Revolutionizing Education through AI-Powered Inclusive Learning Systems

Chahana Dahal
Westminster University
1840 S 1300 E, Salt Lake City, UT 84105
cd0723@westminsteru.edu

Abstract
This proposal introduces an innovative AI-powered learning system designed to address educational disparities worldwide. Focused on developing countries, the system seamlessly translates educational content between English and native languages, breaking down language barriers. Leveraging advanced natural language processing and machine learning techniques, including transformer models like BERT and GPT-3, the system ensures inclusivity, effectiveness, and engagement.

Built on prior research demonstrating AI's efficacy in language translation and personalized learning, the proposed system draws inspiration from successful projects like Duolingo Language Incubator. By providing inclusive and accessible learning experiences, it empowers individuals to overcome language barriers, fostering global participation.

The potential impact is significant, with the system poised to accelerate learning, enhance literacy rates, and create a more skilled workforce in developing countries. This research reflects a commitment to revolutionize education through technology, aiming for lasting and transformative contributions to global society. Through AI-driven education, a brighter, more inclusive future is envisioned.

Introduction
Education and technology are at the core of my academic and professional journey. I passionately believe in the potential of technology to democratize education, making it accessible to every corner of the world. My current role as a research assistant on the Utah-CS Dashboard, a platform dedicated to securing funding for computer science departments in Utah's high schools, has deepened my commitment to making computer science education universally accessible and fueled my dedication to innovation in education.

Challenges in Developing Countries
In many developing countries, the challenge of providing free and quality education persists. The situation is exacerbated by the predominant use of the English language for educational content, leaving a vast portion of the world's population without access to these valuable resources. The language barrier, a formidable impediment, restricts the opportunities for millions to obtain even basic and advanced education, leaving a huge portion of the global population excluded from higher education and the broader socio-economic prospects it offers.

Proposed Research Project
To address these challenges, I propose a research project that centers on the development of an AI-powered learning system. This system is designed to enable inclusive, accessible, and effective education in developing countries. Its central innovation lies in its seamless translation of educational content between English and native languages. This innovation ensures that educational materials become accessible to individuals who may not understand or speak English.

System Features and Innovations
The AI-driven system will harness the capabilities of state-of-the-art natural language processing and machine learning techniques. Notably, it will incorporate transformer-based models like BERT and GPT-3, which have proven highly effective in real-time translation and adaptation of educational content. Moreover, the system will account for local contexts, curricula, and cultural relevance to create an inclusive, effective, and engaging learning experience.

Foundation in Prior Research
This proposal is built upon a solid foundation of prior research that has demonstrated the efficacy of AI in language translation and personalized learning. For instance, research projects like Duolingo Language Incubator have showcased the remarkable potential of transformer-based models in providing accurate and real-time language conversion
within educational contexts. These studies substantiate the feasibility of the proposed AI-powered system.

Value and Impact
The value of this research project is profound. It not only addresses the pressing issue of educational inequality but also enriches the field of AI in education. By ensuring inclusive and accessible learning, we empower individuals to overcome language barriers and gain the foundational knowledge necessary to pursue higher education and engage in global discourse.

The successful implementation of this AI-powered learning system can have far-reaching effects on education in developing countries. It can accelerate learning, enhance literacy rates, and foster a more skilled and adaptable workforce. Ultimately, it has the potential to break the cycle of limited educational opportunities, leading to positive socio-economic transformation in underserved regions.

Conclusion
In conclusion, my proposed research project reflects my unyielding commitment to revolutionize education through technology. By addressing the language barrier and providing inclusive and accessible educational resources, this research seeks to make a lasting and transformative contribution to society. I firmly believe that through AI-driven education, we can pave the way for a brighter, more inclusive future.

References