Personalized Question Routing via Heterogeneous Network Embedding

Zeyu Li, Jyun-Yu Jiang, Yizhou Sun, Wei Wang
University of California, Los Angeles
Los Angeles, CA, 90095, USA
{zyli, jyunyu, yzsun, weiwang}@cs.ucla.edu

Abstract

Question Routing (QR) on Community-based Question Answering (CQA) websites aims at recommending answerers that have high probabilities of providing the “accepted answers” to new questions. The existing question routing algorithms simply predict the ranking of users based on query content. As a consequence, the question raiser information is ignored. On the other hand, they lack learnable scoring functions to explicitly compute ranking scores.

To tackle these challenges, we propose NeRank that (1) jointly learns representations of question content, question raiser, and question answerers by a heterogeneous information network embedding algorithm and a long short-term memory (LSTM) model. The embeddings of the three types of entities are unified in the same latent space, and (2) conducts question routing for personalized queries, i.e., queries with two entities (question content, question raiser), by a convolutional scoring function taking the learned embeddings of all three types of entities as input. Using the scores, NeRank routes new questions to high-ranking answerers that are skillfulness in the question domain and have similar backgrounds to the question raiser.

Experimental results show that NeRank significantly outperforms competitive baseline question routing models that ignore the raiser information in three ranking metrics. In addition, NeRank is convergeable in several thousand iterations and insensitive to parameter changes, which prove its effectiveness, scalability, and robustness.

Introduction

Community-based question answering (CQA) such as Stack Overflow\(^1\) is rapidly gaining popularity and becoming an important type of social media for sharing and spreading knowledge. Through CQA websites, users with questions are able to quickly locate answers provided by experts. A user can also create a new post if relevant and satisfactory QA records do not exist, and then wait for answers from the community. After several responses are gathered, the question raiser reviews the answers and selects one that he/she is the most satisfied with as the “accepted answer”.

The answer collection can be unacceptably time-consuming due to the lack of an efficient way to find the “domain experts”. As a result, a large number of questions remain poorly addressed.

One of the solutions to promote answer collection is to automatically identify users that tend to contribute high-quality answers and then send answer invitations to them. The answer collection is consequently accelerated since these users are able to immediately spot the questions of their expertise. Such task is also known as question routing and is previously addressed by feature engineering-based approaches (Zhou, Lyu, and King 2012; Ji and Wang 2013; Chang and Pal 2013). Features exploited include the statistics of users, the language modeling features of question content, and the relationships between users and questions. All of them focus on estimating users’ authority level and identifying the skillful users for recommendation.

However, the feature engineering-based strategies have at least three limitations as follows. First, they are not personalized, i.e., they cannot customize recommendations for questions raised by users with diverse characteristics due to ignoring the background and preference of the question raisers. Second, they lack explicit definitions of scoring functions for queries with multiple entities and, therefore, have trouble computing scores for new question routing queries. Third, they model question content by language model or topic model features which are unable to capture the complex semantics of question content. Also, their representation power is undermined when handling questions with new topics that are unobserved or underrepresented in the training set.

In order to overcome the above limitations, we propose NeRank, which stands for Network embedding-augmented Ranking for question routing. NeRank assesses the “personalized authority”, i.e., the authority of an answerer with respect to not only the question content but also the background of the question raiser, for question routing. In addition, the recommended answerers are also expected to have similarities with the question raiser in domains of interest to fulfill the “personalization” requirement so that their responses conform to the raiser’s anticipation.

In particular, NeRank models CQA websites as heterogeneous information networks (HIN), namely CQA networks, and applies a metapath-based heterogeneous network embedding algorithm to CQA networks to learn representations for question raisers and question answerers. A long short-
term memory (LSTM) component is specifically utilized to
learn question content representation. Using network embed-
bonding, the proximity information between the entities in
to compute the ranking score of an answerer given a
a CQA network is preserved.
NeRank models the question routing task as a rank-
ing problem and utilizes a convolutional neural network
(CNN) to compute the ranking score of an answerer given a
query (question raiser, question content). Such ranking score measures the probability of the answerer
providing the “accepted answer” to this question. Com-
pared with previous frameworks (Zhou, Lyu, and King 2012;
Zhao et al. 2015; Ji and Wang 2013), our ranking function
explicitly computes the ranking scores taking advantage of
rich non-linear information of the three entities.
We summarize our contributions as follows:
• We propose NeRank for personalized question routing on
CQA websites. Compared with existing models, NeRank
considers question raiser’s profile in addition to question
content. To the best of our knowledge, this is the first work
on personalized Question Routing on CQA websites.
• We learn representations of entities by an HIN embedding
method and compute ranking scores for answerers by an
explicitly defined CNN scoring function given the learned
representations as input. It is a novel attempt to apply an
embedding-based method to question routing.
• We conduct extensive experiments on two real CQA
datasets and evaluate the routing performance of NeR-
kank via three ranking metrics. Our model outperforms
the baselines in these metrics. Results also show that the HIN
embedding algorithm and CNN scoring function improve
the ranking performance.

Related Work
In this section, we introduce existing works on question rout-
ing, recommender systems, and network embedding.
Question Routing. Question routing is defined as predicting
whether a user in CQA will share knowledge and answer a
given question (Zhou, Lyu, and King 2012). The majority of
previous works fall into two categories: feature engineering-
method and matrix factorization-based methods.
Feature engineering algorithms (Zhou, Lyu, and King
2012; Ji and Wang 2013; Chang and Pal 2013) feed fea-
tures extracted from users, questions, and their relations to
models such as SVM (Hearst et al. 1998) and Linear Reg-
ression (Chang and Pal 2013) to rank the user authority
to make recommendations. However, they require carefully
crafted features and the performance relies heavily on fea-
ture selection.
Matrix factorization models decompose feature matrices
based on the “low-rank” assumption to discover users’ ex-
pertise on particular words and compute ranking scores
by the inner product of the user and question feature vec-
tors (Zhao et al. 2015). It suffers from the limitation of bag-
of-word model which is unable to preserve sequential text
semantics.
Recommender Systems. Recommender systems aim at rec-
ommending items to a given user. The development of deep
learning models offers more possibilities to recommender
system architectures. Gong and Zhang recommended has-
htag for online microblogs using CNN. Okura et al. recom-
ended news of interest using embeddings of text and users
learned by autoencoder and recurrent neural networks such as
long short-term memory (LSTM) and gated recurrent unit
(GRU). The aforementioned methods cannot deal with new
items, i.e. new questions in our problem, and thus are unable
to be applied to question routing.
Network Embedding. Network embedding models learn
low-dimensional representations for nodes in a network that
preserve the structural context of nodes (Perozzi, Al-Rfou,
and Skiena 2014; Grover and Leskovec 2016; Tang et al.
2015; Shi et al. 2018; Dong, Chawla, and Swami 2017;
Chen and Sun 2017). For HIN, the diversified node and
type bring forth additional semantic information of
networks which motivates the metapath-based network em-
bedding algorithms (Sun et al. 2011). Chen and Sun pro-
tected a task-specific and path-augmented model that jointly
optimized the network-general and task-specific objectives.
Metapaths were specifically selected for the task. metap-
athy2vec and metapath2vec++ (Dong, Chawla, and Swami
2017) combined metapaths with word2vec model for heter-
egeneous embedding learning.

Preliminaries and Problem Statement
A CQA network is built upon a static archive of a CQA
website conserving all question-answer sessions accumu-
lated over time. We create question Raiser set \(R = \{r_1, r_2, \ldots, r_m\} \) and Answerer set \(A = \{a_1, a_2, \ldots, a_k\} \)
where \(m \) is the number of users who have asked questions,
i.e. question raisers, and \(k \) is the number of users who have
answered questions, i.e. question answerers, in this CQA
website. Note that we only model users that have asking
or answering records in the dataset. Hence, each user of
the CQA website may have one or two embeddings asso-
ciated with the role(s) they played. We create Question set
\(Q = \{q_1, q_2, \ldots, q_l\} \) where \(l \) denotes the number of ques-
tions. There exist two relations among these entities, namely
“raises a question” between entities in \(R \) and \(Q \) and “an-
wser a question” between entities in \(A \) and \(Q \).

A CQA network is defined as a heterogeneous information
network \(G = (V, E, T, \phi) \) where \(V = R \cup Q \cup A \) denotes the
node set; \(E \) denotes the edge set; \(T \) denotes the set of three
type entities involved (Zhao et al. 2017); \(\phi : V \rightarrow T \) is a la-
beling function that maps an entity into its type \(t \in T \). Each
dge in a CQA network symbolizes an asking or answering
record. Note that entities of \(R \) and \(A \) do not directly inter-
act with each other and hence there is no connection
between them. Figure 1 shows a toy example of a CQA
network. Node \(r_2 \) is linked to \(q_2 \) and \(q_3 \), meaning that \(r_2 \) poses
\(q_2 \) and \(q_3 \), \(q_3 \) is linked to \(a_3 \) and \(a_4 \) since \(a_3 \) and \(a_4 \) answer
\(q_3 \). \(q_3 \) and \(a_2 \) have strong similarity since they both answer
\(q_1 \) and \(q_2 \).

Using above notations, we define the personalized Quest-
ion Routing as the following: Given a CQA network
\(G = (V, E, T, \phi) \) and a query (question raiser, ques-
tion content) denoted by \(\gamma = (r, q) \) where \(r \in R \) is a question raiser and \(q \in Q \) is a new question, com-

193
compute the ranking scores for answerers \(a \in A \) and select the answerer with the highest ranking score as the predicted provider of the “accepted answer”.

NeRank Framework

In this section, we demonstrate the technical details of NeRank. The list of notations is provided in Table 1 in advance for the convenience of later discussion.

Overview

We formalize the personalized question routing problem as a ranking task in NeRank which ranks the probabilities of potential answerers contributing the “accepted answers” using the embeddings of entities. Specifically, it has two steps: modeling entity-wise similarity and computing the ranking scores of answerers given (question raiser, question content) queries. The trained representations for the three types of entities are expected to preserve both the entity-wise proximity information and the question-raiser-specific expertise information.

In the following subsections, we explain how the NeRank pipeline (shown in Figure 2) acquires the embeddings with proximity and enterprise information and computes the rankings scores.

LSTM-equipped Metapath-based Embedding with Negative Sampling

To capture proximity information, we learn embeddings of heterogeneous entities using an LSTM-equipped metapath-based heterogeneous network embedding model. We first explain the metapath-based Skip-gram on HIN and then show the jointly optimized LSTM model for question content representation learning.

Metapaths for HIN Embedding. HIN owns various node types, which differs from homogeneous networks. Simply applying the original random walk-based Skip-gram to HINs results in biases towards certain types of nodes (Sun et al. 2011). To create a bias-free walk corpus for Skip-gram on HINs, Dong, Chawla, and Swami generate walks according to the patterns specified by metapaths. It has been proved that HIN embedding models benefit from metapaths in reducing biases (Dong et al. 2015; Sun and Han 2012; Sun et al. 2013).

A metapath \(\mathcal{P} \) is a sequence of objects linked by relations in form of \(\pi_1 \xrightarrow{\tau_1} \pi_2 \xrightarrow{\tau_2} \ldots \xrightarrow{\tau_t} \pi_{t+1} \xrightarrow{\tau_{t+1}} \ldots \xrightarrow{\tau_{l-1}} \pi_l \). \(\pi = \pi_1 \circ \pi_2 \circ \ldots \circ \pi_{l-1} \) denotes the composite relations between node types \(\tau_1, \tau_l \in \mathcal{T} \). For example, metapath “A answers \(Q \) raises \(R \) answers \(A \)” means that two answerers each solves a question raised by the same person. \(\tau^{-1} \) denotes the inverse relationship of \(\tau \), e.g. raises \(^{-1}\) represents “is raised by”. Apparently, the metapath preserves semantic and structural correlations of entities in HIN which will be encoded in the representations by the Skip-gram model. We will omit the relations in metapath notations (e.g., “AQRQA”) in the following discussion since the relation type between each given pair of entities is unique.

Metapath \(\mathcal{P} \) guides the walk generation as follows. Randomly select an entity \(e_1 \) of type \(\tau_1 \) as the initial entity, and then cycle from nodes of type \(\tau_2 \) to \(\tau_l \) until \(\mathcal{P} \) grows to the desired length \(L \). An example walk in Figure 1 is \(a_5 q_1 r_3 q_5 a_1 r_2 q_2 a_4 q_4 \) given \(\mathcal{P} = “AQRQA” \) and \(L = 9 \). The transition from \(\tau_l \)-type entity \(e_i \) to \(\tau_1 \)-type entity \(e_i^{(i+1)} \) is governed by the transition probability \(p(e_i^{(i+1)}|e_i^{(i)}; \mathcal{P}) \):

\[
p(e_i^{(i+1)}|e_i^{(i)}; \mathcal{P}) = \begin{cases} \frac{1}{N} & (e_i^{(i+1)}, e_i^{(i)}) \in E, \phi(e_i^{(i+1)}) = \tau_1+1 \vspace{1mm} \\
0 & \text{otherwise.} \end{cases}
\]

where \(N \) denotes the count of \(\tau_1+1 \)-type neighbors of \(e_i^{(i)} \).

Skip-gram with Negative Sampling on HINs. Negative sampling is an approximation strategy to relieve the expensive computational cost of softmax function (Mikolov et al. 2013a). Skip-gram with negative sampling maximizes the likelihood of \(\mathcal{D} \), the positive sample set generated from the metapath walk corpus by the sampling method in (Mikolov et al. 2013a), and minimizes the likelihood of the negative samples \(\mathcal{D}’ = \{(n,c) | n \in V \land (n,c) \notin \mathcal{D}\} \). The overall likelihood \(\mathcal{L}(\mathcal{D}, \mathcal{D}’; \Theta) \) to maximize is:

\[
\mathcal{L}(\mathcal{D}, \mathcal{D}’; \Theta) = \sum_{\mathcal{D}} \log(\sigma(v_{n}, u_{c})) + \sum_{\mathcal{D}’} \log(-\sigma(v_{n}, u_{c})). \tag{1}
\]

In Equation (1), \(v_{n} \) and \(u_{c} \) are representations of center entity \(n \) and context entity \(c \). They are parts of the model parameter \(\Theta \), \(\sigma(\cdot) \) is the sigmoid function. Equation (1) is consistent with word2vec that each entity has two versions of embeddings. We select the “center entity” version embedding as the input of the CNN recommender model.
Here we emphasize the necessity of the HIN embedding component without which the pure CNN scoring function has limited capability of analyzing user-user correlations and similarity.

LSTM for Question Representation. Different from the question raisers and answerers whose embeddings are parts of the parameter Θ, the embeddings of question content, q_v, are not in Θ but directly obtained from question text through an LSTM model. q_v is then sent to Equation (1) together with the corresponding q_r and q_a for training and ranking score calculations.

LSTM is powerful in learning sequential features such as the semantics of text and has been applied to a variety of tasks such as text classification (Zhou et al. 2015) and machine translation (Bahdanau, Cho, and Bengio 2014). We skip the mathematical details of LSTM since they have been frequently discussed in previous literature.

The generation of q_v of question q with L_q words is as follows. The input is the word embedding matrix of question $x \in \mathbb{R}^{L_q \times k}$ composed of k-dimensional word vectors. The LSTM cell at the t-th time step receives the t-th word embedding vector $x_t \in \mathbb{R}^k$ as input as well as the hidden state h_{t-1} from the previous time step. The output at time t is the hidden state $h_t \in \mathbb{R}^k$ which contains the accumulated semantic information from x_0 to x_t. Therefore, we use the hidden state output of the last time unit, h_{L_q}, as the text semantic representation q_v for the textual content of q.

It is worth mentioning that given the trained Θ and the word sequence of a new question q_{new}, the representation learning of q_{new} is independent of the training data and the CQA network structure. Therefore, the LSTM component tackles the challenge of cold start issues for new questions.

Convolutional Recommender System

In this section, we present a convolutional neural network ranking model F that comprehensively analyzes the correlations between the three entities and computes the ranking score. Considering the properties of a ranking score, we rationally assume the following two partial order constraints based on our intuition and observation made on the dataset: (1) The best answerer has the highest score among all answerers to the query $q = (r, a)$; (2) Answerers who answered q have higher scores than those who did not.

Using entity representation v_r, v_q, and v_a, we translate the above constraints and formalize the scoring function $F(v_r, v_q, v_a)$ as follows:

$$
\forall a^*, a \in A_q, \forall a_n \in A \text{ and } a_n \not\in A_q, \\
F(v_r, v_q, v_{a^*}) \geq F(v_r, v_q, v_a),
$$

(2) $F(v_r, v_q, v_{a^*}) \geq F(v_r, v_q, v_a),$

where A_q is the set of answerers of $q = (r, a)$, $a^* \in A_q$ is the accepted answerer, and a_n is an answerer that is not involved in q.

The reason of building a CNN-based scoring function is as follows: CNN has a strong capability of extracting hidden correlations of entities represented by static feature maps such as images (He et al. 2016) and text (Kim 2014). Compared with some straightforward scoring functions such as the dot-product, CNN is more powerful in preserving sophisticated correlations in the embedding matrices. Therefore, we design F as a CNN since the ranking score produced by $F(v_r, v_q, v_a)$ can be considered as a hidden feature of the combination of v_r, v_q, and a.

The computation of ranking scores is depicted in Figure 3. Given a query $q = (r, q)$ and an answerer a to compute ranking score for, we stack their embeddings to construct the feature map M as $M = [v_r, v_q, v_a]$, $M \in \mathbb{R}^{d \times 3}$. Three convolutional kernels $k_1 \in \mathbb{R}^{d \times 1}$, $k_2 \in \mathbb{R}^{d \times 2}$, and $k_3 \in \mathbb{R}^{d \times 3}$ are applied to the input matrices. The intermediate hidden features go through two fully-connected layers and ReLU layers before deriving the ranking score. k_1 extracts the hidden features within the vector of each entity. k_2 captures the correlation between (1) v_r and v_q and (2) v_q and v_a since they have direct interactions. k_3 extracts the overall correlations across the three entities. Therefore, the aggregation of k_1, k_2, and k_3 is able to comprehensively utilize the hidden features in M and measure the score of a given q. The inequalities in Equation (2) holds for all (1) the “accepted” triplets versus the corresponding “answered but un-
accepted” triplets and (2) the “answered” triplets versus the random “unanswered” triplets. Therefore, we model the ranking as the maximization of \(S_{\text{Rank}}(D, D'|\Theta) \) which is defined as the summation of all differences between the two sides of the inequalities in Equation (3):

\[
S_{\text{Rank}}(D, D'|\Theta) = \sum_{(a^*, q), (a, q) \in D} (F(v_r, v_q, v_{a^*}) - F(v_r, v_q, v_a)) + \sum_{(a, q) \in D, (a_n, q) \in D'} (F(v_r, v_q, v_{a_n}) - F(v_r, v_q, v_{a_n})),
\]

We only select \((a, q)\) pairs from \(D\) and \(D'\) since \((a, q)\) pairs provide sufficient coverage over all question instances for training in the CQA datasets.

Optimization

Cost Functions. We need to optimize the parameter \(\Theta\) that contains four parts: all embeddings of question raisers, all embeddings of question answerers, the parameters of the LSTM, and the parameters of the CNN-based scoring component. Since the optimal \(\Theta\) should maximize both Equation (1) and Equation (3), we alternatively maximize the two objective functions by gradient-based algorithms and backpropagation.

When NeRank converges, the embeddings and deep models in the optimum state have the following properties: (1) The entity embeddings contain proximity and expertise information to achieve personalized question routing; (2) The LSTM question encoder maps the content of new questions to a latent space where two additional aspects of information (expertise and proximity) are assessable in addition to text semantics. (3) The CNN recommender generates ranking scores using all three entity embeddings to measure the scores of answerers providing the “accepted answer”.

Complexity. Suppose that single LSTM and CNN computations have \(T_1\) and \(T_2\) atomic operations respectively, a training batch has \(b\) instances, and the embedding dimension is \(d\). The forward time complexity is \(O(b(T_1 + T_2 + bd))\) per iteration.

Avoid Overfitting. We have the following mechanisms to prevent overfitting from happening on LSTM and CNN. (1) The LSTM is simplified to single-directional and single-layer to prevent over-parameterization; (2) Early stopping is utilized so the training terminates when the losses reach plateaux, which is shown in Figure 5; (3) The two objective terms are alternatively optimized towards different directions. They function as each other’s regularizer that avoids overfitting.

Evaluation

In this section, we introduce the experiment settings, show experimental results, and demonstrate effectiveness and efficiency of NeRank.

Data and Experiment Settings

Two datasets of two real-world CQA websites with specific topics are employed to evaluate NeRank: Biology and English. Each dataset\(^2\) contains all questions raised before December, 2017 and all users’ historical asking and answering records. The datasets differ in sizes (see Table 2) and are mutually exclusive in topics so that NeRank can be comprehensively tested. Other CQA datasets, such as Yahoo! Answers, are not selected for evaluation since they do not provide “accepted answers” that are needed to serve as the ground truth.

<table>
<thead>
<tr>
<th>Dataset</th>
<th># of users</th>
<th># of r</th>
<th># of q</th>
<th># of a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biology</td>
<td>5,071</td>
<td>3,696</td>
<td>2,224</td>
<td>21,613</td>
</tr>
<tr>
<td>English</td>
<td>35,713</td>
<td>19,743</td>
<td>22,753</td>
<td>209,543</td>
</tr>
</tbody>
</table>

CQA networks are built from 90% of questions and the corresponding users to generate training walks. The rest 10% of questions and the corresponding raisers and answerers for testing. Users in the test set should have at least 5 asking or answering records to avoid cold starts. In each test query \(\gamma = (r, q)\), we create a candidate answerer set of 20

\(^2\)Available at: https://archive.org/details/stackexchange
answerers that includes all answerers of q in the dataset and some other users randomly selected from the top 10% most responsive users. We choose the answerer with the highest predicted ranking score as the recommendation. The owners of the “accepted answers” are the ground truth.

The walks are generated from metapath “$AQRQA$” with the default length of 13 (three cycles) and the default node coverage of 20 (each node is covered at least 20 times in walk generation). The window size of Skip-gram model is set as 4; we use 3 negative samples per positive sample; and the dimension of learned embeddings is set as 256. We use a 64-channel CNN for ranking and the 300-dimensional GoogleNews pretrained word2vec model\(^3\) to build the embedding matrix x for questions. NeRank is prototyped by Python 3.6.4 and PyTorch 0.4.0\(^4\). All experiments are conducted on a single 16GB-memory Tesla V100 GPU in an 512GB memory Nvidia DGX-1.

Results

This section reports the experimental results and analyses of the effectiveness and efficiency of NeRank. Note that three metrics, including Mean Reciprocal Rank (MRR), Hit at K ($Hit@K$), and Precision at 1 ($Prec@1$), are applied to evaluate the ranking performance.

Effectiveness of NeRank We compare NeRank with three baseline models shown as below.

- Score: A trivial method that recommends the answerer that has the largest number of “accepted answer”.
- NMF: Non-negative Matrix Factorization (Gemulla et al. 2011) uses matrix decomposition to solve the ranking problem.
- L2R: SVM-based and RankingSVM-based learning to rank algorithms (Ji and Wang 2013) that extract features from user-question relations to predict the ranking.

The performances of NeRank and the baselines are shown in Table 3. NeRank significantly outperforms all baseline algorithms on both datasets in terms of all metrics. On the Biology dataset, NeRank achieves a $Prec@1$ of 0.387 and a $Hit@K$ of 0.806, meaning that around 38.7% of the predictions are correct and the ground truth can be found in the top-5 ranked answerers in around 80.6% of the predictions. On the English dataset, NeRank achieves similar performances that the $Prec@1$ is 0.372 and $Hit@K$ is 0.833. MRR in both dataset are around 0.56 indicating a huge improvement over the baselines in terms of overall ranking performance. All improvements of NeRank over the best baseline, NMF, are significant at 99% confidence in a paired t-test.

Some entries in Table 3 show that Biology has better results than English. Although, generally speaking, larger training sets may lead to better performance, the properties of the datasets may also play a role. In Biology, there exist a small group of proficient users with particular expertise. However, the English community has a larger proportion of skilled users since language is a common knowledge. Therefore, the performance may show small variance across datasets.

In summary, NeRank has a strong ability in discovering experts that provide the “accepted answer”. The advantages of NeRank lie in the following facts: (1) NeRank considers question raiser information in addition to question content and question answerer, which can better conduct Question Routing. (2) NeRank utilizes deep neural network models that preserve the complex information of text semantic features and entity correlation features.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Biology</th>
<th>English</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metric</td>
<td>MRR</td>
<td>Hit@K</td>
</tr>
<tr>
<td>Score</td>
<td>0.27</td>
<td>0.142</td>
</tr>
<tr>
<td>NMF</td>
<td>0.375</td>
<td>0.643</td>
</tr>
<tr>
<td>L2R</td>
<td>0.169</td>
<td>0.158</td>
</tr>
<tr>
<td>NeRank</td>
<td>0.563</td>
<td>0.806</td>
</tr>
</tbody>
</table>

Effectiveness of Metapath-based Embeddings We compare NeRank with two of its variants that employs, instead of metapath-based HIN embedding model, Deepwalk (Perozzi, Al-Rfou, and Skiena 2014) (denoted by “NeRank-DW”) and LINE (Tang et al. 2015) (denoted by “NeRank-LINE”) for embedding learning. Other configurations remain unchanged. We show that metapath benefits representation learning on HINs and improve the performance of NeRank.

Figure 4 shows the experimental results. We observe that NeRank achieves better results than NeRank-DW and NeRank-LINE on both datasets on all metrics. The reason is that Deepwalk and LINE are designed for homogeneous networks whereas CQA networks are heterogeneous that contain rich semantic information in diverse node and edge types. Metapath-based models take advantage of the semantic information and thus helps enhance the performance.

Although not particularly designed for HIN, Deepwalk and LINE are also capable of discovering the proximity relations between entities since both the metapath-based model and homogeneous network embedding models assume that connected entities have similarity. This accounts for the insignificance of the performance drop.

Effectiveness of Scoring Function We compare NeRank with another variant that replaces the CNN scoring function by $v_a \cdot \frac{v_r + v_q}{2}$, another combination of query (question raiser, question content). The dot product of v_a and the numeric average of v_r and v_q is considered as the ranking score. Other settings are the same. We illustrate that our scoring function can effectively extract the latent expertise information and accurately generate ranking scores. The results are demonstrated in Figure 4 in which we denote the variant as “NeRank-AVG”.

We observe that NeRank significantly outperforms NeRank-AVG by at least two folds. The performance difference is maximized in $Prec@1$ where NeRank-AVG can only correctly predict for 6.05% of the queries on Biology dataset and 0.04% on English dataset.

\(^3\)Available at: https://code.google.com/archive/p/word2vec/

\(^4\)Available at: https://github.com/zyli93/NeRank
Figure 4: Performance comparison between NeRank and three variants. The huge performance gap indicates the strong ability of the CNN scoring function to capture the expertise information from the correlations of entity representations and make accurate predictions.

Convergence rate of NeRank We plot the trends of losses, i.e., negative objectives (Skip-gram objective in Equation (1) and Ranking objective in Equation (3)), and metrics as a function of the training iterations in Figure 5. These trends give us insight to the convergence rate of NeRank. These experiments are run in the default configurations. It is observed that the NeRank converges at around 5,000 iterations (batch count) on the Biology dataset and at around 10,000 iterations on the English dataset. The convergences of the metrics happen before 5,000 iterations on Biology and before 10,000 iterations on English. Such converge rate is fast given the complex CNN and LSTM hybrid architecture of NeRank and a single GPU core, which demonstrates the model’s learning efficiency and scalability. Convergences happen earlier on smaller dataset (Biology) and later on larger dataset (English). The reason is that, with the same batch size, a larger proportion of entities in smaller networks participates in training due to negative sampling.

Parameter Sensitivity We also evaluate the sensitivity of NeRank to node coverage and walk length. Node coverage refers to the number of times a certain node is covered by the training walks. We report the trends of MRR in Figure 6.

Convergence rate of NeRank We plot the trends of losses, i.e., negative objectives (Skip-gram objective in Equation (1) and Ranking objective in Equation (3)), and metrics as a function of the training iterations in Figure 5. These trends give us insight to the convergence rate of NeRank. These experiments are run in the default configurations.

Parameter Sensitivity We also evaluate the sensitivity of NeRank to node coverage and walk length. Node coverage refers to the number of times a certain node is covered by the training walks. We report the trends of MRR in Figure 6. Convergence rate of NeRank We plot the trends of losses, i.e., negative objectives (Skip-gram objective in Equation (1) and Ranking objective in Equation (3)), and metrics as a function of the training iterations in Figure 5. These trends give us insight to the convergence rate of NeRank. These experiments are run in the default configurations.

It is observed that the curves almost coincide in the four subfigures, meaning that NeRank converges to very similar states at a similar speed although given different node coverages and walk lengths. Therefore, NeRank is robust to the changes of these hyperparameters.

Conclusion In this paper, we propose NeRank, a framework for personalized question routing based on the question content and question raisers. NeRank learns representations of entities by heterogeneous network embedding and LSTM. Using the embeddings, the convolutional scoring model computes the ranking scores to predict the answerer that most probably contribute the “accepted answer”. We test NeRank on two real-world CQA datasets. NeRank achieves a high performance and outperforms the state-of-the-art models.

Here we list the directions for future work (1) NeRank is unable to properly embed new onboarding users that have few asking or answering records. A possible solution is to

...
learn mapping from his/her profile to an initial representation and optimize afterwards; (2) We may consider integrating historical answers that are also good information source for the answerer representation learning procedure.

Acknowledgments
We would like to thank the anonymous reviewers for their constructive comments. This work was partially supported by NIH U01HG008488, NIH R01GM115833, NSF III-1705169, NSF CAREER Award 1741634, Snapchat gift funds, and PPDAI gift fund.

References

