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2School of Humanities, Pontifı́cia Universidade Católica do Rio Grande do Sul
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Abstract

Sign language is a visual and gestural communication system
used by deaf and hearing-impaired people. Despite numerous
deep learning methods proposed for automatic interpretation,
a gap persists in developing applications that effectively uti-
lize these models for assisting sign language studies and in-
clusion. We introduce LERMO (https://lermo.app/), a web
game merging machine learning and gamification to enhance
sign language fingerspelling. Inspired by Wordle™, LERMO
offers an interactive word-guessing game where users can
play using a video camera. We create a new dataset of la-
beled landmark fingerspelling and design our model to en-
sure optimal speed and efficiency to run on a web browser.
We survey approximately 40 users, which find LERMO user-
friendly and innovative. From those, 95% believe LERMO
could be used to enhance fingerspelling skills.

Introduction
The World Federation of the Deaf has highlighted the global
utilization of more than 200 sign languages, catering to over
70 million deaf individuals (World Federation of the Deaf
2023). Sign languages, such as the American Sign Language
(ASL), Brazilian Sign Language (LIBRAS), and others, fa-
cilitate effective communication for individuals with hearing
impairments. These languages convey detailed information
using nonverbal elements like facial expressions, hand ges-
tures, and body movements. The comprehension of sign lan-
guage plays a crucial role in promoting inclusion and mutual
understanding between the hearing and deaf communities.

Research in sign language recognition (SLR) has gained
significant attention, primarily after the effectiveness of deep
learning in computer vision (Jiménez-Salas and Chacón-
Rivas 2022). SLR presents unique challenges for automated
recognition systems due to their complexity and variability
across different sign languages. However, despite the signif-
icant advancements in research and technology, the integra-
tion of AI-driven technology in learning and dissemination
of sign languages still remains relatively underdeveloped.

Sign language is a complete and intricate form of com-
munication containing all the nuances found in spoken lan-
guages. Beyond the initial learning stage, mastering this lan-
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Figure 1: (a, b) Keyboard and sign language mode instruc-
tions, (c) an example of letter color status, (d) illustration of
landmarks, progress circle, and bounding box status.

guage is not easily achieved. Becoming proficient requires a
significant period of exposure and dedicated practice (Kemp
1998). In order to combine practice and learning, educa-
tional digital games can be an effective tool since they com-
bine fun and engagement with practical learning and inter-
active entertainment (Prensky 2001).

With that in mind, we introduce LERMO, an interactive
web game combining machine learning, gamification, and
dactylology (fingerspelling) studies in LIBRAS. Inspired by
popular games such as Wordle™ (American English) and
TERMO (Brazilian Portuguese), LERMO provides an en-
gaging word-guessing experience via fingerspelling recog-
nition. We evaluate LERMO’s usability and effectiveness by
applying a user survey in a group of more than 40 users. Re-
sults suggest that users find LERMO to be a valuable tool
for developing proficiency in LIBRAS fingerspelling, moti-
vating the hearing community to start their learning process
towards better communicating with the hearing-impaired.
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Related Work
Within the domain of SLR, the methodologies often em-
ployed mainly fall into two categories: sensor-based recog-
nition and computer vision-based recognition (Tasmere and
Ahmed 2020). Although sensor-based approaches such as
computerized gloves can provide satisfactory accuracy since
the sensors collect data and features directly from the user’s
hand, the drawback is that users must always use specialized
hardware to communicate, making it less attractive and more
expensive (Dalal, Kacheria, and Venkataramanan 2022). In
contrast, computer vision-based recognition and deep learn-
ing techniques have gained considerable attention in the re-
cent years. This approach offers ease of use by not requiring
any wearable devices like data gloves or motion trackers.
Nevertheless, it often involves acquiring substantial com-
putational resources while being susceptible to changes in
background conditions and variations in lighting (Hassan,
Assaleh, and Shanableh 2019).

Sign language categorizes gestures into static and dy-
namic. Static hand gestures do not rely on a specific tempo-
ral sequence and can be presented in any order. These ges-
tures, such as fingerspelling, involve individual static hand
signs or positions representing specific letters or compo-
nents, enabling flexible and non-sequential communication.
However, some letters in LIBRAS alphabet are represented
with hand movements, making them dynamic, including: H,
J, X, and Z, while the others are static gestures.

Static hand gesture recognition benefits from convolu-
tional neural networks (CNNs) due to their ability to analyze
image data and extract patterns and features (Jiménez-Salas
and Chacón-Rivas 2022). In contrast, dynamic gestures re-
quire retaining previous states and typically involve a re-
peated chain-like structure of modules. These gestures often
convey specific meanings or information and function simi-
larly to complete phrases or signs representing some words.
One of the prominent deep learning techniques employed
in this field is recurrent neural networks (RNNs), includ-
ing long short-term memory (LSTM) networks, because this
structure allows capturing and retaining long-term relation-
ships within sequential data (Areeb and Nadeem 2021).

Das, Ahmed, and Ali (2020) proposed a convolutional
neural network consisting of four convolutional layers, four
pooling layers, and four fully-connected layers to recognize
static signs for the 26 letters of the ASL alphabet. The max-
imum recognition rate reached was 94.34%. Another study
employing CNNs is the work of Kumari and Anand (2022).
They proposed a method that utilizes CNNs, specifically
VGG16, VGG19, and MobileNet, leveraging an end-to-end
fine-tuning approach to identify static hand gestures corre-
sponding to the 24 classes of ASL. The model achieved
an average validation accuracy of 94.9%. In another deep
convolutional neural network approach, Chanda and Nyeem
(2022) applied a U-Net architecture (Ronneberger, Fischer,
and Brox 2015) for semantic segmentation to obtain seg-
mented output images. Subsequently, they systematically in-
put these segmented images into a CNN-based classifier,
achieving a recognition rate of 97.15%.

There is also related work in the recognition of static ges-
tures in LIBRAS. In their study, Pizzolato, dos Santos Anjo,

and Pedroso (2010) aimed to recognize static and dynamic
gestures, including LIBRAS alphabet and word recogni-
tion. They preprocessed their images using binarization and
edge detection to disambiguate the confusion between some
highly similar signs in the LIBRAS alphabet (such as F and
T). They employed a two-level architecture, grouping signs
with similar hand postures for a preliminary artificial neu-
ral network (ANN) classification. To solve the problem with
highly-similar classes, they applied a second ANN to recog-
nize specific characteristics of these signs.

Bastos, Angelo, and Loula (2015) employed shape de-
scriptors (HOG and ZIM) to extract information related to
the edges and shapes of hands in digital images. Further-
more, they utilized a skin detection algorithm that leveraged
components from RGB, HSV, and YIQ color spaces, along
with a two-stage neural network classifier, to recognize static
gestures. The recognition reached an average of 97%.

Furtado, De Oliveira, and Shirmohammadi (2023) intro-
duced a system enabling real time sign recognition and
translation into Brazilian Portuguese text. They applied a
preprocessing step to enhance their recognition process to
detect the hand within the images. This preprocessing in-
volved removing the background and converting the image
to grayscale. They achieved an accuracy of 97% by using a
neural network classifier known as Inception-V3.

Regarding educational games designed for acquiring pro-
ficiency in sign language, Bouzid et al. (2016) introduces
MemoSign. The game does not have a sign recognition sys-
tem. Instead, it includes components such as a learning ver-
sion of the Memory Match Game, a 3D virtual avatar, and
SignWriting, which is a system designed to graphically rep-
resent sign gestures through symbols. When a player turns
over a card containing a SignWriting notation, a 3D vir-
tual avatar initiates the interpretation of the notation content
through visual-gestural modalities. The objective is for the
player to select the card corresponding to the sign presented
by the avatar, thereby matching the pair. The signing avatar
acts as a guide to help players understand SignWriting nota-
tion content by presenting and interpreting transcribed ges-
tures in a natural and comprehensible manner. MemoSign
supports two sign languages: American Sign Language and
Arabic-Tunisian Sign Language.

Gameiro, Cardoso, and Rybarczyk (2014) introduced the
Kinect-Sign, a Kinect sensor-based game for Portuguese
fingerspelling recognition. The game is divided into two
modes: school and competition mode. In school mode, users
learn sign language alphabet through exposed lessons with
a repetition-based approach. In competition mode, users ap-
ply their acquired skills in interactive settings, such as quiz
games or guessing a five-letter word, similar to LERMO.
However, both modes utilize a distance-based gesture recog-
nition algorithm using bitmaps captured by a depth camera.
The algorithm assesses user gestures by comparing them
with a pre-stored dataset, utilizing pixel-wise comparison,
hardcoded masks, and five specific conditions. Their ap-
proach is designed to accommodate specific hardware de-
pendencies, particularly relying on the Kinect sensor.
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Figure 2: LERMO sign recognition workflow.

LERMO
Our work focuses on developing a browser-based word-
guessing game called LERMO. We draw inspiration from
Wordle™, which belongs to a subgenre of deductive guess-
ing games, such as Bulls & Cows, Mastermind™, and Jotto.
The objective is to guess a five-letter word within six at-
tempts by selecting letters one at a time. As seen in Figure 1-
a, after each attempt, the player receives feedback: green for
letters in correct placement, yellow for incorrect placement,
and red if letter is not a part of the word. A keyboard dis-
plays letters and their corresponding colors (indicating cor-
rectness) to help the player in making informed choices (see
Figure 1-c). This feedback system assists the player to de-
duce the word correctly within the number of tries.

To effectively play using LIBRAS, LERMO captures
frames through the user’s camera, identifies hands within the
frames, and estimates the signs. When users initiate in video
mode, it requests permission to access the camera. Once a
user grants this permission, the system instantly showcases
the live camera feed. We added additional feedback layers to
enhance the user experience and allow gameplay using only
the natural interface (camera and hand signs). During sign
recognition, the system overlays a bounding box over one of
the user’s hands to indicate which hand it recognizes, and a
progress circle indicates the sign recognition progress (see
Figure 1-d). Additionally, we introduce two control signs
(delete and send) to assist in gameplay, eliminating the need
for keyboard use. A table containing signs representing let-
ters of the alphabet is located below the user’s video feed,
assisting those who may not be familiar with it yet.

Frontend and Backend
LERMO1 is a client-side application that runs exclusively
in user’s browser. Frontend is developed in Angular. We
refer to “backend” as the independent and offline model
training process. We create our neural-based models from
scratch using Python and PyTorch. For the remaining four
models, we use Scikit-learn, a machine learning library.
The optimal model is saved as an Open Neural Network
Exchange (ONNX) file and integrated into frontend using
onnxruntime-web JavaScript library. We invoke this API to
perform inference for each landmark captured by MediaPipe
(Lugaresi et al. 2019). Additionally, our database is stored in
cloud using Firebase, comprising a total of 5124 words.

1https://github.com/adilsonmedronha/LERMO

In video mode, LERMO employs the MediaPipe hand
landmark detector. It captures the user’s frame, identifies
hands within it, and estimates the positions of 21 landmarks.
The palm detection model is reactivated when the hand land-
marks model encounters difficulties in tracking hands within
the frames. Among the 21 data points, we only use x and y
coordinates, disregarding z due to their less accurate estima-
tion, reducing dimensions from 63 to 42.

As long as the user’s hand remains within video frame
and hand landmarks are successfully detected, we apply fea-
ture scaling to standardize all data points. This preprocessing
centers these points around the wrist coordinates (0, 0), en-
suring that our model remains invariant to changes in video
resolution and hand translation. Finally, we feed these land-
marks to a multilayer perceptron (MLP) model. Since in-
dividual frames during video capture may be blurred, re-
sulting in poor landmark recognition, we accumulate pre-
dictions over 100 frames and use the mode of the predic-
tions as the classification outcome. By employing the most
frequent class, we have a stable classification process, even
when some frames are blurred or when MediaPipe fails to
detect landmarks. We use 100 predictions because the aver-
age frames per second (FPS) on 3 different machines was 20
(5 seconds per letter: time duration of progress circle), pro-
viding a comfortable interval for model confidence and user
awaiting. Figure 2 presents an overview of these steps.

Datasets
In SLR, datasets for static signs in LIBRAS are rela-
tively abundant (Furtado, De Oliveira, and Shirmoham-
madi 2023; de Souza and Pizzolato 2013; Bastos, Angelo,
and Loula 2015) while datasets for dynamic signs remain
scarce (CEFET/RJ-LIBRAS (Araujo et al. 2016; Gameiro
et al. 2020), MINDS-LIBRAS (Rezende, Almeida, and
Guimarães 2021), LIBRAS-UFOP (Cerna et al. 2021)). The
lack of available sign language datasets represents an ongo-
ing challenge (Bragg et al. 2019). Indeed, all datasets we en-
countered for static signs primarily had concerns related to
hand background variability, low resolution, size variation,
among others, mainly catering to image-based approaches.

With our objective centered on introducing LERMO,
which employs a fingerspelling approach based on key-
points, we created a tool for image collection and landmark
estimation. Leveraging the fact that MediaPipe has been ex-
tensively trained on a dataset with over 100, 000 samples, we
do not have issues related to background, skin color diver-
sity, and image generation across various scenarios, such as
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Models Metrics
Actor 1 Actor 2 Actor 3 Actor 4 Merged

Normal Aug. Normal Aug. Normal Aug. Normal Aug. Normal Aug.

MLP
Accuracy 0.8420 0.8360 0.8072 0.7872 0.8861 0.8935 0.8781 0.8628 0.8988 0.9017
F1 Score 0.8193 0.8157 0.7736 0.7476 0.8640 0.8799 0.8633 0.8395 0.8787 0.8846
Precision 0.8528 0.8452 0.8277 0.7829 0.8819 0.9144 0.9091 0.8676 0.8965 0.9125

SVM
Accuracy 0.7653 0.7687 0.7227 0.7293 0.8181 0.8712 0.8490 0.8594 0.8643 0.8566
F1 Score 0.7362 0.7371 0.6569 0.6739 0.7827 0.8439 0.8275 0.8432 0.8423 0.8343
Precision 0.7666 0.7600 0.7057 0.7331 0.8556 0.8598 0.8868 0.8868 0.8648 0.8511

KNN
Accuracy 0.7764 0.7919 0.7290 0.7504 0.8503 0.8579 0.8325 0.8470 0.8698 0.8701
F1 Score 0.7424 0.7502 0.6682 0.6980 0.8284 0.8340 0.8001 0.8246 0.8465 0.8476
Precision 0.7539 0.7578 0.6945 0.7236 0.8396 0.8889 0.8506 0.8496 0.8649 0.8695

Random
Forest

Accuracy 0.6654 0.7203 0.6141 0.6319 0.7931 0.8217 0.8011 0.8101 0.8650 0.8445
F1 Score 0.6276 0.6745 0.5572 0.5786 0.7631 0.8059 0.7845 0.7946 0.8411 0.8219
Precision 0.6893 0.7187 0.5805 0.6082 0.7982 0.8515 0.8299 0.8482 0.8706 0.8468

Naive
Bayes

Accuracy 0.5089 0.5626 0.5353 0.5387 0.6925 0.6578 0.6771 0.6941 0.7143 0.6694
F1 Score 0.4862 0.5053 0.4801 0.4825 0.6580 0.5866 0.6801 0.6494 0.6819 0.6061
Precision 0.6022 0.5880 0.5172 0.5209 0.7150 0.6707 0.7688 0.7348 0.7299 0.7177

Table 1: Performance of the five models tested on Actor 5 data. The models were trained on the respective augmented and
normal data subsets for each actor, and a merged version was also tested. Bold numbers highlight the maximum in each row.

real world, indoor, outdoor images, and similar challenges.
During the data collection process, we request five actors

to perform all classes within 20 seconds each. This approach
allows us to capture a range of finger positions, overlaps,
and different phalanx angles, ensuring landmark diversity, as
seen in Figure 3. We also flip the images to ensure that, artifi-
cially, each actor had data from the opposite hand. Moreover,
we apply three augmentation techniques, including seven
random angles for hand rotation, forward and backward in-
clination, and image resizing.

We create two data versions for each actor: original and
an augmented dataset. We employ random undersampling
to guarantee exactly 500 samples per class. Finally, we com-
pile a merged dataset comprising the original and augmented
data spanning from Actor 1 to Actor 4, resulting in 500
samples per class, 125 samples per class for each actor.

Performance Optimization
We evaluate the following classifiers in our datasets: MLP,
Support Vector Machines (SVM), K-Nearest-Neighbors
(KNN), Random Forest (RF), and Naı̈ve Bayes (NB). These
models must be efficient and effective because it needs to
classify signs correctly while being lightweight so it can
be executed in a web browser. KNN is a straightforward
non-parametric machine learning algorithm commonly em-
ployed for classification and regression tasks. However, a
drawback of KNN is that it stores all training data, which
can adversely affect the user inference speed since it re-
quires iterating through the entire training set. To the best of
our knowledge, there is currently no vectorized API or any
package approach available for this in the frontend of the
system. To address this issue, we reduced the dataset preci-

sion from 16 bits to 8 bits. While this precision adjustment
reduced memory usage by half (from 2.5 MB to 1.3 MB),
it did come at the cost of accuracy. For the MLP model, we
took optimization steps during training. This involved im-
plementing mixed precision techniques and quantization to

FF

L E R

F

R U E

R
an

do
m

D
iv

er
si

ty
Si

m
ila

r c
la

ss
es

M

F

S

F

O

T

Actor 1 Actor 2 Actor 3 Actor 4 Actor 5

Figure 3: LERMO dataset. In the “Similar Classes” category,
the pairwise color coding highlights signals with high sim-
ilarity, posing a challenge for models to distinguish them.
“Diversity” category showcases significant variations within
the same class, ensuring better landmark generalization. The
“Random” category consists of randomly-sampled images.
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enhance inference speed. The final MLP model is remark-
ably compact, with a file size of only 100KB and 27, 326
parameters. In the following section, we detail the design
choices of the final selected model running in frontend.

MLP
We selected the MLP model to be in frontend due to its su-
perior performance and efficiency. The model architecture
is illustrated in Figure 5. Concerning the training proce-
dure, we set a batch size of 512 samples, conducted for 300
epochs with early stopping, and employed the Adam opti-
mizer (Kingma and Ba 2017) with an initial learning rate of
10−4. The output layer of the model is designed to have 25
classes plus two for control signals (thumbs up and down:
submit a word and delete a letter, respectively).

Quantitative Results
In this section, we conduct a comprehensive experimental
evaluation to assess the performance of the models in SLR
(letter classification) using hand landmarks. Our objective
is to understand better which letters pose the most signif-
icant challenges to the models. This will help us identify
areas where improvements can be made. Our analysis com-
prises eight experiments, as detailed in Table 1, in which we
validate the performance of MLP, SVM, KNN, RF, and NB
classifiers using the test dataset (Actor 5). It is important to
mention that we did not use any Actor 5 data during training.

As shown in Table 1, the resulting data collected by Ac-
tor 2 produces less favorable overall metrics than other Ac-
tors. This could be attributed to a unique challenge posed by
Actor 2, stemming from limited finger joint mobility, which
led to difficulties in conveying gestures. However, this di-
versity can benefit the classifiers, as it helps them generalize
and account for potential biases that may arise when work-
ing alongside individuals with limited hand mobility.

The confusion matrix of the final model (MLP trained
over the merged dataset), as shown in Figure 4, presents
clear evidence that the similarities among the highlighted
classes presented in Figure 3 (R, U, E, S, T, F), indeed posed
challenges in differentiation, as observed during the classi-
fication test. This behavior was also reported in feedback
provided by four of the survey respondents in Q7, where
they indicated specific letters were wrongly classified dur-
ing LERMO video mode. Furthermore, Figure 4 includes
four latent spaces of these misclassified classes for visual
inspection. Note that those are difficult to linearly separate.

User Experience Surveys
We conducted a comprehensive questionnaire survey to gain
a deeper understanding of user experience. Specifically, we
aimed to assess LERMO’s effectiveness in facilitating fin-
gerspelling practice in LIBRAS and its ability to deliver an
engaging blend of learning and entertainment.

We distributed the questionnaire online to gather insights
from diverse respondents. The questionnaire includes both
single-choice questions and a 5-point Likert scale. We aimed
to capture different perspectives and experiences by includ-
ing individuals with and without previous experience with

Figure 4: MLP confusion matrix.

Figure 5: MLP model backbone.

LIBRAS. With 41 responses, we collected data from partici-
pants aged under 18 to over 60. Among the participants, two
are either deaf or hearing-impaired.

To align with the central question of our research, we in-
quired whether participants have any prior experience with
LIBRAS or if they are currently learning it. In Figure 6, Q1
illustrates that most participants are not learning LIBRAS.
Q2 shows that 92.3% have either basic or no proficient level
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in LIBRAS. That emphasizes the necessity of practical tools
and resources, such as LERMO, to facilitate the learning and
utilization of LIBRAS for adwider audience.

The effectiveness of the sign recognizer is under assess-
ment in Q7. While most signs were correctly recognized,
some signs faced misclassification, as reported by respon-
dents, including signs for F, T, R, U and E. This issue is re-
lated to the noise introduced by variations in finger positions,
which can affect the accuracy of landmark detection by Me-
diaPipe, leading to the misclassification of highly-similar
signs. As observed in Figure 3, the signs for E and S are very
similar, differing only in the position of the thumb. This vari-
ation in thumb position may have caused landmark overlap
in MediaPipe’s estimation, depending on how the user per-
formed the sign. MediaPipe may also encounter challenges
when estimating landmarks in depth. Despite the thumb’s
oscillation being the only distinction between the signs for
letters F and T (refer to Figure 3 to observe the similarity),
the index finger points towards the screen, potentially dis-
turbing the landmark detection due to the depth estimation
leading to wrong classification.

To assess system’s performance on different devices, Q8
aims to understand the speed of sign recognition, allowing us
to measure how effectively the system operates across var-
ious hardware configurations. As shown in Figure 6, only
10.8% of the users reported slow sign recognition speed.
Note that LERMO does not currently offer a mobile ver-
sion. Therefore, these results rely on respondents who used
personal computers, typically equipped with better hardware
capabilities. This question is particularly significant because
our model operates in real time, and making it efficient
across different devices is crucial for a good user experience.

Limitations

Mobile Device UX/UI: LERMO is currently unsuitable for
mobile-device use for two primary reasons. In order to offer
precise feedback to users, as depicted in Figure 1, it requires
access to their guessing status and the history of the letters
they have tried. They may also need to reference the signing
table as required. Most importantly, users must capture their
self-camera feed within a small (typically 6.0-inch) screen
while sharing space with all components cited above.

Mobile Hardware Limitations: recognizing the limita-
tions of mobile hardware is crucial. These devices often
face constraints related to processing power, memory, and
graphics capabilities, which can present additional chal-
lenges when running an application like LERMO. This is
important since it runs a two-stage neural network model
for hand and landmark estimation and another MLP letter
classifier in the user’s web browser in real time.

Word Level Recognition: to improve LERMO’s capabil-
ities to recognize word-level sign language signals, we need
to develop an effective way to communicate the user’s intent
to start and finish word sign input, ensuring that our model
operates within the accurate time frame. To this end, we need
to evaluate communication interface approaches suitable for
both smartphone and desktop environments.

Conclusions and Future Work

This paper introduces a novel web-based game that lever-
ages AI technology to facilitate user practice in LIBRAS
sign language fingerspelling. We have contributed to the
field by introducing a novel sign language application and
a new dataset based on hand landmarks. To evaluate the per-
formance, we conducted comprehensive experiments with
five different machine learning models, achieving better re-
sults with an MLP in the proposed dataset. As seen in Ta-
ble 1, the MLP-based model exhibited better performance
compared to other machine learning algorithms, excelling in
precision, F1 score, and accuracy. Additionally, as demon-
strated by our survey results, 94.9% (strongly agreeing and
agreeing) of participants recognized LERMO as a valuable
resource for individuals without disabilities interested in ac-
quiring sign language skills.

Furthermore, in our efforts to disseminate LERMO and
improve accessibility and user convenience, we intend to de-
velop a mobile version given the widespread use of smart-
phones. Addressing concerns related to colorblindness, we
plan to incorporate a texture effect for each red, green and
yellow color status. In our upcoming studies, we aim to in-
troduce three new features and allow users to interact with
American Sign Language in an English version:

Word Sign Level Recognition: once the user correctly
guesses the word through fingerspelling, they can reproduce
the corresponding word sign. If the sign is correct, they will
see a new word for fingerspelling followed by the word-
level attempt. This process can be repeated up to three more
times, offering a rewarding experience for users to improve
their vocabulary and proficiency in LIBRAS or ASL. The
new specialized model can be seen as a teacher, providing
real-time feedback to guide users in learning the correct sign
through observation and trial.

Leaderboard: this feature will introduce an enriched
gamification layer, adding an competitive element to over-
all experience. Users can monitor and compare their perfor-
mance with community if they choose to log in. The number
of attempts, time taken, and consecutive guessed successes
will contribute to their final score. LERMO will have 12 sea-
sons per year and the leaderboard will reset every month.

AI Versus Mode: for a harder game mode, users have
the opportunity to challenge an expert “artificial intelligence
algorithm” rooted in information theory. The screen will be
split, with the user’s board on the left and the AI’s blurred
progress on the right. In video mode, we simulate the display
of a robotic hand forming individual letters for letter-level
interaction. At the sign-word level, we employ a complete
virtual agent to execute the entire temporal sign.

LERMO is a promising tool in assisting people in practic-
ing sign language, being effective and efficient in letter-level
SLR, and also being reported as a positive experience by its
users. Moreover, we plan to keep LERMO accessible online
indefinitely, allowing individuals to continue learning with a
fun experience that will benefit everybody involved.
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Figure 6: Questionnaire surveys.
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