Rider Posture-Based Continuous Authentication with Few-Shot Learning for Mobility Scooters (Student Abstract)*

Devan Shah¹, Ruoqi Huang², Tingting Chen², Murtuza Jadliwala³
¹ Princeton University
² California State Polytechnic University, Pomona
³ University of Texas, San Antonio

d6237@princeton.edu, {ruoqihuang, tingtingchen}@cpp.edu, murtuza.jadliwala@utsa.edu

Abstract

Current practice of mobility scooter user authentication using physical keys and traditional password-based one-time security mechanisms cannot meet the needs of many mobility scooter riders, especially senior citizens having issues in recalling memory. New seamless authentication approaches are needed to provide ongoing protection for mobility scooters against takeovers and unauthorized access. Existing continuous authentication techniques do not work well in a mobility scooter setting due to issues such as user comfort, deployment cost and enrollment time, among others. In that direction, our contributions in this research effort are two-fold: (i) we propose a novel system that incorporates advances in few-shot learning, hierarchical processing, and contextual embedding to establish continuous authentication for mobility scooter riders using only posture data. This security system, trained on data collected from real mobility scooter rides, demonstrates quick enrollment and easy deployability, while successfully serving as an unobtrusive first layer of security. (ii) we provide to the research community the largest publicly available repository of mobility scooter riders’ body key-points data to enable further research in this direction.

Introduction

Although mobility scooters provide powerful ways to help people with mobility challenges, especially senior citizens with meeting their transportation needs, there is very little research focusing on improving mobility scooter security in smart and connected communities compared to other powered micromobility vehicles (Vinayaga-Sureshkanth et al. 2020). Current practice of user authentication using physical keys and traditional password-based one-time security mechanisms fall short in accommodating many mobility scooter users, such as those having issues in recalling memory due to age-related diseases and dysfunctions. There is a clear need for new user-friendly and seamless authentication approaches that provide ongoing protection for mobility scooters against takeovers and unauthorized access.

Recent advances in deep learning models and techniques have enabled accurate continuous user authentication using behavioral biometrics such as gait, keystroke, pulse or touch. However, much research in tangential fields uses special sensors or has a long enrollment time, and thus cannot address the challenges in the mobility scooter setting with users’ need for riding comfort and ease of deployment.

In this work, for easier and unobtrusive deployment, we leverage riders’ posture data (excluding the face) captured from user-facing cameras to extract features for continuous user-authentication of mobility scooter riders. We propose a novel deep architecture for learning user-specific embedding vectors from few training samples by employing the sequence of users’ (or riders’) upper-body keypoint coordinates detected during enrollment. Prior works such as (Coskun et al. 2018) also utilize deep models in gait analysis for person identification. However, user postures on mobility scooters show unique characteristics in the movements of upper body parts, different from those in full-body movements. We leverage Graph Neural Networks (Li, Zhao, and Ma 2020) and a body-part-based hierarchical encoding structure, which have strengths in extracting features representing unique spatial correlations of upper body keypoints when riding mobility scooters.

Deep Representation of Mobility Scooter Riding Postures

Model Architecture

The continuous video stream of the mobility scooter rider is processed into 128-frame segments, each segment pro-
We gathered mobility scooter riding data from 42 individuals on campus as described in Table I. They completed the riding tasks in an average of 15 minutes, which included forward riding, backwards riding, 90° and 45° left and right turns, 360° rotations, both on-pavement and on-grass riding, and sudden acceleration and deceleration. The sequence of numbers in Figure 2 depicts the riding route.

Table 1: Participants

<table>
<thead>
<tr>
<th>Age</th>
<th>Female</th>
<th>Male</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-25</td>
<td>4</td>
<td>30</td>
</tr>
<tr>
<td>26-60</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>>60</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>9</td>
<td>33</td>
</tr>
</tbody>
</table>

Figure 2: Riding Route

After filtering out video segments where participants are not following the tasks, we have approximately 10 hours and 9 minutes of recorded video footage, and a total of 1.1 million frames. The dataset is available at github.com/Mobility-Scooter-Project/Public-Data.

Evaluation

We test two pose estimation models MediaPipe and MoveNet (both from Google) to generate the keypoint coordinates in our system and other components and experiment settings are kept the same. Table 2 illustrates the Area Under the Curve (AUC) metric for the ROC curve of the authentication system. The two system variations both yield high accuracy using few enrollment samples. We also note the system based on MediaPipe has greater variability and is less accurate than when using MoveNet.

Table 2: ROC AUC of the Authentication System

<table>
<thead>
<tr>
<th>Pose Est.</th>
<th>Enrollment Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>MoveNet</td>
<td>0.976</td>
</tr>
<tr>
<td>MediaPipe</td>
<td>0.981</td>
</tr>
</tbody>
</table>

Conclusion

This work provides a continuous authentication system for mobility scooter riders. Our model leverages spatio-temporal graph convolutions before a hierarchical encoding structure to produce embeddings and is trained with Triplet Metric Loss. Experimental results based on real mobility scooter riders’ data show that our system is easy to deploy and accurate.

References