
CHICOT: A Developer-Assistance Toolkit for Code Search
with High-Level Contextual Information

Terufumi Morishita, Yuta Koreeda*, Atsuki Yamaguchi*, Gaku Morio,
Osamu Imaichi, Yasuhiro Sogawa

Hitachi, Ltd. Research and Development Group
terufumi.mowirhita.wp@hitachi.com.

Abstract

We propose a source code search system named CHICOT
(Code search with HIgh level COnText) to assist develop-
ers in reusing existing code. While previous studies have ex-
amined code search on the basis of code-level, fine-grained
specifications such as functionality, logic, or implementa-
tion, CHICOT incorporates high-level contextual informa-
tion, such as the purpose or domain of a developer’s project.
It achieves this feature by using context information from ad-
ditionally extracted from codebases. It provides a VSCode
plugin for daily coding assistance, and the built-in crawler
ensures up-to-date code suggestions. The case study attests
to the utility of CHICOT in real-world scenarios.

1 Introduction
Over the past two decades, large-scale codebases such as
GitHub and BitBucket have emerged on the web. Reusing
codes from such codebases significantly enhances the effi-
ciency and quality of software development. When looking
for codes, semantic code search is a key technique for find-
ing the code snippets that best match a given natural lan-
guage query.

Many studies have focused on searching for codes on
the basis of code-level information, such as functionality,
implementation, and logic (Li, Hu, and Peng 2020; Feng
et al. 2020; Guo et al. 2020). Accordingly, queries have been
framed to request such code-level specifics, e.g., "Estimate
CO2 emissions." For example, a leading benchmark Code-
SearchNet (Husain et al. 2019) aims to find a function from
the GitHub that aligns with the functional specification.

However, in a real-world scenario of software develop-
ment, not only code-level information but also the broader
context is crucial. Since developers craft codes that reflect
the specific purpose/domain of their projects, their queries
should include this contextual information, e.g., “How can
we estimate the CO2 emissions from our company-operated
flights?” Accordingly, the returned codes must incorporate
context-specific logic, such as the estimation of CO2 emis-
sions on the basis of flight attributes like aircraft type/-
model, flight distance/duration/altitude, and passenger and

*These authors contributed equally.
Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: A CHICOT VSCode use case.

Context UI Data

CodeSearchNet – – up to 2018

CHICOT ✓ VSCode / Browser up to date

Table 1: A comparison of CHICOT with the CodeSearchNet.

cargo load, rather than generic but useless logic based on
“the type and amount of consumed fossil fuels.”

In light of this background, we propose CHICOT (se-
mantic Code search with HIgh-level COnTextual informa-
tion), a toolkit to find code snippets that best match the
developer’s unique context. CHICOT achieves this feature
through two key mechanisms. (1) As preparation, it crawls
functions from GitHub, each paired with its additionally ex-
tracted contextual information. (2) Upon receiving a query,
it searches for a best matching pair, i.e., a function and its
context. The architecture of CHICOT is depicted in Figure 2.

Further, to assist with everyday coding, we integrated
CHICOT into VSCode as a plugin (Figure 1). CHICOT sup-
ports major languages, including Java, JavaScript, PHP, and
Python. Its built-in crawler ensures up-to-date code sugges-
tions. The contributions of CHICOT are outlined in Table 1.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

23817



Crawler

Codebases

Code 
Parser

functions
context snippets

functions contexts

Code Search
Net

How can we estimate the 
CO2 emissions from our 

company-operated flights?

MS Marco

Retrieval with
High-Level 

Context

𝒔𝒔𝒒𝒒,𝒇𝒇 𝒔𝒔𝒒𝒒,𝒄𝒄

𝑠𝑠 refers to
cosine similarities𝒔𝒔𝒒𝒒,𝒇𝒇,𝒄𝒄

Contextual
Information

Extractor

…𝒇𝒇𝒊𝒊,𝒇𝒇𝒊𝒊+𝟏𝟏,𝒇𝒇𝒊𝒊+𝟐𝟐 …
… 𝒄𝒄𝒊𝒊, 𝒄𝒄𝒊𝒊+𝟏𝟏, 𝒄𝒄𝒊𝒊+𝟐𝟐 …

𝒒𝒒uery

Vector Search
Databasefunction + context

of largest similarity

Figure 2: Overview of CHICOT. Starting from “Codebases”, data flows from the right to the left. See Section 2 for details.

2 CHICOT Overview
Crawler collected 20,000 GitHub repositories with over 100
stars to ensure quality.
Code Parser extracts functions from each repository. Each
function fi is a parsed string, e.g., in Python, the string be-
tween “def my_function(. . . )” and “return my_value”. Six
million functions were collected in total.
Contextual Information Extractor extracts a piece of text
that describes the context of each function fi (context snip-
pet, ci). We utilize the repository’s README for the con-
text, as it typically outlines the project’s purpose or domain.
Note that a single README is shared by multiple functions.
In processing a README, we first remove noise such as
HTML and markdown tags using regular expressions, and
then we apply a simple LEAD-k summarization (k = 5), ex-
tracting the first k lines to omit irrelevant information, such
as installation instructions and release notes.
Retrieval with High-Level Context We now pos-
sess a collection of function and context snippet pairs
(f1, c1), . . . , (fN , cN ). In contrast to the previous systems
that seek the function fi aligning the best with a given query
q, CHICOT aims to identify the optimal pair pj = (fj , cj).

We first divide this task into two subtasks: (I) determining
a relevance score sq,f between q and f , and (II) sq,c between
q and c. Then, the final score is derived as:

sq,f,c = (1− w)× sq,f + w × sq,c. (1)

The pair pj = (fj , cj) of the highest score sq,fj ,cj is re-
turned to the user. The advantage of this subtask-based for-
malization is that users can configure w depending on how
much they value contextual information.

To calculate sq,f and sq,c, we utilize cosine similarity by
DNNs tailored for each subtask. Subtask (I) is the same as
the previous code search without context, so we utilize a
DNN trained on CodeSearchNet. Specifically, we use the
lightweight model of (Wu and Yan 2022) to ensure compati-
bility with resource-constrained devices. Subtask (II) resem-
bles the retrieval phase in question answering (QA) where
a model calculates the relevance score between a question
and a document written in natural language. Here, we adopt
a compact language model1 trained on MS-Marco (Nguyen

1“msmarco-distilbert-base-v4” (Reimers and Gurevych 2021).

(a) “Calculate prices of equipment
in tax management systems”

(b) “Estimate the amount of
carbon offset for a flight”

Figure 3: For each query, we show a retrieved pair; an ex-
cerpt of the context snippet (upper) and the function (lower).

et al. 2016), the largest QA dataset.
Vector Search Databases store vectorized items. We used
Annoy (Bernhardsson 2018) for memory efficiency.
User Interface The VSCode plugin presents the top 20 re-
trieved pairs and links to the original repository for supple-
mental details. Users can configure parameters like w (1) in
the settings tab. A web browser interface is also available.

3 Assessment of CHICOT

Precision at Ten To evaluate context-dependent search, we
need a query that specifies both code- and context-level
requirements. We manually crafted 25 such queries. We
then assessed the top ten pairs retrieved for each query,
checking whether both the function and context snippet
align with the code- and context-level specifications, respec-
tively. CHICOT achieved a precision@10 of 6.4%. Context-
dependent code search is challenging due to the two align-
ment criteria, yet with over one accurate pair on the first page
(default 20 pairs), CHICOT can be beneficial for developers.
Case Study Figure 3 shows that the retrieved pairs sat-
isfy both the code- and context-level requirements of the
query. Developers can easily reuse these items through copy-
pasting, making modifications as needed.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

23818



Acknowledgements
We thank the three anonymous reviewers and the meta-
reviewer, who gave us insightful comments and sugges-
tions. We thank Dr. Masaaki Shimizu and Yasunori Kaneda
at Hitachi for the convenience of additional computational
resources. We thank Osamu Imaichi and Masashi Egi at
Hitachi for insightful comments. We thank Dr. Naoaki
Okazaki, professor at Tokyo Institute of Technology, for the
keen comments. Computational resources of AI Bridging
Cloud Infrastructure (ABCI) provided by the National Insti-
tute of Advanced Industrial Science and Technology (AIST)
were used.

References
Bernhardsson, E. 2018. Annoy: Approximate Nearest Neigh-
bors in C++/Python. Python package version 1.13.0.
Feng, Z.; Guo, D.; Tang, D.; Duan, N.; Feng, X.; Gong,
M.; Shou, L.; Qin, B.; Liu, T.; Jiang, D.; and Zhou, M.
2020. CodeBERT: A Pre-Trained Model for Programming
and Natural Languages. In Findings of the Association for
Computational Linguistics: EMNLP 2020, 1536–1547. On-
line: Association for Computational Linguistics.
Guo, D.; Ren, S.; Lu, S.; Feng, Z.; Tang, D.; Shujie, L.;
Zhou, L.; Duan, N.; Svyatkovskiy, A.; Fu, S.; et al. 2020.
GraphCodeBERT: Pre-training Code Representations with
Data Flow. In International Conference on Learning Repre-
sentations.
Husain, H.; Wu, H.-H.; Gazit, T.; Allamanis, M.; and
Brockschmidt, M. 2019. Codesearchnet challenge: Eval-
uating the state of semantic code search. arXiv preprint
arXiv:1909.09436.
Li, R.; Hu, G.; and Peng, M. 2020. Hierarchical Embedding
for Code Search in Software Q&A Sites. In 2020 Interna-
tional Joint Conference on Neural Networks (IJCNN), 1–10.
Nguyen, T.; Rosenberg, M.; Song, X.; Gao, J.; Tiwary, S.;
Majumder, R.; and Deng, L. 2016. MS MARCO: A human
generated machine reading comprehension dataset. choice,
2640: 660.
Reimers, N.; and Gurevych, I. 2021. The Curse of Dense
Low-Dimensional Information Retrieval for Large Index
Sizes. In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the 11th In-
ternational Joint Conference on Natural Language Process-
ing (Volume 2: Short Papers), 605–611. Online: Association
for Computational Linguistics.
Wu, C.; and Yan, M. 2022. Learning Deep Semantic Model
for Code Search using CodeSearchNet Corpus. CoRR,
abs/2201.11313.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

23819


