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Abstract

My research integrates stochastic epidemic models with re-
inforcement learning to develop effective strategies or poli-
cies to inform operational decisions. The objective is to refine
policies that are attuned to diverse outbreak dynamics and to
offer a tool for informed planning in real-world settings.

Introduction
Reinforcement learning (RL) has been widely applied to
simulate and optimize policies for epidemic control across
domains like healthcare, economics, and mobility. Its ability
to dynamically adjust strategies in response to changing con-
ditions makes it particularly suited to addressing challenges
in an epidemic context.

Traditionally, response strategies have been static, while
essential, often demonstrating a lack of flexibility in adapt-
ing to rapidly changing epidemic conditions. This has re-
vealed a significant gap between reactive measures and the
dynamic nature of epidemic spread. Static strategies, once
effective, now face the necessity of reevaluation and adapta-
tion in the face of these evolving challenges. For instance, in
educational environments, where the balance between safety
and uninterrupted learning is critical, the need for innova-
tive and adaptable approaches becomes particularly evident.
However, this requirement extends beyond the education do-
main to encompass other sectors, such as healthcare, where
the management of patient flow and resource allocation dur-
ing an epidemic is crucial, or in economics and mobility,
where the impact of an epidemic can drastically alter mar-
ket dynamics and transportation patterns. This approach em-
bodies a dynamic recalibration of strategies, rooted in data-
driven outcomes and real-time responsiveness that can be
adapted in these sectors with a focus on safeguarding health
and nurturing human-to-human interactions.

This research focuses on creating a simulation environ-
ment for understanding and studying localized policies gen-
erated by RL. The environment serves as a platform where
RL algorithms and stochastic epidemic models interact of-
fering a framework to capture disease-spread behaviors and
policy evaluation as they occur in the real world. It’s de-
signed to be extensible, enabling the incorporation of a vari-
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ety of models from the wider research community. The ob-
jective is to refine policies that are attuned to diverse out-
break dynamics, effectively managing the spread of diseases
while preserving essential human-to-human interactions.

Related Work
Reinforcement learning has been widely applied across var-
ious domains like healthcare, economics, and mobility for
epidemic control to simulate disease spread and optimize
policies ((Arango and Pelov 2020), (Ohi et al. 2020), (Feng
et al. 2022)). For instance, (Oikawa et al. 2022) provides
valuable findings on the effectiveness of reducing class sizes
to enhance social distancing and its consequential reduc-
tion in flu outbreaks. This aligns with our exploration of
safety measures such as in schools. Similarly, the studies
by (Fukumoto, McClean, and Nakagawa 2021) and (Wu
et al. 2022) delve into the effects of school closures on
COVID-19 spread and the implications of such measures
on children and society. This resonates with our aim to
identify strategies using reinforcement learning. Further-
more,(Kaiser, Kretschmer, and Leszczensky 2020) examines
the efficacy of cohorting strategies within schools, empha-
sizing the need for well-thought-out interventions to mini-
mize virus transmission, an aspect that our paper seeks to
address through simulation-based policy evaluation. (Endo
et al. 2022) also contribute to this discourse by evaluating
the efficacy of various interventions, highlighting the poten-
tial limitations of certain approaches.

Modeling
We present a proof of concept for the education domain.
Consider a classroom scenario with N students attending
sessions over W weeks. During an ongoing epidemic, stu-
dents face the risk of infection both off-campus and on-
campus. Off-campus infections are considered to be an ex-
ogenous random process, where each student has an inde-
pendent and identical probability cw of being infected off-
campus during week w, termed the community risk. On-
campus infections result from infected students spreading a
virus to other students.

State, Action, State Evolution The state is defined by
a tuple representing community risk and the expected in-
fected (cw, E[Iw]) in a given week. The action, Aw de-
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notes the number of students permitted in a class. The re-
inforcement learning problem thus is to formulate a policy
to decide based on the state, the number of students to al-
low in a classroom each week w. We consider both off-
campus and on-campus infections. If no students are allowed
in the classroom, only off-campus infections occur. How-
ever, if students are allowed, both types of conditions are
considered. The state evolution is governed by the dynam-
ics of a stochastic epidemic model such as an approximate
SIR model applied in (Ondula and Krishnamachari 2022)
or indoor classroom model demonstrated by (Hekmati et al.
2022) that includes initial infection probability, weekly in-
fection likelihood, and expected classroom infection. The
model also quantifies the viral dose from an infected stu-
dent, total dose, transmission probability, and overall post-
interaction infection risk.

Reward The reward function is such that a higher reward
is given to the RL agent when the expected number of in-
fected students is low. The total reward is a weighted dif-
ference between the number of allowed students and the ex-
pected number of infected students

Experiments
We hypothesize that some variants of RL algorithms can ef-
fectively generate sensible policies that prescribe decisions
such as classroom occupancy (in the education domain)
based on infection counts and community risk patterns. We
also posit that the reward design such as using a weight pa-
rameter (to balance the educational benefit of allowing more
students and managing infection risk ) will play a crucial
role in shaping the RL agent outcomes and the precision of
a policy. Our objective is to explore how the algorithm prior-
itizes various trade-offs like educational benefits by ’allow-
ing more students’ and infection risk minimization, thereby
calibrating the matrix to align with varying epidemic scenar-
ios. Preliminary results suggest that through iterative train-
ing, a Q-learning agent refines its policies. Furthermore, by
adjusting a reward parameter, different Pareto-optimal trade-
offs can be achieved between minimizing student infections
and maximizing on-campus student presence. Future exper-
iments will highlight the challenges and nuances of integrat-
ing stochastic epidemic modeling with reinforcement learn-
ing, emphasizing the importance of accurate parameter esti-
mation and appropriate reward mechanism definition.

Anticipated Contribution and Timeline
Present - Dec 2023: We have a proof of concept software
platform that incorporates a module for adding infection
models as well as a blueprint for integrating a myriad of RL
algorithms.
Jan 2023 - Feb 2024: By the consortium time we will have
some preliminary evaluations based on the education sce-
nario.
Mar 2024 - May 2024: Re-evaluation and incorporation of
feedback from the consortium.
Jun 2024 - Dec 2024: Conduct Experiments, Evaluations,
and Testing extensions to the environment.
Jan 2025 - May 2025: Work towards Thesis proposal.

Jun 2025 - May 2026: Work towards Thesis Defense. Plan
to graduate by May 2026.
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