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Abstract

Accurate IP geolocation is indispensable for location-aware
applications. While recent advances based on router-centric IP
graphs are considered cutting-edge, one challenge remain: the
prevalence of sparse IP graphs (14.24% with fewer than 10
nodes, 9.73% isolated) limits graph learning. To mitigate this
issue, we designate the target host as the central node and ag-
gregate multiple last-hop routers to construct the target-centric
IP graph, instead of relying solely on the router with the small-
est last-hop latency as in previous works. Experiments on
three real-world datasets show that our method significantly
improves the geolocation accuracy compared to existing base-
lines.

Introduction
Numerous client-independent IP geolocation methods have
been proposed to estimate geographic locations. These meth-
ods do not rely on users willingly sharing their location data
but instead employ alternative techniques to determine loca-
tions without direct input from clients. Recently, cutting-edge
advancements in this field involve the use of graph neural
networks (GNNs) with a router-centric IP graph, known for
their remarkable ability to harness rich surrounding informa-
tion (Wang et al. 2022; Tai et al. 2023). Nevertheless, despite
the enhanced geolocation accuracy achieved, router-centric
IP geolocation faces one challenge: The prevalence of sparse
IP graphs limits the efficacy of graph learning. Upon analyz-
ing the datasets, there are 14.24% of the targets possess fewer
than 10 neighbors, with 9.73% of them being completely
isolated.

In this work, we present a simple but effective graph en-
richment method to address the aforementioned challenge.
Specifically, we designate the target host as the central node
and aggregate multiple last-hop routers to construct the target-
centric (TC) IP graph, instead of relying solely on the router
with the smallest last-hop latency as in previous works. This
straightforward modification substantially reduces the pro-
portion of isolated nodes from 9.73% to 4.46% and lowers
the sparsity ratio from 14.24% to 8.64%, which further en-
hances the geolocation accuracy (cf. Table 1). Experimental
results demonstrate that our method can effectively eliminate
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Figure 1: From router-centric to target-centric IP graph: (a)
router-centric landmark distribution in Shanghai; (b) router-
centric IP graph; (c) target-centric IP graph where distinct
colors indicate associations with different last-hop routers.

unnecessary topological neighbors while retaining the most
pertinent and critical ones.

Methodology
Problem Definition. Given a set of landmarks {li}Ni=1 with
attribute knowledge {xi}Ni=1 (6-dimensional data extracted
from the WHOIS website), network measurements {mi}Ni=1
(24-dimensional ping and traceroute data), and coordinates
{yi}Ni=1 (2 dimensions for longitude and latitude), our objec-
tive is to predict the geographic location of a target IP:

ŷT = f({xi}Ni=1, {mi}Ni=1, {yi}Ni=1,xT ,mT ;Θ),

where ŷT =(l̂onT , l̂atT ) ∈ R2 denotes the estimated locations
of the target, and Θ denotes NN parameters.
Sparsity Investigation. To investigate the influence of neigh-
bor quantity on geolocation performance, we selectively mask
nodes in the adjacency matrix to control neighbor counts. Sub-
sequently, we apply the model proposed in (Tai et al. 2023)
and evaluate its performance on IP graphs with varying num-
bers of neighboring nodes. We observe a rapid decrease in
distance error as the number of neighbors increases from 1 to
10 (cf. Figure 3(a)). This observation showcases a potential
limitation of GNN-based geolocation methods: a constrained
amount of neighbor landmarks will significantly influence
the geolocation accuracy.
Learning on Target-Centric IP Graphs. Different from
previous works (Wang et al. 2022; Tai et al. 2023) that nar-
row the region by clustering the IPs at the router level, we
designate the target host as the central node and aggregate
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Figure 2: Overview of the TCGeo architecture: (a) Processing
data collection and feature engineering; (b) Constructing
target-centric IP graph; (c) Using GNN for geolocation.

multiple last-hop routers to construct the target-centric IP
graph. Figure 1 is a target-centric example. Note that these
router statistics (and their connected landmarks) are acquired
from traceroute data gathered by four strategically positioned
probing hosts spanning various regions.

For each IP graph G = (X,A), we define node features as
a composite of attribute knowledge, network measurements,
and coordinates, totaling 32 dimensions. As for edge weights,
we employ an attention mechanism to dynamically learn inter-
actions between landmarks and target nodes, following (Tai
et al. 2023):

AT,l = exp
(
vTσ (W1{xT ,mT }+W2{xl,ml}+ b)

)
,

where W1,W2 ∈ R(dx+dm)×(dx+dm), and b,v ∈ Rdx+dm

are trainable matrices and vectors. Subsequently, we apply
one GNN layer to facilitate the learning of representations
for the target IP address. Once the final representation is
obtained, we utilize a non-linear layer to estimate the geo-
graphic location of the target IP. We treat IP geolocation as
a deterministic regression task and optimize the model by
minimizing the mean squared error (MSE) between the esti-
mated location ŷT and the ground truth yT . Figure 2 shows
the detail of TCGeo.

Experiments
Datasets and Setup. Following previous works (Wang et al.
2022; Tai et al. 2023), we evaluate our method on three real-
world IP geolocation datasets (New York, Los Angeles and
Shanghai), which consist of 91,808, 92,804, and 126,258 IP
addresses respectively. We take 70% IP as landmarks and
30% as target IPs in training process. During testing, we treat
the training set as landmarks and others as target IPs. We set
the learning rate as 0.002 for the New York, Los Angeles
datasets, and 0.001 for the Shanghai dataset. The hidden size
of each layer (except the last layer) is fixed to 32.
Baselines. We compared our method with the following
state-of-the-art baselines, including one delay-based mea-
surement method (Wang et al. 2020), one attribute learning
method (Arik and Pfister 2021), and three graph learning
methods (Ding et al. 2022; Wang et al. 2022; Tai et al. 2023).
Sparsity Analysis. We explored the influence of different
numbers of neighbors on geolocation performance. As Figure
3(a) shown, the TCGeo’s performance has no significant
improvement when the number of neighbors exceeds 10.
Therefore, we only use the target-centric IP graph for targets
with fewer than 10 neighbors, and for the rest, we stick with
the router-centric IP graphs. This strategy can significantly
improve the geolocation performance while maintaining the

Figure 3: Sparsity investigation. (a) Influence of the number
of neighbors; (2) Sparsity reduction from router-centric graph
to target-centric graph.

Method New York Los Angeles Shanghai
MAE Median MAE Median MAE Median

XLBoost-Geo 2.179 1.572 4.577 4.129 6.850 5.242
TabNet 3.272 3.198 6.262 5.189 6.722 5.012

GNN-Geo 2.135 1.618 4.655 4.039 6.026 4.482
GraphGeo 1.614 1.118 3.778 2.269 5.981 3.982
TrustGeo 1.316 0.888 2.793 1.786 5.457 3.619

TCGeo 1.271 0.866 2.658 1.745 5.189 3.461

Table 1: Performance comparisons with recent baselines. All
results are measured in kilometers (km).

computational efficiency. In Figure 3(b), we demonstrate the
extent to which TCGeo alleviates the issue of graph sparsity
across three datasets.
Overall Performance. The results of our comparative evalua-
tion experiments on three datasets are summarized in Table 1,
unveiling two significant findings: (1) Graph-based IP geolo-
cation methods outperform other methods, underscoring the
importance of harnessing contextual information. (2) Under
the same NN architecture design, our method outperforms
TrustGeo, in alignment with our initial motivation that inte-
grating more neighbors can effectively mitigate the issue of
graph sparsity.
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