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Abstract 
Aging is a complex stochastic process that affects healthy 
functioning through various pathways. In contrast to the 
more commonly used cross-sectional methods, our research 
focuses on longitudinal modeling of aging, a less explored 
but crucial area. We have developed a Stochastic Differen-
tial Equation (SDE) model, at the forefront of aging re-
search, designed to accurately forecast the health trajectories 
and survival rates of individuals. This model adeptly deline-
ates the connections between different health indicators and 
provides clear, interpretable results. Our approach utilizes 
the SDE framework to encapsulate the inherent uncertainty 
in the aging process. Moreover, it incorporates a Recurrent 
Neural Network (RNN) to integrate past health data into fu-
ture health projections. We plan to train and test our model 
using a comprehensive dataset tailored for aging studies. 
This model is not only computationally cost-effective but 
also highly relevant in assessing health risks in older popu-
lations, particularly for those at high risk. It can serve as an 
essential tool in anticipating and preparing for challenges 
like infectious disease outbreaks. Overall, our research aims 
to improve health equity and global health security signifi-
cantly, offering substantial benefits to public health and 
deepening our understanding of the aging process. 

Introduction 
Aging stands as the primary risk factor for various diseases, 
including cardiovascular ailments, cancer, type 2 diabetes, 
hypertension, and Alzheimer's disease (Guan 2021, 2022; 
Guan et al. 2022). Several factors influence the aging pro-
cess, such as cholesterol levels, walking capabilities, grip 
strength of the dominant hand, and hemoglobin levels (Mil-
ler et al. 2017). Relationships have been observed between 
aging and factors like diuretic use, sodium levels, and walk-
ing ability (Miller et al. 2017). Additionally, different age 
groups show varying associations between HDL Choles-
terol, Triglycerides, Glucose levels, and Alzheimer’s Dis-
ease (Zhang et al. 2022). The complexity of aging is evident 
in the multitude of variables affecting health states, under-
scoring its high-dimensional nature (Farrell et al. 2022). 

 
                                                 
Copyright © 2024, Association for the Advancement of Artificial 
Intelligence (www.aaai.org). All rights reserved. 

Our study introduces a Stochastic Differential Equation 
(SDE) model to accurately depict an individual's health pro-
gression and likelihood of survival at any given time. Cur-
rent models, which employ either weight vectors (Lopez-
Pacheco et al. 2022; Somers et al. 2009) or pairwise interac-
tion matrices (Somers et al. 2009), tend to suffer from low 
predictive accuracy. The SDE approach is a burgeoning 
field in aging research. While existing frameworks (Glady-
shev et al. 2016; Farrell et al. 2020) have made strides, they 
are limited to modeling a small number of health variables 
or are restricted to binary values. Our model's discrete sys-
tem architecture allows each component to contribute to the 
loss function, differing from existing models that rely solely 
on hidden weights. This approach offers more precise con-
trol over the loss function, enhancing the training process 
and allowing for more accurate predictions. 

                                   Background 
Neural networks are frequently used to model complex, 
non-linear relationships, like aging, due to their capacity to 
handle numerous health variables as discussed in this study 
(Somers et al. 200; Buhrmester et al. 2021). However, they 
often lack clear interpretability, functioning as 'black boxes' 
(Buhrmester et al. 2021; Zhang et al. 2021). Enhancing their 
interpretability could lead to identifying biases in predic-
tions (Tan 2018), uncovering key features (Yap et al. 2021), 
detecting erroneous correlations, and developing more de-
pendable models. 

In aging research, stochastic models have been used, and 
joint models suggested, but these typically focus on limited 
variables (Stukalin et al. 2013; Gladyshev et al. 2016; 
Zhbannikov et al. 2017). The Weighted Network Model 
(WNM) creates trajectories for 10 'deficits' and forecasts 
survival (Zhbannikov et al. 2017), yet it simplifies these 
'deficits' to binary variables, reducing its complexity. The 
Joint Model (JM) presents a combined framework for ana-
lyzing both longitudinal and survival data dynamics (Lopez-
Pacheco et al. 2022). Additionally, the Stochastic Process 
Model (SPM) employs a Stochastic Differential Equation 
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(SDE) for dynamic analysis (Somers et al. 2009). The Dy-
namic Joint Interpretable Network (DJIN) model (Farrell 
2022) aims to explore pairwise interactions among various 
health variables, furthering this line of research.  

                          Approach  
Our approach is centered around a comprehensive longitu-
dinal analysis conducted over multiple follow-up periods 
within a large-scale cohort study. In this longitudinal frame-
work, we observe the same set of participants across several 
intervals, allowing for an in-depth examination and contin-
uous observation of each individual's health state over an 
extended period. This approach is particularly advantageous 
compared to cross-sectional studies, which provide a snap-
shot of health data from a population at a single point in 
time. By contrast, longitudinal data enhances statistical 
power, facilitates more accurate estimation of temporal 
changes in health, and allows for a more nuanced under-
standing of health trajectories. 

To interpret the complexities inherent in this data, our 
model utilizes a sophisticated three-dimensional interaction 
network. This network effectively captures and illustrates 
the intricate relationships and strengths of connections be-
tween various health variables. To address the inherent un-
certainty and variability in the aging process, we have em-
ployed a Stochastic Differential Equation (SDE). Addition-
ally, we incorporate a Recurrent Neural Network (RNN) to 
model mortality, allowing the historical health data of indi-
viduals to inform and influence future health predictions. To 
manage instances of incomplete health data, a common 
challenge in longitudinal studies, we apply a missing mask 
to the observed health variables and use a Variational Auto-
encoder for the imputation of missing data, ensuring a com-
prehensive and accurate dataset. 

For the empirical aspect of our study, we have chosen the 
English Longitudinal Study of Aging (ELSA) dataset as our 
primary data source. ELSA provides a rich longitudinal da-
taset encompassing nine waves of data collection over a 20-
year period from 1998 to 2020. The initial baseline data was 
sourced from the Health Survey for England conducted be-
tween 1998 and 2001. Comprising a total of 27,365 individ-
uals, this dataset effectively represents the English popula-
tion, particularly those over the age of 50, making it highly 
suitable for our aging study. ELSA collects self-reported 
health information every two years and nurse-reported data 
approximately every four years, as evidenced in waves 2, 4, 
6, 8, and 9. Leveraging this extensive dataset, our goal is to 
predict the health states and survival rates of individuals 
over time, providing valuable insights into the aging process 
and its implications for public health. 
 

                             Evaluation  
Our model's effectiveness will be assessed using various sta-
tistical measures. The C-Index (Giunchiglia et al. 2018), a 

metric indicating the likelihood of the model accurately pre-
dicting which individual among a pair will live longer, will 
be a key tool. A C-index of 1 signals perfect predictions, 
while 0.5 suggests random accuracy. We'll assess the mod-
el's predictions across all ages and specific age groups to en-
sure it's not overly reliant on age as a predictive factor. The 
Brier Score (Heller et al. 2021) will measure the accuracy of 
our survival curve predictions, with lower scores indicating 
higher accuracy and a score of zero representing perfect 
alignment with the actual survival curve. D-Calibration 
(Haider et al. 2020) will evaluate the distribution of survival 
predictions, aiming for a uniform distribution as a sign of 
model calibration. This will involve dividing predictions 
into ten equal segments from 0 to 1 and comparing the dis-
tribution of these predictions to an ideal scenario where each 
segment comprises 10% of total predictions. We'll employ 
Pearson’s χ2 test to further assess the distribution quality, 
with lower χ2 and higher p-values indicating better calibra-
tion. Finally, we will calculate and plot Relative Root Mean 
Square Error (RMSE) scores (Chai and Draxler 2014) for 
each health variable up to six years’ post-baseline, and the 
total relative RMSE over time, confirming the model's 
short-term predictive accuracy and its sustained accuracy 
for up to 14 years’ post-baseline.                              

Discussion 
One possible limitation of our model comes from selective 
attrition in the ELSA dataset. Participants would drop out of 
the survey, shrinking the sample size and decreasing the 
amount of data collected. Therefore, the final group may not 
reflect the original representative sample, and attrition may 
affect the experiment’s validity. Other limitations of this re-
search included validating the model in a clinical setting. 
Due to resource limitations, all tests will be based on the 
public dataset. Broader users (such as doctors and clinical 
practitioners) and software developers may have different 
views toward conceptual frameworks and concepts of mod-
eling and simulation. This difference may significantly af-
fect the design of the model and the interpretation of the re-
sult. In the future, we hope to collaborate with the clinical 
and industrial sectors on software’s successful development 
and validation. 

                             Conclusion 
Doctors can use our model with basic, easy-to-access lab 
measures to predict the onset of age-related diseases like 
Alzheimer’s and cardiovascular disease in their patients, 
which would significantly increase the quality and longevity 
of life across the grid. Further investigation into the neural 
network’s inner processes would enable us to better under-
stand the root causes of the aging process. We could use this 
knowledge to develop anti-aging medications and cures for 
different age-related diseases. 
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