the training dataset, C; and R; are
the numbers of columns and rows in the target table, [is the
number of iterations for prediction, and d is the dimensions
of embedded space by knowledge graph embedding.

Since Pham’s method computes similarities between all
the pairs of columns in the training phase, its computa-
tional time grows quadratically with the number of avail-
able columns (= |T|C), resulting in O(|T|*C2R). Li-
maye’s method assigns concepts for the columns, the
column-column interactions, and the cells. The method
needs O(Cylog|V]) for the column concept estimation,
O(C?) for the column-column interaction estimation, and
O(Ct Ry log |V|) for the cell concept estimation, resulting in
O(CyRylog |V| + C?) for a iteration.

Table 2: Computational complexities for training and pre-

diction.
Method Train Prediction
Limaye O(|TIIVICR) O (CiRilog|V]+ C?))
Pham O(IT*C2R) O(|T|CC,Ry)
Proposed O(|T||V*|Cd) O(IIlVT|Cyd)

7 Evaluation and Discussion
7.1 Setting

Data We evaluated the predictive and computational per-
formance of our method and conventional methods on real
data. The dataset we used consists of 183 human-annotated
tables (with 781 NE-columns and 4,109 literal-columns) ob-
tained from the UCI Machine Learning repository (Dua and
Karra Taniskidou 2017). Tables in the UCI Machine Learn-
ing repository contain 37,527 rows on average. As a knowl-
edge graph that contains the canonical concepts for the an-
notation, we used WordNet (Miller 1995), a popular English
lexical database (|V| = 117, 798).

Evaluation Metrics We measured the predictive per-
formance of semantic table annotation in three metrics:
MAP@FEk, nDCG@k, and sim@k. MAP and nDCG are gen-
eral metrics for ranking quality (Clarke et al. 2008). Sim@Fk
is computed as the average of Wup similarities (Wu and
Palmer 1994) between the ground truth concepts and the
predicted concepts. Wup similarity computes the similarity

286

between two concepts based on graph-based distance in a
knowledge graph. In the experiments, we set k£ = 5 to fol-
low the experimental settings of the previous work.

Methods We compared the following methods including
the state-of-the-art baselines and our proposed method:

1. (Limaye) Limaye’s method (Limaye, Sarawagi, and
Chakrabarti 2010) with/without column interdependency.
Since the exact inference for their model is intractable,
we used the Gibbs sampling technique for the inference
as they did in their experiments.

2. (Pham) Pham’s method (Pham et al. 2016) without col-
umn interdependency. We used several numerical and tex-
tual similarities as column features such as Jaccard index
of trigrams and Kolmogorov-Smirnov test score. We also
used the random forest classifier.

3. (Hybrid) A hybrid approach that combines Limaye’s
method and Pham’s method. Limaye’s method was used
to model column-interdependencies in NE-columns. For
literal-columns, Pham’s method (Pham et al. 2016) is ap-
plied.

(Proposed) Proposed method with/without column inter-
dependency.

Detailed Settings of Our Model As the knowledge graph
embedding method used in the potential functions of our
model, we used Poincar¢ embedding (Nickel and Kiela
2017) and embedded WordNet into the five-dimensional
space. We used several numerical statistics as literal-column
features: minimum, maximum, median, mean, standard de-
viation, the 3rd moment, skewness, and kurtosis of numeri-
cal values in cells. In addition to numerical features, we also
used textual features such as the frequency of each letter. We
used a binary relevance method with random forest classi-
fiers as multi-label classifiers in the potential functions. The
parameters of potential functions were trained by the train-
ing dataset and multi-label binary loss function. We set the
number of iterations in Gibbs sampling to 300 because we
observed the convergence at that point and further iterations
did not affect the accuracy of the model.

7.2 Predictive Performance for the Whole Table

We first evaluated the performance of semantic table anno-
tation on the whole table contents (e.g., including both ti-
tle concepts and column concepts). We compared the pro-
posed method with/without column interdependency (CID)
with Limaye’s method (Limaye, Sarawagi, and Chakrabarti
2010). Table 3 shows the results of annotation on tables
that contain both NE- and literal-columns. Our proposed
approach with column interdependency had the best per-
formance for all metrics, which indicates that column-
interdependence consideration is effective in semantic table
annotation. From this result, we confirm the first (our model
is versatile) and the second contribution (our model is accu-
rate) of our work.

Named-Entity-Columns First, we focused on the per-
formance of semantic table annotation for named-entity
columns (NE-columns).

Table 3: Result of annotation on the whole tables.

Method MAP@5 nDCG@5 Sim@5
Hybrid 0.225 0.291 0.480
Proposed (w/o CID) 0.351 0.413 0.537
Proposed (w/ CID) 0.464 0.741 0.635

As shown in Table 4, our method outperformed the other
methods on all metrics. This is because our method uses
a supervised approach with rich features that consists of
scale-invariant statistics and the knowledge graph embed-
ding. Since Limaye’s method relies on a knowledge graph
strongly, it may perform poorly when the domain of the
knowledge graph does not equal to the domain of the ta-
ble data. In contrast, our method takes a supervised manner
and trains multi-label classifiers with various features, which
alleviates the domain difference. While Pham’s method is
also a supervised approach that obtains the column con-
cept by using the similarity-based classifier, our method out-
performed Pham’s method because the features in Pham’s
method do not capture the characteristics of NE-columns ef-
fectively.

Table 4: Result of annotation with NE-columns without
column-interdependency consideration.

Method MAP@5 nDCG@5 Sim@5
Limaye 0.021 0.077 0.411
Pham 0.196 0.328 0.470
Proposed 0.314 0.365 0.526

Literal-Columns Next, we focused on the performance
of semantic table annotation for literal-columns. Since Li-
maye’s (Limaye, Sarawagi, and Chakrabarti 2010) method
does not handle literal-columns, we evaluated two meth-
ods: our method and Pham’s method (Pham et al. 2016). As
shown in Table 5, our method outperformed Pham’s method
on all metrics.

There are several concerns in annotating literal-columns.
One concern is the potential difference in measurement units
(e.g., centimeters vs. inches). For instance, some measure-
ments of human height might be in centimeters while others
might be in inches. Our method is robust to the differences in
measurement units because it extracts unit-invariant features
from column values. In contrast, Pham’s method suffers
from such differences because it relies on the similarities of
the columns, which might take completely different values
for different measurement units. Another concern is feature-
engineered values in a table, such as one-hot-encoding and
log-scale-transformation. For instance, categorical columns
(e.g., occupation) are often encoded in a one-hot-vector rep-
resentation to improve the performance of machine learning.
Without explicit side information that indicates each dimen-
sion of the vector is derived from a column, it is difficult
to annotate each dimension of the vector correctly. How to
annotate these feature-engineered columns is one of the in-

287

¥ hybrid
@ proposed

v
v

time[min]

400 v
vy
v
200 v
'Y
4.0
1| 538 0cccee . see e .
5 m 5 0 5)

columns

Figure 4: Computational performance for prediction with
column interdependency that confirms Table 4.

teresting future research direction.

Table 5: Result of annotation with literal-columns without
column-interdependency consideration.

Method MAP@5 nDCG@5 Sim@5
Pham 0.270 0.330 0.467
Proposed 0.397 0.430 0.590

7.3 Computational Performance

We evaluated the computational performance of our method
and a conventional method (a hybrid approach combined Li-
maye’s and Pham’s methods), which confirms the computa-
tional complexities as mentioned in Table 2. We used Gibbs
sampling for inference in both approaches to facilitate com-
parison of the computational performance. As shown in Fig-
ure 4, our method outperformed the hybrid approach and we
confirm the third contribution (our model is efficient) of our
work.

8 Conclusion

We proposed a novel approach for table data annotation with
latent probabilistic model and multi-label classifiers. By em-
ploying highly predictive multi-label classifiers in potential
functions, our approach enjoyed three advantages over pre-
vious approaches:

1. It is versatile: potential functions based on multi-label
classifiers in the probabilistic model allow supporting var-
ious types of data such as numerical values.

2. Itis accurate: integrating multi-label classifier with proba-
bilistic model improves the predictive performance of se-
mantic annotation for table data.

3. It is efficient: potential functions based on multi-label
classifiers reduce the computational complexity for anno-
tating tables.

Extensive experiments showed the superiority of our ap-
proach over state-of-the-art approaches on real-data, which
includes human-annotated 183 tables collected from UCI
Machine Learning Repository.

References

Arora, S.; Liang, Y.; and Ma, T. 2017. A simple but tough-
to-beat baseline for sentence embeddings. In International
Conference on Learning Representations, ICLR’17.

Bordes, A.; Usunier, N.; Garcia-Duran, A.; Weston, J.; and
Yakhnenko, O. 2013. Translating embeddings for modeling
multi-relational data. In Advances in Neural Information
Processing Systems 26, 2787-2795.

Chu, X.; Morcos, J.; Ilyas, 1. F.; Ouzzani, M.; Papotti, P.;
Tang, N.; and Ye, Y. 2015. Katara: A data cleaning sys-
tem powered by knowledge bases and crowdsourcing. In
Proceedings of the 2015 ACM SIGMOD International Con-
ference on Management of Data, SIGMOD ’15, 1247-1261.
ACM.

Clarke, C. L.; Kolla, M.; Cormack, G. V.; Vechtomova, O.;
Ashkan, A.; Biittcher, S.; and MacKinnon, I. 2008. Nov-
elty and diversity in information retrieval evaluation. In
Proceedings of the 31st Annual International ACM SIGIR
Conference on Research and Development in Information

Retrieval, SIGIR 08, 659-666. ACM.

Deng, D.; Jiang, Y.; Li, G.; Li, J.; and Yu, C. 2013. Scalable
column concept determination for web tables using large
knowledge bases. Proc. VLDB Endow. 6(13):1606-1617.

Dua, D., and Karra Taniskidou, E. 2017. UCI machine learn-
ing repository.
Limaye, G.; Sarawagi, S.; and Chakrabarti, S. 2010. An-

notating and searching web tables using entities, types and
relationships. Proc. of the VLDB Endow. 3(1-2):1338—1347.

Miller, G. A. 1995. Wordnet: A lexical database for english.
Commun. ACM 38(11):39—41.

Mulwad, V.; Finin, T.; and Joshi, A. 2013. Semantic mes-
sage passing for generating linked data from tables. In Pro-
ceedings of the 12th International Semantic Web Conference
- Part I, ISWC *13, 363-378. Springer-Verlag.

Neumaier, S.; Umbrich, J.; Parreira, J. X.; and Polleres, A.
2016. Multi-level semantic labelling of numerical values. In
International Semantic Web Conference, 428-445. Springer.

Nickel, M., and Kiela, D. 2017. Poincaré embeddings for
learning hierarchical representations. In Advances in Neural
Information Processing Systems 30. Curran Associates, Inc.
6338-6347.

Pham, M.; Alse, S.; Knoblock, C. A.; and Szekely, P. 2016.
Semantic labeling: a domain-independent approach. In In-
ternational Semantic Web Conference, 446—462. Springer.

Riimmele, N.; Tyshetskiy, Y.; and Collins, A. 2018. Eval-
uating approaches for supervised semantic labeling. arXiv
preprint arXiv:1801.09788.

Trouillon, T.; Welbl, J.; Riedel, S.; Gaussier, E.; and
Bouchard, G. 2016. Complex embeddings for simple link
prediction. In Proceedings of the 33rd International Con-

ference on International Conference on Machine Learning -
Volume 48, ICML’16, 2071-2080.

Tsoumakas, G., and Katakis, I. 2007. Multi-label classifica-
tion: An overview. International Journal of Data Warehous-
ing and Mining 3:1-13.

288

Venetis, P.; Halevy, A.; Madhavan, J.; Pagca, M.; Shen, W.;
Wu, F; Miao, G.; and Wu, C. 2011. Recovering semantics
of tables on the web. Proc. VLDB Endow. 4(9).

Wu, Z., and Palmer, M. 1994. Verbs semantics and lexical
selection. In Proceedings of the 32nd Annual Meeting on
Association for Computational Linguistics, ACL *94, 133—
138. Association for Computational Linguistics.

Zhang, M., and Chakrabarti, K. 2013. Infogather+: Seman-
tic matching and annotation of numeric and time-varying at-
tributes in web tables. In Proceedings of the 2013 ACM SIG-

MOD International Conference on Management of Data,
SIGMOD ’13, 145-156. ACM.

Zhang, Z. 2017. Effective and efficient semantic table inter-
pretation using tableminer+. Semantic Web 8:921-957.

