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Abstract
Incarceration-diversion programs have proven effective in re-
ducing recidivism. Accurate prediction of the number of indi-
viduals with different characteristics in the program and their
program outcomes based on given eligibility criteria is cru-
cial for successful implementation, because this prediction
serves as the foundation for determining the appropriate pro-
gram size and the consequent staffing requirements. How-
ever, this task poses challenges due to the complexities arising
from varied outcomes and lengths-of-stay for the diverse indi-
viduals in incarceration-diversion programs. In collaboration
with an Illinois government agency, we develop a framework
to address these issues. Our framework combines ML and
queueing model simulation, providing accurate predictions
for the program census and interpretable insights into pro-
gram dynamics and the impact of different decisions in coun-
terfactual scenarios. Additionally, we deploy a user-friendly
web app beta-version that allows program managers to visu-
alize census data by counties and race groups. We showcase
two decision support use cases: changing program admission
criteria and launching similar programs in new counties.

Introduction
Recidivism, defined as a person’s return to criminal activity
after correctional interventions and sanctions, significantly
contributes to the mass incarceration issue (Berk 2017;
Leipold 2005). Traditional incarceration focuses on punish-
ment rather than addressing the root causes of crime, such
as substance use disorder and mental health issues. Con-
sequently, the U.S. criminal system experiences high rates
of recidivism. In an effort to break this revolving door of
recidivism, incarceration diversion programs have emerged
as a promising solution to tackle the root causes (Latessa,
Johnson, and Koetzle 2020). These programs provide mental
health and substance treatment, education, and community-
based services as alternatives to traditional punishment
methods. Various settings have shown that such programs
can lead to significant reductions in recidivism rates, rang-
ing from 10% to 30% (Peters and Murrin 2000; McNiel and
Binder 2007; Lin et al. 2020).

Due to the complex nature of these programs and their
emphasis on individualized interventions, successful imple-
mentation hinges on two crucial considerations: (i) program
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sizing and (ii) staffing. The optimal program size needs to
strike a delicate balance between the societal cost arising
from long-term recidivism reduction and in-program revo-
cation, where “in-program revocation” means that individu-
als are removed from the diversion program and placed into
conventional incarceration due to rule violations or other
reasons, as these diversion programs are not strict incarcera-
tions (Burrell 2006; DeMichele 2007).A too-small program
may fail to provide sufficient treatment access to individ-
uals who could benefit to improve their long-term success,
while an excessively large program could result in numerous
in-program revocations, raising potential safety concerns
within the community and encountering public resistance.
Once the program size is determined, appropriate staffing
levels are necessary to cater to diverse needs from individ-
uals in the program. Furthermore, different program partici-
pants possess diverse needs; for instance, Hispanic individ-
uals benefit from Spanish-speaking case managers (Mock
2022). Thus, accurate prediction of the census – the number
of participants in the diversion program at any given time,
considering their various characteristics – is needed for de-
termining staffing.

Despite the increasing use of machine learning (ML) tools
in recidivism prediction and probation decisions, there is a
lack of decision support systems (DSS) capable of providing
data-driven program sizing and staffing support. In particu-
lar, a DSS that aids in understanding the long-term impact of
admission decisions on census, in-program revocations, and
staffing needs is notably absent. For example, our commu-
nity partner is considering expanding the eligibility criteria
for current diversion programs and launching new programs
in additional counties. However, the repercussions of these
decisions on the in-program revocation and associated so-
cietal cost, existing participants, and potential changes in
staffing needs remain unclear due to the complexities aris-
ing from varying program outcomes (completion or not) and
length-of-stay (LOS) for individuals with distinct character-
istics (“features”). Understanding the interplay of these fac-
tors requires a sophisticated model that can capture long-
term dynamics and facilitate counterfactual evaluations.

In this work, we collaboratively develop and implement a
DSS to predict the census in diversion programs and support
staffing decisions with our community partner, an Illinois
government agency that runs a statewide program allowing
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diversion from state prisons through community-based ser-
vices. Our key contributions are as follows:
1. We develop a DSS that integrates various prediction

modules within a simulation-based framework. This DSS
accurately predicts census, enabling informed program
sizing and staffing recommendations via counterfactual.

2. Our approach combines ML prediction with a queue-
ing model that effectively abstracts the diversion pro-
cess’s complexities. Unlike conventional ML approaches
that focus solely on prediction, our method offers inter-
pretable insights into program entry and leaving dynam-
ics as well as the impact of different decisions on these
dynamics in counterfactual scenarios.

3. We deploy a beta-version of a user-friendly web app, en-
abling program managers to visualize the census data by
counties and race groups. We demonstrate two use cases
for program sizing and staffing support when initiating
new programs.

Throughout this process, we closely involve our community
partners, seeking their input during problem identification,
model development, and result interpretation, and iteratively
refining the model design with a focus on interpretability.
We are currently on the path to deploying this technology.

Background and Related Work
Figure 1 illustrates the simplified process flow for individ-
uals in the incarceration-diversion program offered by our
community partner, which targets eligible probationers. Af-
ter risk assessment and screening, eligible and willing in-
dividuals are admitted. The case managers then determine
the specific program completion requirements that make-up
the in-program activities, such as attending substance use
treatment programs and cognitive-behavioral therapy ses-
sions. Successful completion results in a Completed out-
come. However, individuals may recidivate (commit new
crimes while in program), leading to their probation being
Revoked, or they may be unable to finish the program due to
various reasons, marked as Not Completed. Some individu-
als also leave the program with “unknown” reasons in the
dataset, which we refer to as Other in the outcome labeling.
For admitted individuals, the initial screening date indicates
the start of the program and is considered as their arrival
date to the program; the termination date represents indi-
viduals leaving the program, accounting for all types of pro-
gram outcomes. The difference between the two dates gives
the individual’s length-of-stay in the program. A more de-
tailed explanation of the process flow is available in Online
Supplements (Online Supplements 2024).

Many existing research on incarceration-diversion pro-
gram has focused on outcome prediction and the identifica-
tion of predictors for successful completion (Loeb, Waung,
and Sheeran 2015; Verhaaff and Scott 2015; Loong et al.
2021). Studies have also emphasized the role of probation/-
case officers, showing that reduced caseloads can signifi-
cantly reduce recidivism rates (Burrell 2006; Jalbert et al.
2010; Jalbert and Rhodes 2012), underscoring the benefits
of proper staffing and manageable caseloads in enhancing
program effectiveness and supervision. In comparison, we

Figure 1: Incarceration-diversion program diagram.

focus on a process-level view of incarceration-diversion pro-
grams, which incorporates ML prediction into a queueing-
based simulation model.

Simulation and queueing models have been utilized in
similar criminal justice contexts. Taxman and Pattavina
(2013) advocate for simulation modeling to explore recidi-
vism reduction strategies, showcasing applications such as
a web tool for diversion program targeting and discrete-
event simulations to estimate the impact of risk-and-need-
responsivity principles. Usta and Wein (2015) use a queue-
ing network simulation to demonstrate that offering split
sentences to low-level felons optimizes the trade-off be-
tween recidivism risk and jail congestion. Attari et al. (2021)
leverage a queueing simulation model with recidivism pre-
diction based on logistic regression and estimated program
effects to make admission decisions in reintegration pro-
grams. Zhang, Shi, and Ward (2022) employ a theoretical
queueing model to explore fairness and efficiency in rout-
ing customers in a two-stage service system motivated by
incarceration diversion. Master et al. (2018) analyze a jail
network queueing model with a continuum of classes cap-
turing recidivism risk, and propose a two-threshold control
policy to optimize crime rate and mean jail population. How-
ever, none of these studies have investigated the impact of
admission volume on program census using an ML-based
outcome prediction model, or explored the trade-off between
in-program revocation and long-term recidivism rate to de-
termine optimal program size. Furthermore, the aforemen-
tioned works did not emphasize technology deployment, a
key focus of our work.

Data and Descriptive Statistics
We obtained de-identified data from our community partner
for incarceration-diversion programs in four Illinois coun-
ties: DuPage, Cook, Peoria, and Will. The dataset spans from
February 2011 to April 2022 for DuPage, from May 2012 to
March 2022 for Cook, from November 2011 to March 2022
for Will, and from September 2013 to March 2022 for Peo-
ria. We retrieve the raw data from our partner and consoli-
date multiple datasets based on the client ID. The consoli-
dated dataset comprises records of adult participants admit-
ted to the program, and it includes essential information such
as the arrival date, termination date, program outcomes, and
individual features including race, gender, education, mar-
riage, housing, risk assessment scores, prior crime history,
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and referral sources. Using the arrival and termination dates,
we also calculated the historical census each month (calcu-
lation details to be discussed in the next section).

Table 1 presents descriptive statistics on arrival, LOS,
and outcomes for each county and race group: White (W),
African-American (A), Hispanic (H), and Other (O). Addi-
tional descriptive statistics, such as age and gender distribu-
tion, are in the Online Supplement, Tables 1-3 (Online Sup-
plements 2024). Through the descriptive analysis, we iden-
tify two critical components that our DSS should incorpo-
rate. First, different counties exhibit distinct racial composi-
tions and program outcomes, implying that the program siz-
ing and staffing needs may vary across counties (recall the
earlier example of the Hispanic group). Thus, it is impera-
tive for the DSS to capture these demographic differences
effectively. Second, while the average LOS is relatively con-
sistent across counties, it significantly varies across program
outcomes. Not-Completed and Other outcomes are associ-
ated with shorter average LOS compared to Completed and
Revoked outcomes. Notably, county and race are known fac-
tors upon individual entry, whereas the outcome is unknown
at that time. Hence, our DSS must incorporate a prediction
function for the outcome at the entry point, enabling it to
not only predict completion rates or in-program revocation
rates but also predict the program census to provide effective
staffing decision support.

Cy R % LOS Outcome
yrs. LOS (µ) and %

µ Com Not Rev Ot

Du 682 1.6 1.6 1.7 1.7 1.1
11 47% 19% 21% 13%
- W 61% 1.6 50% 19% 19% 12%
22 A 21% 1.7 42% 18% 22% 18%

H 14% 1.7 38% 24% 23% 15%
O 3% 1.3 50% 5% 25% 20%

Co 826 1.5 1.5 1.5 1.5 1.1
12 51% 9% 28% 12%
- W 8% 1.6 54% 7% 30% 9%
22 A 82% 1.5 52% 9% 27% 12%

H 8% 1.5 40% 11% 33% 16%
O 3% 1.5 78% 0% 22% 0%

Wi 600 1.5 1.9 1.1 1.1 0.4
14 45% 20% 33% 2 %
- W 58% 1.4 46% 18% 33% 3%
22 A 31% 1.6 39% 24% 37% 0%

H 9% 1.6 54% 18% 25% 3%
O 2% 1.7 43% 29% 14% 14%

Pe 389 1.7 2.3 1.1 1.2 0.8
13 48% 46.7% 5% 0.3%
- W 31% 1.7 42% 51% 6% 1%
22 A 66% 1.7 51% 45% 4% 0%

O 3% 1.5 50% 50% 0% 0%

Table 1: General Statistics for DuPage (Du), Cook (Co), Will
(Wi), and Peoria (Pe).

Methods
We begin by providing an overview of our simulation-based
DSS and then proceed to elaborate on the main components
in detail. Figure 2 outlines our method pipeline. Our DSS
contains two primary steps:
1. Data extraction and prediction module building: We

start by extracting historical data and performing nec-
essary pre-processing. Subsequently, we develop an ML
outcome classifier based on individual features, enabling
us to predict the program outcome in the simulation. We
also construct empirical LOS distributions for each pos-
sible outcome for LOS prediction.

2. Census prediction based on simulation: The arrival
generation in the simulation follows a trace-based ap-
proach, where monthly arrivals follow historical rates,
and each new arrival’s features are sampled from the
corresponding month. For each arrival, the ML classifier
predicts the outcome, and their LOS is then sampled from
the outcome-based empirical distributions. The overall
census is predicted using Algorithm 1, outlined below.
The census by subgroups, e.g., race groups, can be cal-
culated in similar ways.

Next, we elaborate on the outcome prediction module and
discuss how we address a critical issue when incorporating
them in census prediction: the right-censoring issue. We end
this section by discussing the LOS sampling method.

Figure 2: Overview of our framework and relevant param-
eters. Historical arrival date (A), clients’ features (F), and
LOS are extracted from the historical data through the ex-
tractor. These variables are used in “Generator” to generate
new arrivals and in “Prediction Model” to predict program
outcome (O); the latter will be used to sample LOS from
the corresponding empirical distribution. The sampled LOS
(LOS’) and generated new arrivals (A’) are used to generate
census following Algorithm 1.

Outcome Prediction
The outcome prediction is a multi-classification problem
with label k ∈ K. We consider the following ML models
as candidates to handle this multi-classification problem: lo-
gistic regression (LR), decision tree (DT), gradient boosting
tree (GBT), and multi-layer perceptron (MLP).

We perform data pre-processing and feature selection,
which involves data transformation (log and square root),
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Algorithm 1: Census Prediction Algorithm
Input: Outcome and LOS prediction models, and the number of
arrivals in each month t, {At}.
Generate Arrivals: Sample arrival time for the ith individual who
arrived in month ℓ as aℓ,i, predicted outcome as k̂, and predicted
LOS as L̂k̂,i.
Generate Departures: The number of departures in
month t, Dt =

∑
k∈K Dk,t, for outcome k ∈ K =

{complete, not complete, revoke, other}, with

Dk,t =
∑
ℓ≤t

Aℓ∑
i=1

1(t− 1 < aℓ,i + L̂k̂,i ≤ t)1(k̂ = k), (1)

and 1(·) is the indicator function. Generate Census: The census
for month t can be calculated recursively as

Xt = Xt−1 +At−1 −Dt−1. (2)

features grouping, outlier elimination, etc. These steps aim
to enhance the model’s understanding of data relationships
and identify relevant features for better predictive capabili-
ties. An automated data pre-processing pipeline was devel-
oped to streamline these essential steps. Hyper-parameter
optimization frameworks (Optuna for GBT, Keras Tuner for
MLP, GridSearchCV for LR and DT) were used to automate
the tuning process with 200 trials to test hyper-parameter
combinations. We have tuned the parameters such as number
of hidden layers, activation functions, learning rate, where
the tuning range of these parameters and the final selected
values for each model are available in the Online Supple-
ment (Online Supplements 2024). Stratified k-folds cross-
validation was implemented to avoid overfitting.

Addressing Right-censoring
While incorporating outcome and LOS predictions into the
queueing simulation, we encountered a significant challenge
related to calibrating the census using historical data, pri-
marily due to right-censoring. Specifically, a portion of in-
dividuals had missing termination dates when calculating
LOS, with the percentage ranging from 11% to 38% across
different counties. Upon investigation, we discovered that
these individuals were primarily still in the program at the
time of data cutoff, resulting in right-censored termination
dates. Dismissing these individuals was not an option since
they represented a substantial portion of the system’s load,
and ignoring them would lead to significant under-prediction
of the census. Meanwhile, attempting to fill the missing
LOS using data from those with termination dates (as in
conventional missing data imputation methods) led to mis-
calibration issues. This was because the non-right-censored
individuals are primarily those who were revoked or did not
complete the program and had shorter LOS (Table 1).

To address the right-censoring issue, we employed a new
two-stage sampling approach. Specifically, at each arrival
instance, we flip a coin with the right censoring probabil-
ity to predict if this individual will be right-censored. If yes,
we assign an extended LOS value so as to make sure that

this individual is still in-program by the cutoff time. Other-
wise, the person is predicted as not right-censored and we
sample LOS values from the corresponding empirical dis-
tributions (from those who were not right censored in the
data). This two-stage sampling method turns out to be criti-
cal in calibrating our simulation prediction results to the ob-
served data, as we demonstrate in the next section. Through
this two-stage approach, we effectively address the limita-
tions posed by the right-censoring issue and significantly en-
hances the simulation’s accuracy in replicating the historical
census data.

LOS Sampling Discussion
Recall that LOS is defined as the days between the ar-
rival date and the termination date. Initially, we attempted
to predict length of stay using various ML prediction mod-
els, including MLP, LASSO regression, regression tree, and
XGB. However, all of them yielded unsatisfactory results
with large Mean Squared Error (MSE). A closer examina-
tion revealed that most of our features are categorical, and
even within the same combination of features, there were
significant variations in LOS. We also tried to fit distri-
butional models (e.g., assuming Gaussian distribution and
learning the mean and variance as a function for different
feature combinations) but this approach was also unsuccess-
ful as there was no suitable distributional fit for the LOS data
(Kolmogorov-Smirnov tests for typical distributions like
normal, log-normal, or exponential all failed). Histograms of
the LOS by counties demonstrate this challenge (see Online
Supplement, Figure 2 (Online Supplements 2024)). There-
fore, we resort to directly sampling from the empirical dis-
tribution based on the combination of county, year, race, and
outcome, which are the most predictive features for LOS.

Results
Outcome Prediction

(a) MLP (b) GBT

Figure 3: OVR AUC results for each ML model. Class 0-
3 corresponds to complete, not complete, revoke, other, re-
spectively.

We implemented LR and DT using sklearn, GBT using
LightGBM, and MLP using Keras. For model performance
comparison, we choose the One-vs-Rest (OVR) ROC AUC
score and weighted F1 score as metrics to compare their pre-
diction performance, with LR serving as the baseline model.
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The OVR strategy compares each class against all the oth-
ers simultaneously, making the ROC AUC score applicable
for multiclass classifiers. We split the dataset into training
and testing sets for evaluation, using a stratified strategy to
maintain class balance.

Model ROC AUC score Weighted F1 score
LR 0.590 0.389
DT 0.703 0.497
GBT 0.718 0.526
MLP 0.691 0.454

Table 2: Program outcome prediction results.

Table 2 shows the out-sample performance of each model
after fine-tuning. Figure 3 further illustrates the four OVR
ROC Curve for GBT and MLP. From both the table and the
plots we can can observe that GBT demonstrates the best
performance on the testing set. Consequently, we selected
GBT as the outcome predictor and integrated it into our
framework. The feature importance plot from GBT is in the
Online Supplement, Figure 1 (Online Supplements 2024).

Census Prediction
Figure 4 shows the census prediction results for White and
African American groups in each the four counties. We omit
the comparison for Hispanic and Other as their typical cen-
sus is below 10. Note that the simulation errors come from
two sources: (a) the error from the outcome prediction; (b)
the error from LOS sampling. Therefore, we show two sim-
ulation curves in each plot of Figure 4: one using the actual
outcome (eliminating error from source (a)) and another us-
ing the predicted outcome. We can observe that the curve
using the actual outcome closely aligns with the real (ob-
served) census, suggesting that the error from LOS sampling
is minimal and our approach to addressing right-censoring
is effective. On the other hand, the curve using the pre-
dicted outcome (the final output) exhibits more deviation
but remains reasonably close and captures the general trend.
The mean absolute percentage errors (MAPE) when using
the actual outcome are 3.01, 4.95, 5.51, and 15.78 for Du-
Page, Cook, Will, and Peoria counties, respectively; while
the MAPE when using the prediction outcome are 9.40,
10.05, 7.03, 21.21, respectively. These findings suggest that
the primary source of error lies in outcome prediction, es-
pecially for later years. This is expected since the prediction
accuracy tends to be lower for years with fewer observations
(similarly for counties with fewer participants such as Peo-
ria); also see the last section for our ongoing efforts to im-
prove outcome prediction accuracy. Nevertheless, the sim-
ulation outcome replicates the trends and patterns observed
in the actual data, which validates the capability of our DSS
to reasonably capture the real-world dynamics. This sets the
stage for utilizing the model output to perform counterfac-
tual analyses and informed decision-making. These simula-
tion calibration results have been shared with the manage-
ment team of the incarceration-diversion program and have
garnered favorable feedback.

(a) White - Dupage (b) African American - Dupage

(c) White - Cook (d) African American - Cook

(e) White - Will (f) African American - Will

(g) White - Peoria (h) African American - Peoria

Figure 4: Census Prediction Results for DuPage, Cook, Will,
and Peoria. X axis is the number of weeks, and Y axis is the
census. The orange line is the real census (——), the blue
line is the simulated census with outcome prediction (——),
and the grey dashed line is the simulated census without out-
come prediction (- - - -). Shaded areas are 95% prediction
interval for the final output using predicted outcomes.

Counterfactual Analyses
We present two use cases for our DSS: program sizing for
Will county and staffing estimation for launching similar
programs in a new county.

For the first use case, as we previously discussed, there is
a trade off between a larger program size with increased ad-
missions, which may increase in-program revocations and
raise potential community safety concerns, and a smaller
program, which restricts the program’s potential benefit on
a wider range of individuals. To illustrate, Figure 5(a) de-
picts the relationship between the proportion of individuals
admitted to the program and the following: (i) in-program
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(a) Program sizing (b) Census change

Figure 5: Counterfactual analysis.

revocation rates, predicted by the outcome prediction model;
(ii) long-term recidivism rates, with current admission rate
as the baseline (1.0) and each additional admitted individ-
ual leading to a 30% reduction in recidivism mentioned in
the introduction; (iii) the weighted sum of (i) and (ii) with
weights 0.8 and 1.2, with more emphasis on the latter as it
represents the long-term societal benefits. We can observe
that as admissions increase, in-program revocations in (i)
also increase, while long-term recidivism in (ii) decreases.
Consequently, the sum yields a U-shaped curve, suggesting
that the optimal program size is slightly larger than the ex-
isting program size (baseline 1.0). This finding supports the
expansion of admission criteria that our community partner
is currently considering.

In the second use case, we explore the scenario of es-
tablishing a new program with demographics and admis-
sion criteria akin to Will County, but with a higher propor-
tion of Hispanic participants and fewer White and African-
American individuals. The resulting census, as shown in the
bottom panel of Figure 5(b), is observed to be higher than
that in Will. This is attributed to the fact that Hispanics ex-
hibit higher completion rates, leading to longer LOS and
hence, higher census. This analysis emphasizes the impor-
tance of ensuring adequate case manager resources to sup-
port Hispanic individuals, not only due to the increased ar-
rival rates but also the elevated census resulting from the
longer LOS.

Ongoing Deployment
To facilitate the adoption and deployment of our DSS for our
community partner, we have developed a user-friendly web-
based platform; see Figure 6 for screenshots. The platform
consists of a web interface created with React and Tailwind
CSS, as well as a back-end using Flask to run the ML model
and simulation. This intuitive web-based platform enables
users to interact with the DSS seamlessly. The homepage
displays a map of Illinois, allowing users to select a specific
county (highlighted in green for the current four counties in
Figure 6(a)) and initiate the simulation. Once the simulation
is complete, an interactive plot displaying the census pre-

diction results is generated (implemented with using D3.js
and rCharts) to provide an intuitive understanding of the out-
comes. See sample results in Figure 6(b).To optimize system
response times, we optimized the data-transfer pipeline with
parallel data fetching function to reduce client-server water-
falls and the total time to load data. These changes reduced
the average run time from 8 minutes to 15 seconds.

After multiple rounds of testing, we deployed the webapp
to Google Cloud Platform, and we have already presented
the webapp to the management team of our community part-
ner, receiving strong support, and are actively incorporating
their feedback to improve the design iteratively.

(a) Homepage (b) Sample result page

Figure 6: Demo of the web-based app for ongoing deploy-
ment of our DSS.

While the current version covers specific counties in Illi-
nois, our plan is to progressively extend its coverage to in-
clude more counties and jurisdictions, focusing on general-
ization and scalability in refining our DSS. Other future de-
ployment efforts include (i) refining the DSS through more
advanced ML techniques (like transfer learning and ensem-
ble methods) to improve the program outcome prediction,
especially for years and counties with small samples, and
collaborating with our community partner to identify/collect
more predictive features such as socio-determinants; (ii) al-
lows users to upload their own data into the web app, pro-
viding the flexibility to run simulations and counterfactual
to increase the applicability of our DSS to a broader range
of users and settings. On the implementation side, we have
adopted a tiered approach, starting with leadership buy-in
(completed first phase) and actively gathering feedback from
end-users (ongoing second phase). We understand the po-
tential negative effects and are committed to continuous im-
provement, including assessing the algorithm’s real-world
impact, evaluating and addressing any unintended conse-
quences (e.g., bias), and ensuring practicality within vari-
ous budgets and political constraints. By effectively bridg-
ing AI technology and decision-making, our DSS demon-
strates great potential to address a significant societal prob-
lem. With a clear path to deployment, our tool holds the
promise of positively impacting society by fostering safer
communities through more effective diversion programs.
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