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Abstract
This paper proposes a novel method for generating compact
answers to open-domain why-questions, such as the follow-
ing answer, “Because deep learning technologies were intro-
duced,” to the question, “Why did Google’s machine transla-
tion service improve so drastically?” Although many works
have dealt with why-question answering, most have focused
on retrieving as answers relatively long text passages that
consist of several sentences. Because of their length, such
passages are not appropriate to be read aloud by spoken di-
alog systems and smart speakers; hence, we need to create
a method that generates compact answers. We developed a
novel neural summarizer for this compact answer generation
task. It combines a recurrent neural network-based encoder-
decoder model with stacked convolutional neural networks
and was designed to effectively exploit background knowl-
edge, in this case a set of causal relations (e.g., “[Microsoft’s
machine translation has made great progress over the last
few years]effect since [it started to use deep learning.]cause”)
that was extracted from a large web data archive (4 billion
web pages). Our experimental results show that our method
achieved significantly better ROUGE F-scores than existing
encoder-decoder models and their variations that were aug-
mented with query-attention and memory networks, which
are used to exploit the background knowledge.

1 Introduction
The recent popularity of smart speakers suggests that spo-
ken dialog systems may become a core component of future
user interfaces and be used in a wide range of environments
for many types of tasks. However, in the current state of lan-
guage technologies, many such tasks are beyond the reach of
dialog systems. One such task is non-factoid Question An-
swering (QA), such as why-question answering (why-QA)
and how to-question answering. Although many attempts
have been made to develop highly accurate non-factoid
QA methods (Girju 2003; Higashinaka and Isozaki 2008;
Verberne et al. 2011; Oh et al. 2013; Oh et al. 2016;
Sharp et al. 2016; Tan et al. 2016; dos Santos et al. 2016;
Oh et al. 2017), most developed methods retrieve from a text
archive long text passages that contain real answers that are
not suitable for dialog systems due to their lengths. Table 1
exemplifies a why-question and its answer passage retrieved
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Why are poisonous eucalyptus leaves a 
staple of the diets of koalas?

Why do koalas sleep 
for such a long time?

I found the following: “Because they evolved to detoxify the toxins” and 
“Because there are enzymes that decompose the bacteria and toxins 
in the leaves.” 

I found the following: “Because during long 
sleeps, hydrocyanic acid inside the body gets 
decomposed,” “Because of digestion” and 
“Because they need to store energy.”

Figure 1: Screenshot of our spoken dialog system prototype
WEKDA: why-questions and their compact answers were
manually translated.

with an existing why-QA method. Much of the retrieved pas-
sages is unnecessary and/or has little to do with the question.
Since such redundant and long passages are inappropriate to
be read aloud by spoken dialog systems and smart speak-
ers, we need a method that condenses the essence of these
answer passages into much shorter, compact answers using
only a handful of words.

The aim of this work is to develop a novel method
that generates non-redundant compact answers to Japanese
open-domain why-questions. Actually, the method pre-
sented in this paper is already being used in our spo-
ken dialog system prototype called WEb-based Knowledge
Disseminating dialog Agent (WEKDA). The system can
smoothly provide compact answers to such why-questions
as “Why are poisonous eucalyptus leaves a staple of diets of
koalas?” and “Why do koalas sleep for such a long time?”
(Figure 1).

As exemplified by the compact answer in Table 1, these
answers should be short and comprehensible (e.g., the con-
stituents of each compact answer are limited to 25 Japanese
characters in our target dataset) so that they can be read
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Question: “Why did Google’s machine translation service im-
prove so drastically?”
Answer Passage: Deep learning related technologies have
recently received much attention, and many high-tech com-
panies are eager to integrate the results of the latest deep
learning advancements. The Google Brain team, for exam-
ple, developed such technologies that were later introduced
into Google’s translation engine. The quality of this machine
translation service dramatically improved for languages such
as French and Chinese, and the same can be expected in the fu-
ture for many other languages. Although it remains unclear ex-
actly how much, deep learning technologies may drastically
change our future.
Compact Answer: Because deep learning technologies were
introduced.

In the answer passage, the words in bold should be included in
compact answers. The underlined words are the question’s content
words.

Table 1: Example of a why-question, an answer passage and
a compact answer

aloud by spoken dialog systems. We follow the basic set-up
of compact why-QA answer generation proposed by Ishida
et al. (2018): a single sentence compact answer (e.g., “Be-
cause deep learning technologies were introduced.”) to a
given why-question (e.g., “Why did Google’s machine trans-
lation service improve so drastically?”) is generated from a
five- or seven-sentence long passage retrieved by an exist-
ing web-based why-QA method (Oh et al. 2016). As seen
in the example above, this task is complicated because the
words that constitute compact answers (those in bold in
Table 1) may be scattered throughout a passage and need
to be organized into a well-formed sentence. Ishida et al.
(2018) treated this as a summarization task and based their
method on a state-of-the-art seq2seq model called a pointer-
generator network (See, Liu, and Manning 2017), in which
a long answer passage is given to an encoder and a decoder
exploits the passage encoding to generate a compact answer.
The content words in the passage that also appear in the
question are labeled so that the encoder can identify which
part of the passage corresponds to the question’s content.

In this work, we introduce background knowledge to
Ishida et al.’s method in the form of texts representing
causal relations (e.g., “[Tsunami was occured]effect because
[an earthquate suddenly displaced sea water.]cause”). When
we ask a why-question, we basically expect the answer to
be the cause of the events expressed in the question. If we
can find the causal relations where the effect part resembles
a target why-question, the cause parts may include valuable
clues for generating appropriate compact answers, such as
important keywords to be included in the compact answers.
We thus automatically extract the causal relations relevant to
a target why-question from the web, such as “[Microsoft’s
machine translation has made great progress over the last
few years]effect since [it started to use deep learning.]cause”:
although this text does not express a direct answer to “Why
did Google’s machine translation service improve so drasti-
cally?”, it helps to generate a proper answer since it includes

such critical keywords as “deep learning” in its cause part.
In the answer passage in Table 1, there are no explicit clue
expressions such as “because” and “since” that indicate the
causal relations between the part corresponding to the ques-
tion (“The quality of this machine translation service was
dramatically improved.”) and the part containing the com-
pact answer (“Deep learning technologies · · · introduced
into Google’s translation engine.”). In general, proper an-
swer passages often lack such clue expressions, and to gen-
erate proper compact answers, such words as “deep learn-
ing” that are causally associated with a given question in
causal relations should be helpful.

We propose a novel neural summarizer that utilizes the
causal relations extracted from the web as background
knowledge. In this summarizer, we assign labels, which are
distinguishable from the labels given to the words in a why-
question, to the words that appear both in a passage and
the cause part of causal relations, such as “deep learning”
in the above example, when the passage is given to the
encoder. In addition, we extend the summarizer to exploit
such causality-related labels more effectively in an encoder-
decoder model. We introduce a stacked version of convolu-
tional neural networks (CNNs) (van den Oord et al. 2016;
Dauphin et al. 2017; Gehring et al. 2017) that considers
the surrounding context of the labeled words in the encoder
and aggregate such informative encoding results as the ini-
tial decoder state for generating better compact answers.
Our experimental results show that our summarizer achieved
significantly better ROUGE F-scores than several baseline
methods including the existing compact answer generation
method (Ishida et al. 2018) and variations augmented with
query-attention (Nema et al. 2017) and key-value memory
networks (Miller et al. 2016), which are more sophisticated
than our method that explicitly assigns labels to words.

The rest of this paper is organized as follows. We provide
an overview of related works in Section 2, we present our
proposed method in Section 3, and we describe our dataset
and experimental results in Section 4.

2 Related Work
We follow the approach proposed in Ishida et al. (2018),
in which compact answer generation is regarded as a spe-
cial case of text summarization. The recent progress of neu-
ral network-based techniques, especially the seq2seq frame-
work (Luong, Pham, and Manning 2015; Bahdanau, Cho,
and Bengio 2015), has led to a significant improvement in
summarization quality (Rush, Chopra, and Weston 2015;
Chopra, Auli, and Rush 2016; Nallapati et al. 2016; Chen et
al. 2016; Miao and Blunsom 2016; See, Liu, and Manning
2017; Zhou et al. 2017).

A notable advance in neural network-based summariza-
tion methods is the use of a copying function that copies the
words in a source text to a summary (Nallapati et al. 2016;
See, Liu, and Manning 2017). For example, See, Liu, and
Manning (2017)’s pointer-generator network reduced the
risk of generating irrelevant words in a fixed target vocab-
ulary by copying the words in the source text to a summary.
Ishida et al. (2018) employed the pointer-generator network
as their starting point. We follow their choice.
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Another research direction uses more than one input text.
Nema et al. (2017) proposed a new attention mechanism
called query attention, which was first computed for words
in an additional input called query, and utilized it when com-
puting the attention distribution of words in the source text.
In our evaluation in Section 4, we regard background knowl-
edge (i.e., a set of texts representing causal relations) as
queries and introduce a variant of this method as a baseline
method.

For why-QA, several neural methods (Sharp et al. 2016;
Tan et al. 2016; dos Santos et al. 2016; Oh et al. 2017)
showed significant performance improvement over methods
using conventional machine learning methods such as sup-
port vector machines (Girju 2003; Higashinaka and Isozaki
2008; Verberne et al. 2011; Oh et al. 2013; Oh et al. 2016).
Oh et al. (2017) used causality expressions that were au-
tomatically extracted from the Web for why-QA, like our
approach. However, these methods are basically binary clas-
sifiers that predict whether a given long passage is a proper
answer to a given question and cannot generate compact an-
swers like ours.

Another work that resembles ours is a causality recog-
nition method proposed in Kruengkrai et al. (2017). This
neural method exploits web texts and why-QA answers as
background knowledge for event causality recognition. But
again, it is a binary classifier that judges whether a given
sentence expresses event causality.

Finally, in the SQuAD machine comprehension task (Ra-
jpurkar et al. 2016), participating systems identified short
consecutive word sequences in passages as answers to ques-
tions. In compact answer generation, however, words that
comprise the answer may be scattered throughout the answer
passage. In this respect, our task differs from the SQuAD
task and Ishida et al. (2018) actually showed that a neural
network developed for the SQuAD task performed poorly
on compact answer generation task. (See Ishida et al. (2018)
for more details.)

3 Proposed Method
In this section, we first describe Ishida et al. (2018)’s model
and then present our proposed model. We use uppercase to
denote sequences (e.g., X , Y ), lowercase to denote symbols
in a sequence (e.g., x, y), bold uppercase to denote matri-
ces (e.g., X, H) and bold lowercase to denote vectors (e.g.,
x, w). We respectively denote an answer passage, a target
compact answer and a why-question by X = (x1, . . . , xS),
Y = (y1, . . . , yT ) and Q = (q1, . . . , qU ).

3.1 Background: Ishida et al.’s model
Ishida et al. (2018) first represented each word xs in the an-
swer passage X as a feature vector xs ∈ Rd. The answer
passage becomes X = [x1, . . . ,xS ] ∈ Rd×S . Then The fea-
ture vectors xs(s ∈ {1, · · · , S}) are computed as:

xs = tanh(Wq[ws;qs]). (1)

Here Wq ∈ Rd×(d+e) is a trainable matrix, ws ∈ Rd is a d-
dimensional word embedding vector and qs ∈ Re is a train-
able e-dimensional vector. Note that qs ∈ {qq,qnq} where

qq and qnq are randomly initialized vectors. qs functions as
a label that is given to each content word that appears in a
given question Q, as mentioned in the Introduction. qs = qq

if a word xs appears in the question Q and qs = qnq other-
wise.

The encoder (a multi-layer bi-directional recurrent neural
network(RNN)) then encodes X into hidden states HR =

[hR
1 , . . . ,h

R
S ] ∈ Rd×S . Each hR

s = [
−→
h s;
←−
h s] is a con-

catenation of a forward
−→
h s and a backward

←−
h s. Accord-

ing to the standard scheme, the decoder (a single-layer uni-
directional RNN) initializes its initial hidden state with:

s0 = ReLU(Wr[
−→
hS ;
←−
h1] + br) , (2)

where Wr ∈ Rd×d and br ∈ Rd are a trainable matrix and
a vector.

The decoder is also set up with state-of-the-art techniques,
including Bahdanau, Cho, and Bengio (2015)’s attention,
copy-attention in See, Liu, and Manning (2017)’s pointer-
generator network and Luong, Pham, and Manning (2015)’s
input-feeding, all of which greatly strengthen Ishida et al.
(2018)’s model. They used long short-term memory (LSTM)
(Hochreiter and Schmidhuber 1997) but we also examine
gated recurrent unit (GRU) (Cho et al. 2014) in our experi-
ments.

The network then learns to minimize the negative condi-
tional log-likelihood of the target compact answer:

LR = −
T∑

t=1

log p(yt|y<t, X,Q) . (3)

3.2 Proposed network model
As explained in the introduction, our method first retrieves a
set of texts that represents the causal relations in which the
effect part resembles a target why-question and labels the
words that appear both in an answer passage and the cause
parts of the causal relations. We hypothesized that these la-
bels can be exploited more effectively by taking into account
their context. For example, a text region that is densely la-
beled in an answer passage is more likely to be included
in a proper compact answer than less densely labeled re-
gions. Also, the combination of some labeled words and
the specific syntactic patterns surrounding them may signal
that the text regions should be included in a proper compact
answer. We expect that such tendencies will be automati-
cally learned by the encoder RNN, but simply adding these
labels to Ishida et al.’s method only marginally improved
performance in our preliminary experiments. We thus intro-
duced a stacked version of CNNs (van den Oord et al. 2016;
Dauphin et al. 2017; Gehring et al. 2017) to our encoder-
decoder model to consider the contexts of the labeled words
in a manner different to that in the encoder RNN. In the fol-
lowing, we first present how to label the words in an answer
passage and then explain our stacked CNNs.

Given a target question Q (e.g., “Why did Google’s ma-
chine translation service improve so drastically?”), we first
retrieve causal relation expressions (CEs) that are relevant
to Q, like “[Microsoft’s machine translation made great
progress in the last few years]effect since [it started to use deep
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Figure 2: Proposed method

learning.]cause.” Next we label the content words in an an-
swer passage that match words in the cause parts of the CEs.
We newly introduce two trainable d-dimensional randomly
initialized vectors cc and cnc. To each word xs, we associate
a vector cs ∈ {cc, cnc}: cs = cc if the word xs appears in
the cause parts and cs = cnc otherwise. Given the vector
cs, we compute the feature vector x′

s, which represents each
word xs in the answer passage, as:

x′
s = drop(ws + qs + cs) , (4)

where drop denotes the dropout operation (Hinton et al.
2012) and ws and qs are the embedding vectors for ws

and the question label. We use the identical dimension d for
the vectors ws,qs and cs, unlike in Ishida et al.’s original
model. By replacing equation (1) with equation (4), we can
avoid introducing an additional parameter, Wq .

We extracted CEs from a 4-billion-page Japanese web text
archive. To recognize them in the archive, we applied the
conditional random fields (CRF)-based causal recognizer
developed by Oh et al. (2013) and obtained about 100 mil-
lion CEs. This method first looks up one or two consecutive
sentences using Japanese clue terms that can be translated as
“because” and “reason.” Then the CRF judges whether the
sentences represent a causal relation; if they do, we identify
the regions describing the cause and effect. Following Oh et
al. (2017), we indexed the effect parts of the archive CEs us-
ing a Lucene search engine1. We then extracted the content
words (e.g., noun, verb and adjectives) in question Q and re-
trieved the relevant CEs by matching the content words with
the effect parts of all the CEs. We ranked the retrieved CEs
by the tf-idf score model in the Lucene search engine and
used CEs with higher tf-idf scores than a predefined thresh-
old θ.

As mentioned above, to consider the contexts of labeled
words, we introduce a stacked version of CNNs (van den
Oord et al. 2016; Dauphin et al. 2017; Gehring et al. 2017)
that combines dilated convolutions (Yu and Koltun 2015)
and multi-layer CNNs with residual connections (Gehring et
al. 2017). As shown in Figure 2, a stacked CNN is given as
inputs the labeled word embeddings of the answer passage

1http://lucene.apache.org

and assigns probabilities to the words in the answer passage
X that measure how likely they are to appear in the target
compact answer Y using both the labeled feature vector x′

s
(defined in equation (4)) and the surrounding contexts of the
input word ws and hands these probabilities to Ishida et al.’s
encoder as input to the RNNs.

Let us describe the stacked CNNs more precisely. Assume
that our stacked CNN has L layers. Then, a feature map
vℓ
s ∈ Rd(ℓ ∈ {1, · · · , L}), which corresponds to s-th word

in an answer passage X and is computed at the l-th layer,
is defined using the feature maps in the (ℓ − 1)-th layer as
follows:

vℓ
s =

(
Wℓ ∗ [vℓ−1

s−2ℓ−1 ;v
ℓ−1
s ;vℓ−1

s+2ℓ−1 ] + bℓ
)
+ vℓ−1

s , (5)

where Wℓ ∈ Rd×3d, bℓ ∈ Rd are trainable parameters and
∗ denotes the convolution operator. The i-th element of the
convolutional operator is given by:

vℓ
s[i] = ⟨W

ℓ[i], [vℓ−1
s−2ℓ−1 ;v

ℓ−1
s ;vℓ−1

s+2ℓ−1 ]⟩+ bℓ[i] , (6)

where ⟨·, ·⟩ is the Frobenius inner product. v0
s = x′

s, which
is computed by equation (4). Since vℓ−1

s−2ℓ−1 and vℓ−1
s+2ℓ−1

may point to words outside the answer passage, we apply
zero-padding by having vℓ−1

s−2ℓ−1 = 0 when s − 2ℓ−1 < 1

and vℓ−1
s+2ℓ−1 = 0 when s+ 2ℓ−1 > S.

Note that each vℓ
s is computed from just three feature

maps: vℓ−1
s−2ℓ−1 , vℓ−1

s and vℓ−1
s+2ℓ−1 . In the first layer, v1

s is
computed from v0

s−1, v0
s and v0

s+1, which is actually a tri-
gram of the feature vectors of the (s−1)-th, s-th and (s+1)-
th words. As ℓ increases, the gap between s ± 2ℓ−1 and s
exponentially increases and, at the ℓ-th layer, vℓ

s aggregates
the information related to the (up to) 2ℓ+1 − 1 words sur-
rounding the s-th word.

Finally, the probability vector ps ∈ R2, which indicates
whether a word xs should appear in the compact answer Y
is computed as follows:

ps = softmax(Wpv
L
s + bp) , (7)

where Wp ∈ R2×d and bp ∈ R2 are trainable parameters.
We train the stacked CNN in two-steps. First, we pretrain

it independently without considering the encoder and the
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decoder of the baseline model. At the pretraining step, the
stacked CNN learns to minimize the negative log-likelihood
of the probability ps,1 indicating whether the words in the
answer passage should appear in the compact answer:

LC = −[
∑
xs ̸∈Y

(1− α) log(ps,0) +
∑
xs∈Y

α log(ps,1)] , (8)

where ps = [ps,0; ps,1] and ps,1 is the probability of how
likely xs would appear in Y and ps,0 = 1 − ps,1. α is a
weight in the range of [0, 1] that represents a trade-off be-
tween precision and recall.

Second, we conduct joint training of the stacked CNN and
the baseline model. At the second step, we integrate the pre-
trained stacked CNNs to our entire architecture (Figure 2)
and jointly train the stacked CNNs and the encoder-decoder
model as follows. Let p1:S = [p1,1, · · · , pS,1] ∈ RS denote
the probability vector of how likely xs would appear in Y .
The input embeddings X to the baseline model encoder are
updated as:

X̃ = drop(X+ uxp1:S
⊤) , (9)

where ux ∈ Rd is a trainable vector. Given a dataset D =
{(Xi, Yi)}Ni=1, we jointly train the stacked CNN and Ishida
et al.’s model by minimizing the following:

LM =
1

N

N∑
i=1

[(1− β)LC + βLR] . (10)

In our experiments, we set α in equation (8) to a relatively
large value during the pretraining step, favoring recall, and
then change it to a smaller value in the joint training step,
favoring precision. The idea is to first train a model that tries
to focus on potential candidate words as much as possible
and do fine-tuning in the next step, the joint training.

3.3 Decoder initialization with averaging
Thus, we described our proposed method but observed that
another trick can boost the performance even further. In
Ishida et al.’s method, the decoder input was the final en-
coder output, which is likely to focus more on the first and
last words. On the other hand, we hypothesized that the de-
coder initial state should contain more information concern-
ing words in the middle of answer passages because our
compact answers are short sentences that often start with
words located in the middle of a passage. According to this
hypothesis, we used the following initial decoder hidden
state, which is actually the average of all the encoder hid-
den states:

s0 =
1

S

∑
s

hR
s . (11)

We refer to this modification as decoder initialization with
averaging and use it in our experiments. Note that this mod-
ification helps reduce the number of parameters to be tuned
(i.e., a trainable matrix Wr is excluded from equation (2)).
We expect that this will positively affect performance.

Dataset #Triples #Questions
Training set 15,130 2,060
Validation set 2,271 426
Development set 5,920 1,302
Test set 17,315 3,530

Table 2: Number of (question, answer passage, compact an-
swer) triples and questions covered by them in each data set

4 Experiments
4.1 Data
Each of our four datasets (training, validation, development,
and test) consists of triples of a why-question, an answer
passage and a compact answer. Table 2 provides the num-
ber of triples in each. We confirmed that no question was
found in multiple datasets. The average length of all the
questions, passages and compact answers in all the datasets
is 8.0, 184.4, and 9.5 words, respectively. The compact an-
swers are much shorter than the answer passages, suggesting
the difficulty of our task.

Basically, we used the datasets used in Ishida et al. (2018),
which were built in the following manner. First, human an-
notators manually wrote open-domain why-questions and
entered them into a publicly available web-based QA sys-
tem called WISDOM X (Mizuno et al. 2016), which has an
open-domain why-QA module (Oh et al. 2016). The system
retrieves answer passages from a 4-billion-page-scale web
archive and provides a ranked list of answer passages for
each question. Each answer passage consists of five or seven
consecutive sentences. For each question, the top 20 answer
passages in the ranked list were chosen, and for each pas-
sage, three annotators were asked to create a compact and
non-redundant answer. Restrictions given to the annotators
include (1) no compact answers should exceed 25 Japanese
characters in length, and (2) the compact answers’ content
words have to be included in the passage (see (Ishida et al.
2018) for more details). Annotators did not have to create
compact answers for which the passage did not answer the
question, resulting in triples without compact answers. They
were removed from the training, validation and development
sets, but not from the test set.

This discrepancy led to inconsistencies in the results mea-
sured for the development and test sets reported in Ishida et
al.’s paper. For this reason, we removed from the test set
any triple without a compact answer. Then, for more reli-
able experimental results, we created new triples following
the same creation scheme (only using the top three answer
passages for each question instead of 20) and added them to
the test and development sets. The numbers given in Table 2
include these adjustments to the development and test sets.

4.2 Baseline methods
We compared our method with the following baseline meth-
ods.

Ishida-{LSTM,GRU}: This is Ishida et al.’s original
method. We used pretrained word embeddings, which
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were not used in the original paper, to improve its perfor-
mance. We also implemented a version of Ishida’s method
that uses GRUs instead of LSTMs. As shown later, GRUs
gave better results than LSTMs in our settings. Although
Ishida et al.’s original method used automatically gen-
erated training data (AGTD), we did not use them in
this comparison. (We compare our method with Ishida’s
method using AGTD in the end of this section.)

QryAttn: Nema et al. (2017) proposed a query-attention
method that gives attention to words based on an addi-
tional text input called query. We implemented a variant
of this query-attention scheme, which can take multiple
queries as inputs, on top of the same seq2seq model as
Ishida-GRU and used the cause part of a causal relation
as a query. In this way, since the words in an answer pas-
sage that appear in the causal relation receive more atten-
tion, they are more likely to be generated in a compact
answer.
Let us describe our modified version of the query atten-
tion scheme. We first encoded M cause parts of causal
relations CP = {CP1, . . . ,CPM} (same as those we
used for the labeling in Section 3.2) into hidden states
HCP

i = [hCP
1,i , . . . ,h

CP
Ni,i] ∈ Rd×Ni with a multi-layer

bi-directional GRU, where Ni denotes the word length
of the i-th cause part CPi. Each hCP

j,i = [
−→
h CP

j,i ;
←−
h CP

j,i ]

is a concatenation of a forward
−→
h CP

j,i and a backward
←−
h CP

j,i . Second, we computed the representation of CPi as

rCP
i = [

−→
h CP

Ni,i
;
←−
h CP

1,i ]. Then, we compute the represen-
tation qt of the M cause parts at the time step t in the
decoding process as:

aqt,k = z⊤ tanh(Wqst +Uqr
CP
k ) (12)

αq
t,k =

exp
(
aqt,k

)
∑

m exp
(
aqt,m

) , (13)

qt =

M∑
k=1

αq
t,kr

CP
k (14)

where st is the decoder state at time step t and z ∈ Rd×1,
Wq ∈ Rd×d and Uq ∈ Rd×d are trainable parameters.
Finally, we replaced Nema et al.’s query representation
by the representation qt. Note that this method uses causal
relations on the decoder side, unlike our proposed method
that uses the relations on the encoder side.

KVMemNN: In this baseline, we integrated a key-value
memory network (Miller et al. 2016) into the Ishida-
GRU. We stored causal relations in the memory network,
regarding the effect parts as keys and the cause parts as
values. Our expectation here is that the information about
the causal relations stored in the memory is propagated to
the encoder input (i.e., word embeddings) and the propa-
gated information signals the importance of the words that
appear in causal relations so that those words are more
likely to be generated in a compact answer.
The details are given in the Appendix. Here we only de-
scribe how the output of the memory network modifies the

word embeddings. Given a why-question, we first com-
puted the initial query representation q0

s, which is an input
to the memory network, as:

q0
s = A(

∑
i

qi + xs), (15)

where A ∈ Rd×d is a trainable matrix and qi is the
word embedding vector of the i-th word in the question
and xs is the original input vector to the encoder. Then,
the memory network iteratively updates the query repre-
sentation using the representations of the causal relations
stored in the key-value memory. After H iterations, which
are called H hops, the updated query representation qHs is
added to the encoder’s input xs as:

ms = σ
(
W1q

H
s + b

)
, (16)

x̃s = drop (xs +msu1) , (17)

where σ denotes the sigmoid activation function, drop de-
notes the dropout operation, and W1 ∈ R1×d, u1 ∈ Rd

and b ∈ R are trainable parameters. The new vector x̃s

is used as the input to the encoder RNN in Ishida et al.’s
method instead of the original input vector xs. We em-
ployed this method as a baseline because using causal
relations in a more sophisticated method might improve
performance more than our simple word labeling on the
encoder side.

4.3 Experimental settings
For all the methods, we used the following settings deter-
mined through preliminary experiments using the develop-
ment data. Both the sizes of the word embeddings and the
RNN (i.e., GRU and LSTM) hidden states2 were set to 500.
The source and target vocabulary sizes were both set to
50,000. We used Adam (Kingma and Ba 2015) with learn-
ing rate of 0.001 and mini-batches of 32 for optimization.
If the validation error did not decrease after each epoch, the
learning rate was divided by two. We used 1-layer RNNs as
a decoder. We independently tried {1,2,3,4}-layer RNNs as
encoders and chose the one that led to the optimal ROUGE-
1 F-score on the development data. We ran a maximum of 20
epochs and selected the best model of each method based on
the perplexity of the validation data. We pretrained the word
embedding vectors on Japanese Wikipedia articles3 using
word2vec (Mikolov et al. 2013) and fixed their weight vec-
tors during the training of each method. In the testing step,
we used a beam search with a beam size of 3 and unknown
word replacement (Jean et al. 2015).

For Ishida-{LSTM,GRU}, QryAttn and KVMemNN,
we set the size of vectors for the word labels to 32 as done in
Ishida et al. (2018). For the stacked CNNs, we used 4-layer
CNNs. We set the weight α in equation (8) to 0.9 for the first
(pretraining) step and changed it to 0.5 for the second train-
ing step. We set the scaling factor β in equation (10) to 0.5.

2The hidden state size of each RNN in the bidirectional RNNs
was set to 250 and the outputs were simply concatenated.

3https://archive.org/details/jawiki-20150118
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Method #Layers Development Test
R-1 R-2 R-L R-1 R-2 R-L

Baseline Ishida-LSTM 1 54.75 40.50 54.16 52.33 37.62 51.68
Ishida-GRU 2 56.20 42.25 55.60 52.82 38.27 52.17
QryAttn (tfidf=2.0) 3 56.07 42.24 55.45 52.82 38.23 52.15
KVMemNN (tfidf=1.5, hop=1) 1 55.31 41.48 54.69 52.63 38.16 51.96

Proposed (tfidf=3.0) 3 57.89 44.62 57.32 54.83*†‡ 40.60*†‡ 54.17*†‡
Proposed+AvgInit (tfidf=3.0) 3 58.35 45.04 57.78 55.15*†‡ 40.94*†‡ 54.42*†‡
Proposed+AvgInit+KVMemNN (tfidf=1.5, hop=1) 2 58.64 45.41 58.00 54.71*†‡ 40.66*†‡ 54.01*†‡
Ishida-LSTM+AGTD (250K) 3 57.34 44.15 56.76 54.51*†‡ 40.60*†‡ 53.85*†‡

Proposed: our proposed network model. AvgInit: decoder initialization with averaging. #Layers: number of encoder layers. R-1, R-2
and R-L respectively denote ROUGE-1, ROUGE-2 and ROUGE-L F-scores. AGTD: automatically generated training data. Statistically
significant improvements over Ishida-GRU, QryAttn and KVMemNN are respectively denoted by ‘*’, ‘†’ and ‘‡’ (Significance was
estimated by a 95% confidence interval computed by the ROUGE script).

Table 3: Results of compact answer generation

In QryAttn, KVMemNN, and our proposed method, we in-
dependently evaluated 1.5, 2.0 and 3.0 of the tf-idf thresh-
old for causal relation retrieval and selected a threshold to
achieve the best ROUGE-1 F-score of the development data.
Furthermore, in KVMemNN, we independently evaluated
{1,2,3,4} of the hop size in the key-value memory net-
work and selected the one that best optimizes the ROUGE-
1 F-score of the development data. For word segmentation,
we used the morphological analyzer MeCab4 (Kudo, Ya-
mamoto, and Matsumoto 2004).

4.4 Evaluation results
We evaluated the quality of each method by measuring the
averaged ROUGE-1, ROUGE-2, and ROUGE-L F-scores
(Lin 2004) and conducted significance test using a 95%
confidence interval computed by a ROUGE script5. The re-
sults of each method obtained for both the development and
test data are presented in Table 3. Our proposed method
(Proposed in Table 3) achieved significantly better ROUGE
F-scores than all the baseline methods on the test data. In
addition, our method with decoder initialization with aver-
aging (Proposed+AvgInit) achieved slightly better ROUGE
F-scores than Proposed. The improvement over Ishida et
al.’s original method (Ishida-LSTM) is around 3% in all the
ROUGE scores. The improvement over Ishida-GRU, which
shows slightly better results than Ishida-LSTM, exceeded
2%.

In contrast, QryAttn and KVMemNN gave almost the
same or slightly worse results than Ishida-GRU from which
these methods were modified. This means that, contrary to
our method, the more complex query-based summarization
technique and key-value memory networks do not effec-
tively exploit background knowledge, at least in our current
settings. A possible explanation of these results is that the
current encoding schemes for the cause parts in both Qry-
Attn and KVMemNN were inadequate. QryAttn encodes
the entire word sequences in the N cause parts using RNNs
and generates a single representation vector for each cause
part. KVMemNN also generates a single representation vec-

4http://taku910.github.io/mecab/
5http://www.berouge.com/

tor of the cause part through key addressing and value read-
ing processes. In other words, the information in each cause
part word sequence in both baselines is “condensed” into a
single vector. On the other hand, the word labels are gener-
ated from cause parts without such condensation processes.
If the condensation process is good enough, the two base-
lines may outperform the proposed method. However, this
was not the case in our experiments.

Actually, a similar observation was obtained in the pre-
vious work of Ishida et al. (2018). They tried to give in-
formation concerning a given why-question using Nema et
al. (2017)’s query-attention mechanism by encoding the en-
tire word sequence in the question into a single representa-
tion. However, their experiments revealed that this method
does not improve performance. On the other hand, the same
previous work showed that the word labels obtained from
the question words improved the performance, just like our
word labels for causal relations in our work. That is, at least
in our compact answer generation task settings, word labels
generated from external inputs (i.e., questions and causal re-
lations) consistently improved performance, but QryAttn
and KVMemNN did not. This suggests that the encod-
ing/condensation processes of the cause parts in those base-
lines were inadequate for our task settings.

Another possible explanation may be that information
from the cause parts must somehow be used in the answer
passage encoding processes, probably because the answer
passage encoder must focus on (possibly fragmented) the
text regions of the passages from which a compact answer is
generated. In QryAttn, the cause part information does not
affect the encoding process for the answer passages (i.e., it
is used only for attention computation in the decoder), but
word labels do affect the encoding process because they are
given to the encoder for answer passages alongside the word
embeddings of the answer passages. This may be another
reason why the improvement by QryAttn was not signifi-
cant.

We also tried a combination of the key-value mem-
ory networks and Proposed+AvgInit, both of which
use background knowledge to modify the encoder input
(Proposed+AvgInit+KVMemNN). The results on the test
set were worse than Proposed+AvgInit, although the results
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Method #layers Development Test
R-1 R-2 R-L R-1 R-2 R-L

Proposed+AvgInit 3 58.35 45.04 57.78 55.15 40.94 54.42
w/o word labels for causal relations 2 57.95 44.76 57.35 54.75 40.66 54.04
w/o stacked CNNs 3 57.40 43.72 56.86 54.62 40.38 53.95
w/o AvgInit (=Proposed) 3 57.89 44.62 57.32 54.83 40.60 54.17

Table 4: Results of ablation test

on the development set were slightly better than it.
We compared our method with Ishida et al. (2018)’s en-

tire method. We obtained from them their auto-generated
training data (AGTD), which was automatically gener-
ated using the same type of causal relations that we used
for labeling words in Section 3.2. We re-trained Ishida-
LSTM after adding 250K, 500K, 750K, and 1M in-
stances of AGTD to the manually generated training data,
and selected the hyper-parameters and AGTD whose size
achieved the best ROUGE-1 F-score against the develop-
ment data. The resulting model’s performance is shown as
Ishida-LSTM+AGTD in the bottom line of Table 3. Pro-
posed+AvgInit outperformed Ishida-LSTM+AGTD even
without AGTD. Note that Ishida+LSTM+AGTD achieved
the best performance when AGTD was rather small (250K).
This implies that using even more AGTD (more than 1M)
is unlikely to improve performance. Our results suggest that
using background knowledge may be more effective than us-
ing AGTD.

Table 4 shows the ablation test results to assess the effec-
tiveness of each component in Proposed+AvgInit. All the
components introduced in this work improved performance.

Table 5 shows some examples of compact answers that
were automatically generated by each method.

5 Conclusion
We proposed a novel neural method for generating compact
answers (e.g., “Because deep learning was introduced.”) to
why-questions (e.g., “Why did Google’s machine translation
improve so drastically?”) from long multi-sentence text pas-
sages that were retrieved by existing why-QA methods. The
method exploits such causal relations as “[Microsoft’s ma-
chine translation has made great progress over the last few
years]effect since [it started to use deep learning.]cause”, re-
trieved from a large web archive of 4 billion web pages. In
this method, we first labeled the words that appear in the
cause parts in the causal relations (e.g., deep learning) to
focus on such words in generating compact answers by an
encoder-decoder model. Also, we introduced stacked CNNs
to consider the contexts of the labeled words in a man-
ner different to that in the encoder RNN. Our experimental
results show that our method achieved significantly better
ROUGE F-scores than existing encoder-decoder models and
their variations augmented with query-attention and mem-
ory networks, which exploit background knowledge.

Appendix: Details of KVMemNN baseline
This appendix details the baseline method (KVMemNN)
that uses key-value memory networks (Miller et al. 2016),

Example 1
Question: Why are Japan’s trains so crowded?
Answer passage: I’m visiting Japan on a sightseeing trip, but
it’s really irritating that so many trains are too crowded in
Tokyo. It is quite obvious that they are too crowded because
many company employees work in central Tokyo while living
in the suburbs. I cannot fathom why no political action has al-
leviated this situation.
Ishida-GRU: Because I’m visiting Japan on a sightseeing trip.
QryAttn: Because sightseers live in the suburbs.
KVMemNN: Because many company employees live in the
suburbs.
Proposed+AvgInit: Because many company employees live in
the suburbs.

Example 2
Question: Why does bamboo charcoal deodorize smells?
Answer passage: Thank you for buying our “bamboo charcoal
pillow.” Bamboo charcoal’s microscopic pores having absorp-
tion capabilities, it provides air purification and deodorization
effects and alleviates any discomfort while sleeping. Our pil-
low will provide you with comfortable sleep.
Ishida-GRU: Because it alleviates discomfort while sleeping.
QryAttn: Because it alleviates discomfort while sleeping.
KVMemNN: Because it has air purification and deodorization
effects.
Proposed+AvgInit: Because the microscopic pores has ab-
sorption capabilities.

Table 5: Examples of compact answers generated by each
method (manually translated in English for readability)

which were also used in our experiments. This method chose
key-value memory networks as an alternative way to exploit
causal relations as background knowledge. Instead of label-
ing the words, we modified the original input vector for each
word that was given to an encoder using the key-value mem-
ory network in which the causal relations are encoded and
stored.

The modified input vector is computed in the following
four steps: causal relation encoding, memory addressing,
memory reading and vector updating. An overview of the
whole method is illustrated in Figure 3.

Causal relation encoding: In our KVMemNN, given
J causal relations that are relevant to a target why-question,
we stored the effect parts of the relations as keys and the
cause parts as values. We first computed the representations
of the keys and values following Miller et al. (2016)6. As
a value stored in the network, we computed the cause part

6https://github.com/facebook/MemNN/tree/master/KVmemnn

149



KVMemNN

Encoder Decoder

x1 x2 x3 ... xi ... xS

x1 x2 x3 ...  xS y1 y2 y3 ... yT-1

y2 y3 y4 ... yT

Attention

Vector updating

Compact 
answer

Question
4-billion  web 
page archive

Causal 
relations

Causal relation 
recognizer

Words
Labels for question

w1 w2 w3 w4  w5  w6 ...     wS
q        qAnswer 

passage

j-th cause: !"
#$ …!&$

#$

1st cause:

J-th cause:

'"(

Addressing

Reading

keys

values )"

*"

... ...

'

'+(',( '-( '.(
!"#/ …!&/

#/

!"
#0 …!&0

#0

)1 )2

*1 *2j-th effect:!"
3$ …!4$

3$

1st effect:

J-th effect:

!"3/ …!&/
3/

!"
30 …!40

30

Question word labeled passage

Figure 3: Baseline model augmented with KVMemNNs

representation vj from the j-th cause part as the sum of the
word embeddings of all the words in the cause part. As key
representations, we computed the effect part representation
kj from the j-th effect part as the sum of the word embed-
dings of all the words in the effect part. These two types of
representation are iteratively used for the processes of mem-
ory addressing and reading, both of which are described be-
low. The number of iterations is referred to as hop, which is
denoted by h in the following.

Memory addressing: At the first step of memory ad-
dressing, we compute the representation q of a target why-
question Q as the sum of the word embedding of every word
in Q. Then the initial query vector q0

s for the s-th word’s
feature vector xs, which is the original input vector given to
the encoder, is computed as:

q0
s = A (q+ xs) , (18)

where A ∈ Rd×d is a trainable matrix. Then at the h-th hop,
the j-th causal relation is assigned a relevance probability
by comparing the query vector qh

s and the effect part repre-
sentation:

phs,j = softmax
(
qh
s

⊤
Akj

)
. (19)

Memory reading: In the memory reading step, we com-
puted the weighted sum of the values in the memory using
the above relevance probability:

oh
s =

∑
j

phs,jAvj . (20)

Then we updated the query vector by combining the current
query vector qh

s and the above oh
s as:

qh+1
s = Rh

(
qh
s + oh

s

)
, (21)

where Rh ∈ Rd×d is a trainable matrix. We updated the
query vector qh

s H times using equations (19), (20), and
(21), where H is the fixed number of hops.

Vector updating: Finally, we obtained a modified input
vector x̃s to be given to the encoder by combining the orig-
inal input vector xs and the final query vector qH

s as:

ms = σ
(
W1q

H
s + b

)
, (22)

x̃s = drop (xs +msu1) , (23)

where σ denotes the sigmoid activation function, drop de-
notes the dropout operation (Hinton et al. 2012), and W1 ∈
R1×d, u1 ∈ Rd and b ∈ R are trainable parameters.

Note that computing the modified input vectors using
equations (22) and (23) is intended to function in a simi-
lar way to our stacked CNNs (especially as in equation (9)
of Section 3.2). In stacked CNNs, the predicted value pi is
added after expanding it with the trainable vector ux. Anal-
ogously, in the above vector updating, we first computed the
value ms in equation (22) and then expanded it using the
trainable vector u1 in equation (23). We also tried a simpler
version of vector updating in which the modified input vec-
tor x̃s is computed as:

x̃s = drop
(
xs + qH

s

)
. (24)

However, it drastically decreased the ROUGE scores and we
used equations (22) and (23) for computing x̃s in the base-
line method using the KVMemNN.
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